Spin Networks and Anyonic Topological Quantum Computing

L. H. Kauffman, UIC

quant-ph/0603131 and quant-ph/0606114

www.math.uic.edu/~kauffman/Unitary.pdf

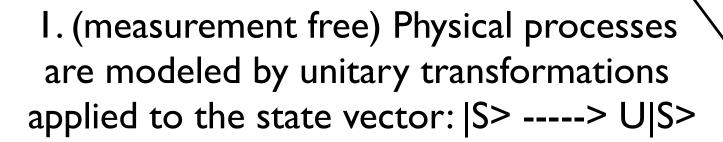
Spin Networks and Anyonic Topological Computing

Louis H. Kauffman^a and Samuel J. Lomonaco Jr.^b

^a Department of Mathematics, Statistics and Computer Science (m/c 249), 851 South Morgan Street, University of Illinois at Chicago, Chicago, Illinois 60607-7045, USA
 ^b Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Quantum Mechanics in a Nutshell

0. A state of a physical system corresponds to a unit vector |S> in a complex vector space.



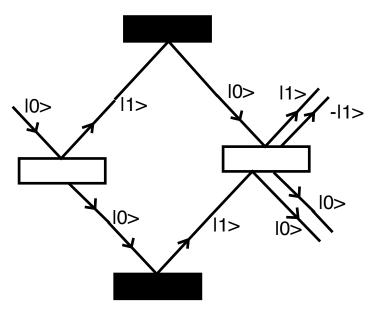
2. If |S> = z1|e1> + z2|e2> + ... + zn|en> in a measurement basis {e1,e2,...,en}, then measurement of |S> yields |ei> with probability |zi|^2.

Preparation, Transformation, Measurement.

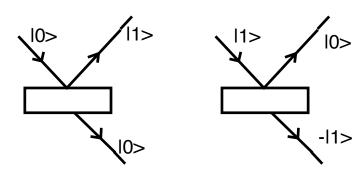
Psi =
$$\langle T|U|S \rangle$$

Psi*Psi = $\langle S|U^*|T \rangle$ $\langle T|U|S \rangle$





Mach-Zender Interferometer



$$H = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / Sqrt(2) \qquad M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$HMH = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Quantum Gates are unitary transformations enlisted for the purpose of computation.

$$CNOT = \begin{array}{|c|c|c|c|c|c|} \hline I & 0 & 0 & 0 \\ \hline 0 & I & 0 & 0 \\ \hline 0 & 0 & 0 & I \\ \hline 0 & 0 & I & 0 \\ \hline \end{array}$$

Universal Gates

A two- $qubit\ gate\ G$ is a unitary linear mapping

$$G:V\otimes V\longrightarrow V\otimes V$$
 where V is

a two complex dimensional vector space. We say that the gate G is universal for quantum computation (or just universal) if G together with local unitary transformations (unitary transformations from V to V) generates all unitary transformations of the complex vector space of dimension 2^n to itself. It is well-known [44] that CNOT is a universal gate.

A gate G is universal iff G is entangling.

A gate G, as above, is said to be *entangling* if there is a vector

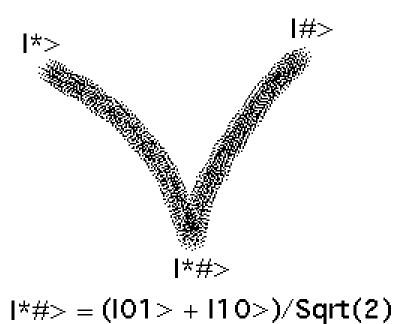
$$|\alpha\beta\rangle = |\alpha\rangle \otimes |\beta\rangle \in V \otimes V$$

such that $G|\alpha\beta\rangle$ is not decomposable as a tensor product of two qubits. Under these circumstances, one says that $G|\alpha\beta\rangle$ is *entangled*.

In [6], the Brylinskis give a general criterion of G to be universal. They prove that a two-qubit gate G is universal if and only if it is entangling.

An Entangled State

The EPR State



An Entanglement Criterion

Remark. A two-qubit pure state

$$|\phi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

is entangled exactly when $(ad - bc) \neq 0$. It is easy to use this fact to check when a specific matrix is, or is not, entangling.

The Bell States

$$R|00\rangle = (1/\sqrt{2})|00\rangle - (1/\sqrt{2})|11\rangle,$$

$$R|01\rangle = (1/\sqrt{2})|01\rangle + (1/\sqrt{2})|10\rangle,$$

$$R|10\rangle = -(1/\sqrt{2})|01\rangle + (1/\sqrt{2})|10\rangle,$$

$$R|11\rangle = (1/\sqrt{2})|00\rangle + (1/\sqrt{2})|11\rangle.$$

Braiding and the Yang-Baxter Equation

$$R \otimes I \qquad I \otimes R$$

$$R \otimes I \qquad I \otimes R$$

$$I \otimes R \qquad I \otimes R$$

$$R \otimes I \qquad I \otimes R$$

$$R \otimes I \qquad I \otimes R$$

$$R \otimes I \qquad I \otimes R$$

$$(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R).$$

Braiding Operators are Universal Quantum Gates

Let V be a two complex dimensional vector space.

Universal gates can be constructed from certain solutions to the Yang-Baxter Equation

$$R: V \otimes V \longrightarrow V \otimes V$$

$$(R \otimes I)(I \otimes R)(R \otimes I) = (I \otimes R)(R \otimes I)(I \otimes R).$$

Representative Examples of Unitary Solutions to the Yang-Baxter Equation that are Universal Gates.

$$R = \begin{pmatrix} 1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 0 & 0 & 1/\sqrt{2} \end{pmatrix} \text{ Bell Basis Change Matrix}$$

$$R' = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & c & 0 & 0 \\ 0 & 0 & 0 & d \end{pmatrix} \qquad R'' = \begin{pmatrix} 0 & 0 & 0 & a \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ d & 0 & 0 & 0 \end{pmatrix}$$

$$R_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
 Swap Gate with Phase

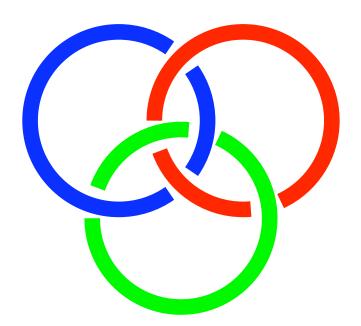
Issues

- I. Giving a Universal Gate that is topological does NOT create "topological quantum computing" because the U(2) local operations have not been made topological.
- Nevertheless, Yang-Baxter gates are interesting to construct and help to discuss
 Topological Entanglement versus
 Quantum Entanglement.

Quantum Entanglement and Topological Entanglement

An example of Aravind [1] makes the possibility of such a connection even more tantalizing. Aravind compares the Borromean rings (see figure 2) and the GHZ state

$$|\psi\rangle = (|\beta_1\rangle|\beta_2\rangle|\beta_3\rangle - |\alpha_1\rangle|\alpha_2\rangle|\alpha_3\rangle)/\sqrt{2}.$$



Is the Aravind analogy only superficial?!

Consider this state.

$$|\psi\rangle = (1/2)(|000\rangle + |001\rangle + |101\rangle + |110\rangle)$$

Observation in any coordinate yields entangled and unentangled states with equal probability.

e.g.

$$|\psi\rangle = (1/2)(|0\rangle(|00\rangle + |01\rangle) + |1\rangle(|01\rangle + |10\rangle)$$

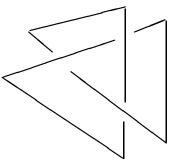
First coordinate measurement

gives |00> + |01> and |01> + |10>with equal probability.

Do we need Quantum Knots?

K: probability $|a|^2$

K':probability |b|^2



Observing a Quantum Knot

Air on the Dirac Strings

SU(2) Representations of the Artin Braid Group

Theorem. If g = a + bu and h = c + dv are pure unit quaternions, then, without loss of generality, the braid relation ghg = hgh is true if and only if h = a + bv, and $\phi_g(v) = \phi_{h^{-1}}(u)$. Furthermore, given that g = a + bu and h = a + bv, the condition $\phi_g(v) = \phi_{h^{-1}}(u)$ is satisfied if and only if $u \cdot v = \frac{a^2 - b^2}{2b^2}$ when $u \neq v$. If u = v then then g = h and the braid relation is trivially satisfied.

$$g = a + bu$$

 $h = a + bv$
 $u \circ v = (a^2 - b^2)/2b^2$

An Example. Let

$$g = e^{i\theta} = a + bi$$

where $a = cos(\theta)$ and $b = sin(\theta)$. Let

$$h = a + b[(c^2 - s^2)i + 2csk]$$

where $c^2 + s^2 = 1$ and $c^2 - s^2 = \frac{a^2 - b^2}{2b^2}$. Then we can reexpress g and h in matrix form as the matrices G and H. Instead of writing the explicit form of H, we write $H = FGF^*$ where F is an element of SU(2) as shown below.

$$G = \left(\begin{array}{cc} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{array}\right)$$

$$F = \left(\begin{array}{cc} ic & is \\ is & -ic \end{array}\right)$$

SU(2) Fibonacci Model

$$\tau^2 + \tau = 1.$$
$$g = e^{7\pi i/10}$$

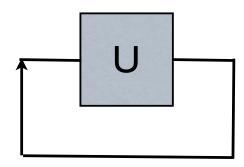
$$f = i\tau + k\sqrt{\tau}$$

$$h = frf^{-1}$$

{g,h} represents 3-strand braids, generating a dense subset of SU(2).

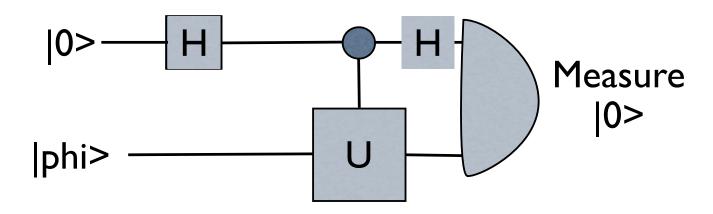
We shall see that the representation labeled "SU(2) Fibonacci Model" in the last slide extends beyond SU(2) to representations of many-stranded braid groups rich enough to generate quantum computation.

Quantum Computation of the Trace of a Unitary Matrix



- I.A good example of a quantum algorithm.
- 2. Useful for the quantum computation of knot polynomials such as the Jones polynomial.

Hadamard Test



|0> occurs with probability |1/2 + Re[<phi|U|phi>]/2

Quantum Hall Effect

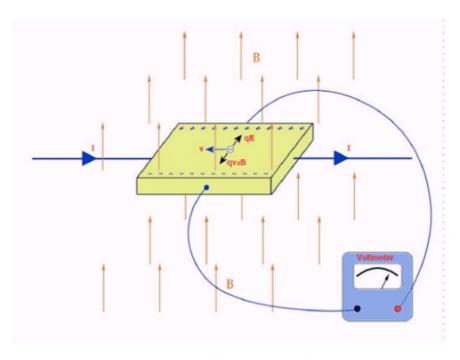
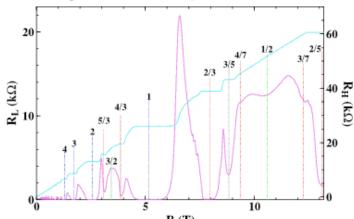


Figure 1: A schematics of the experimental setup of the Hall effect. A current driven through the conductor, drawn as a prism, leads to the emergence of voltage in the perpendicular direction. This is the Hall voltage, which Maxwell erroneously predicted to be zero.

Fractional Quantum Hall Effect (Cambridge Univ Website)

The fractional quantum Hall effect (FQHE) is a fascinating manifestation of simple collective behaviour in a two-dimensional system of strongly interacting electrons. At particular magnetic fields, the electron gas condenses into a remakable state with liquid-like properties. This state is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures. As in the integer Quantum Hall Effect, a series of plateaux forms in the Hall resistance. Each particular values of magnetic field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta) nu=p/q, where p and q are integers with no common factors). q always turns out to be an odd number. The principal series of such fractions are 1/3, 2/5, 3/7 etc, and 2/3, 3/5, 4/7, etc.



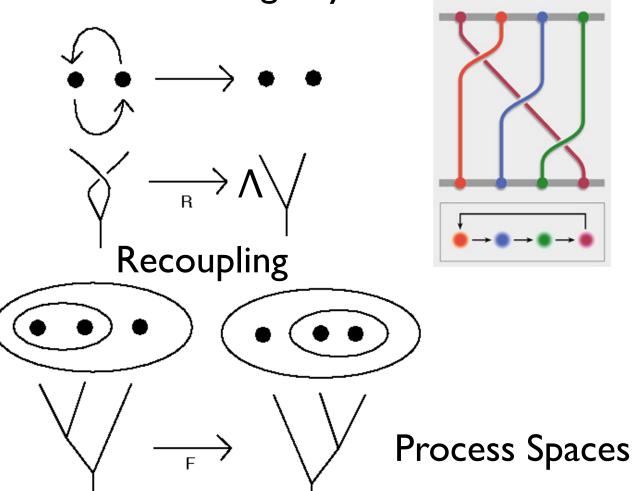
There are two main theories of the FQHE:

- Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions by constructing a set of quasiparticles with charge $e^* = e/q$, where the fraction is p/q as above.
- Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
 hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
 electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
 are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
 the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
 magnetic field. Experiments support this.

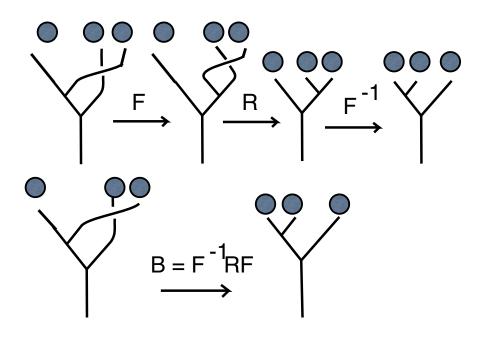
There are two main theories of the FQHE:

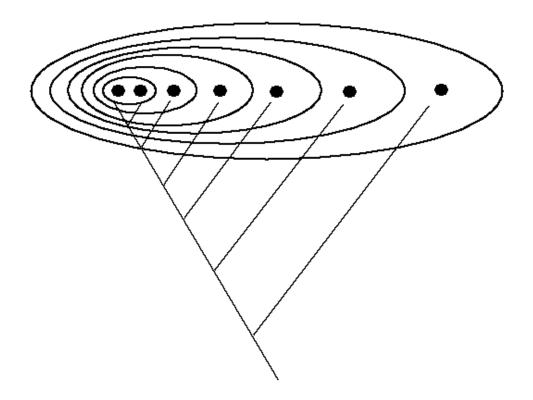
- Fractionally-charged quasiparticles. This theory, proposed by Laughlin, hides the interactions by constructing a set of quasiparticles with charge $e^* = e/q$, where the fraction is p/q as above.
- Composite Fermions. This theory was proposed by Jain, and Halperin, Lee and Read. In order to
 hide the interactions, it attaches two (or, in general, an even number) flux quanta h/e to each
 electron, forming integer-charged quasiparticles called Composite Fermions. The fractional states
 are mapped to the Integer QHE. This makes electrons at a filling factor 1/3, for example, behave in
 the same way as at filing factor 1. A remarkable result is that filling factor 1/2 corresponds to zero
 magnetic field. Experiments support this.

The quasi-particle theory is connected with Chern-Simons Theory and it explains the FQHE on the basis of "anyons": particles that have non-trivial (not +1 or -1) phase change when they exchange places in the plane.



Non-Local Braiding is Induced via Recoupling





Process Spaces Can be Abitrarily Large. With a coherent recoupling theory, all transformations are in the representation of one braid group.

Mathematical Models for Recoupling
Theory with Braiding come from a
Combination of
Penrose Spin Networks and
Knot Theory.

See "Temperley Lieb Recoupling Theory and Invariants of Three-Manifolds" by L. Kauffman and S. Lins, PUP, 1994.

Penrose Spin Networks

Wested diagrammetic representation that is convenient and topologically invariant in the plane.

$$|T| = -|T|$$

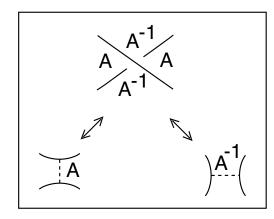
$$|T| = |T|$$

$$|T|$$

$$|T| = |T|$$

$$|T| = |T|$$

Bracket Polynomial Model for Jones Polynomial

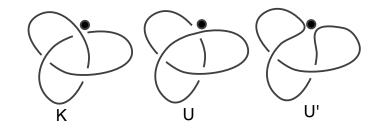


$$< > = A < > + A^{-1} <) (>$$

 $< > = A^{-1} < > + A <) (>$

$$< K > = \sum_{S} < K|S > \delta^{||S||-1}.$$

Trefoil Calculation



$$A^{-1} < K > -A < U > = (A^{-2} - A^2) < U' >$$

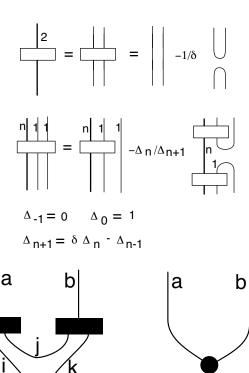
$$< U >= -A^{3}$$

 $< U' >= (-A^{-3})^{2} = A^{-6}$
 $< K >= -A^{5} - A^{-3} + A^{-7}$.

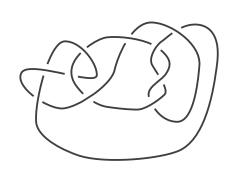
q-Deformed Spin Networks

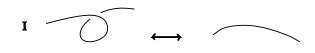
$$= A^{2} - A^{2} = d$$

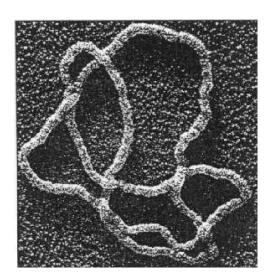
$$= A + A^{-1}$$



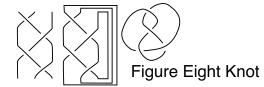
Knots and Links



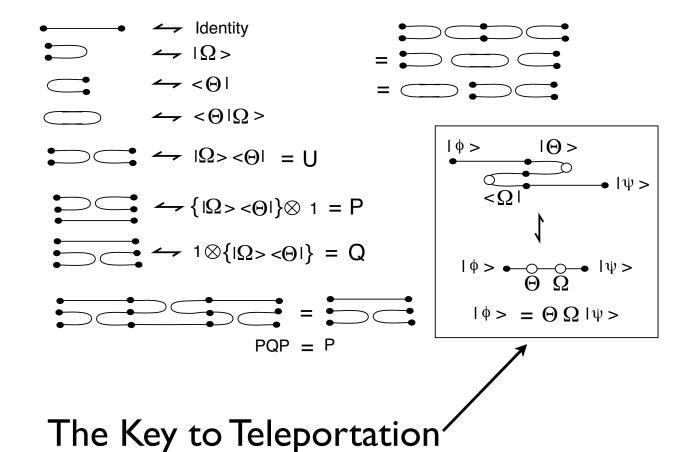




Braid Generators



Temperley Lieb Category



Any two one-dimensional projectors generate a Temperley-Lieb algebra.

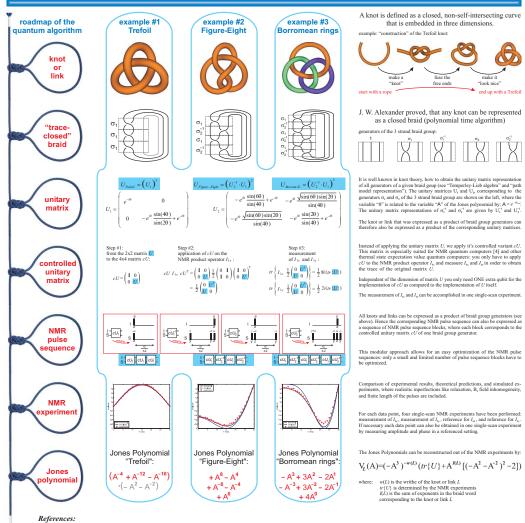
This trick can be used to manufacture unitary representations of the three-strand braid group.

Untying Knots by NMR: first experimental implementation of a quantum algorithm for approximating the Jones polynomial

Raimund Marx¹, Andreas Spörl¹, Amr F. Fahmy², John M. Myers³, Louis H. Kauffman⁴, Samuel J. Lomonaco, Jr.⁵, Thomas-Schulte-Herbrüggen¹, and Steffen J. Glaser¹

Department of Chemistry, Technical University Munich, Lichtenbergstr. 4, 85747 Garching, Germany ²Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, U.S.A.

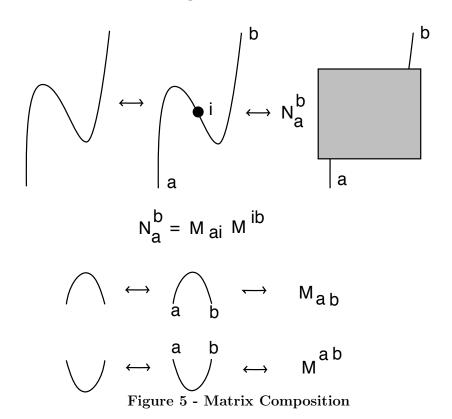
³Gordon McKay Laboratory, Harvard University, 29 Oxford Street, Cambridge, MA 02138, U.S.A. *University of Illinois at Chicago, 851 S. Morgan Street, Chicago, II. 60607-7045, U.S.A. *University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, U.S.A.

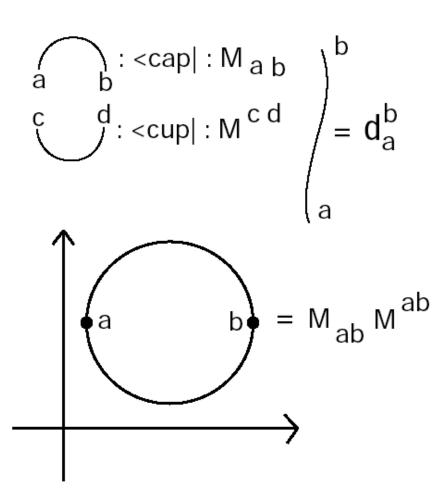


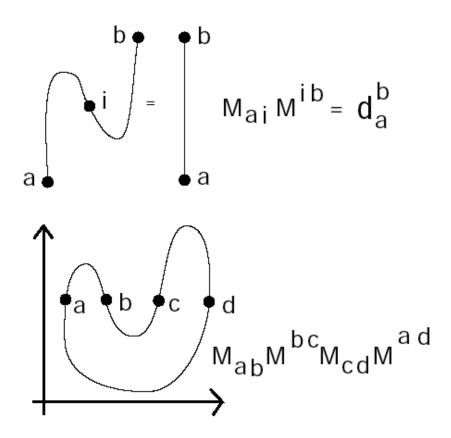
- 1) 1) L. Kauffman, AMS Contemp. Math. Series, 305, edited by S. J. Lomonaco, (2002), 101-137 (math.QA/0105255)
 - 2) R. Marx, A. Spörl, A. F. Fahmy, J. M. Myers, L. H. Kauffman, S. J. Lomonaco, Jr., T. Schulte-Herbrüggen, and S. J. Glaser: paper in preparation
 - 3) Vaughan F. R. Jones, Bull. Amer. Math. Soc., (1985), no. 1, 103-111
 - 4) J. M. Myers, A. F. Fahmy, S. J. Glaser, R. Marx, Phys. Rev. A, (2001), 63, 032302 (quant-ph/0007043) 5) D. Aharonov, V. Jones, Z. Landau, Proceedings of the STOC 2006, (2006), 427-436 (quant-ph/0511096)

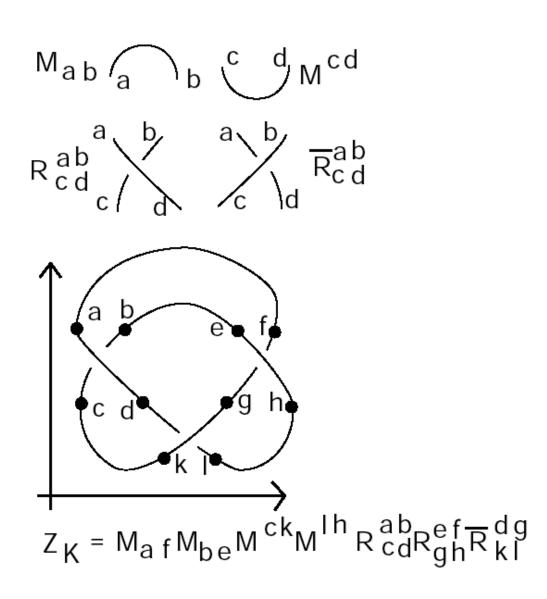
 - 6) M. H. Freedman, A. Kitaev, Z. Wang, Commun. Math. Phys., (2002), 227, 587-622

Diagrammatic Matrices, Knots and Teleportation

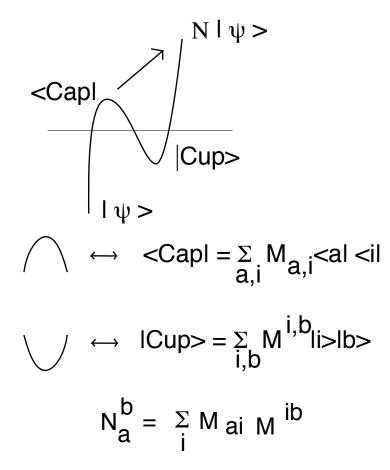






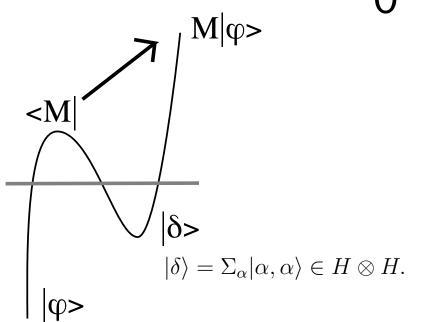


State and Matrix Duality



The Topology of Teleportation

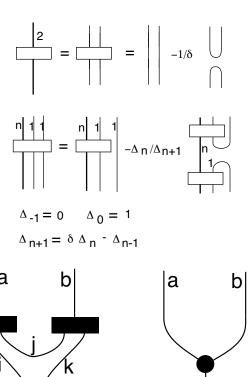
$$|00\rangle + |11\rangle$$
 <---> 1 0 0 1



q-Deformed Spin Networks

$$= A^{2} - A^{2} = d$$

$$= A + A^{-1}$$



$$\frac{1}{T} = \frac{1}{\{n\}!} \sum_{\alpha \in S_{\infty}} (A^{-3})^{**} (\alpha^{\alpha}) + \frac{1}{2}$$

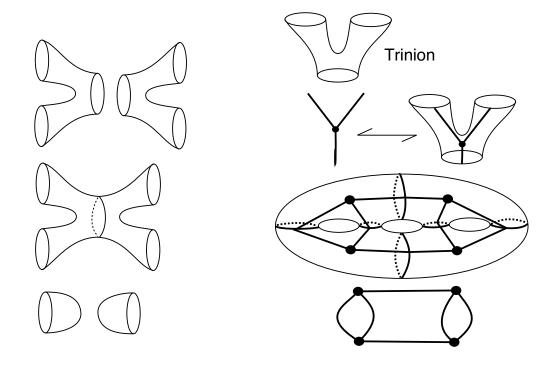
$$\{n\}! = \sum_{\alpha \in S_{\infty}} (A^{-4})^{**} (\alpha^{\alpha})$$

$$X = X$$

Projectors are Sums over Permuations, Lifted to Braids and Expanded via the Bracket into the Temperley Lieb Algebra

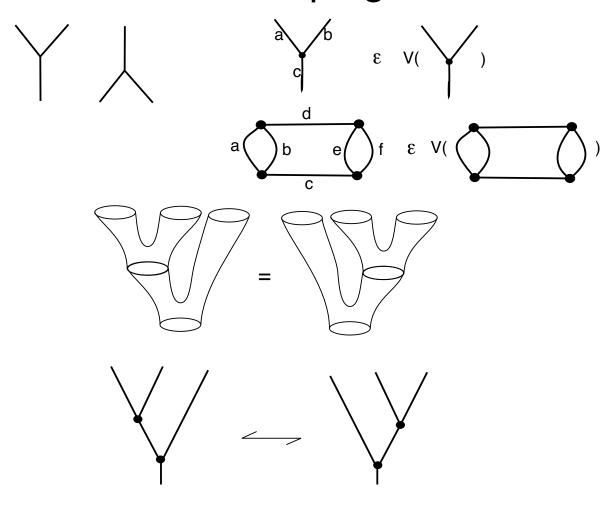
$$\begin{aligned}
& \left\{ 2 \cdot \tilde{S} \right\} = 1 + \tilde{A}^{-\frac{1}{4}} \\
& \left[\frac{1}{1 + \tilde{A}^{-\frac{1}{4}}} \left[\frac{1}{1 + \tilde{A}^{-\frac{3}{4}}} \right] \right] \\
& = \frac{1}{1 + \tilde{A}^{-\frac{1}{4}}} \left[\frac{1}{1 + \tilde{A}^{-\frac{3}{4}}} \left[A \cdot (A + \tilde{A}^{-\frac{1}{4}}) (1 - \tilde{A}^{-\frac{3}{4}}) \right] \\
& = \frac{1}{1 + \tilde{A}^{-\frac{1}{4}}} \left[(1 + \tilde{A}^{-\frac{3}{4}}) (1 + \tilde{A}^{-\frac{3}{4}}) (1 - \tilde{A}^{-\frac{3}{4}}) (1$$

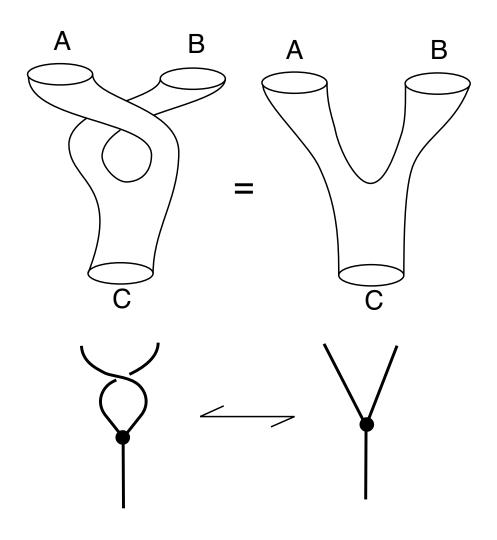
Topological Quantum Field Theory



Process Spaces on Surfaces Lead to Three-Manifold Invariants.

Process Vector Spaces and Recoupling





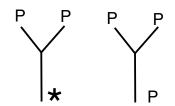
Braiding, Naturality, Recoupling, Pentagon and Hexagon -Automatic Consequences of the Constuction

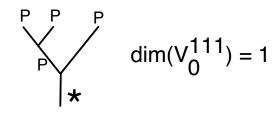
Non-Local Braiding is Induced via Recoupling

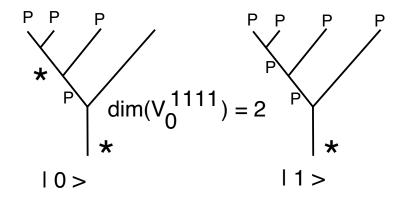
$$F \longrightarrow R \longrightarrow F^{-1}$$

$$B = F^{-1}RF$$

Fibonacci Model







$$A = e^{3\pi i/5}.$$

$$A = \begin{vmatrix} -1/8 & 1/5 \\ 1/4 & 1/5 \end{vmatrix}$$

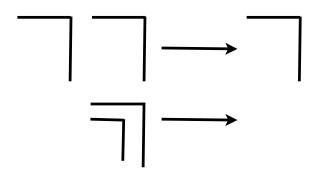
$$A = \begin{vmatrix} -1/8 & 1/5 \\ 1/4 & 1/5 \end{vmatrix}$$
Forbidden

Temperley Lieb Representation of Fibonacci Model

ICONICS

In the Fibonacci Model we have one "particle" P that interacts itself to produce either P or * (nothing). This is analogous to the logical particle representing an act of distinction (or registration, measurement, ...)

of G. Spencer-Brown that interacts with itself in two ways:



Digression: The Re-entering Mark as Iconic for Recursive Trace and Lambda Calculus Fixed Point.

Fibonacci Model

A sketch of the derivation [20.1]

$$\frac{1}{11} = 11 - \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} = \frac{$$

The Simple, yet Quantum Universal, Structure of the Fibonacci Model

$$A = e^{3\pi i/5}.$$

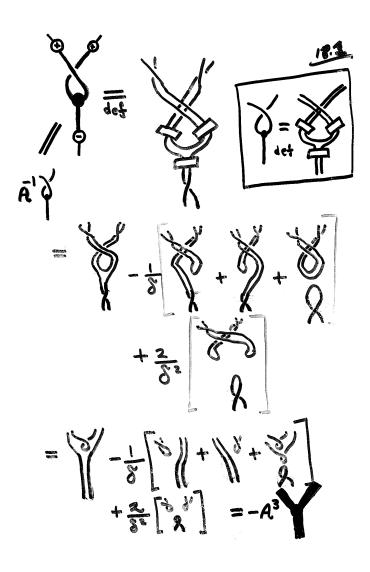
$$\delta = -A^2 - A^{-2}$$

$$\Delta = \delta = (1 + \sqrt{5})/2.$$

$$F = \begin{pmatrix} 1/\Delta & 1/\sqrt{\Delta} \\ 1/\sqrt{\Delta} & -1/\Delta \end{pmatrix} = \begin{pmatrix} \tau & \sqrt{\tau} \\ \sqrt{\tau} & -\tau \end{pmatrix}$$

$$R = \begin{pmatrix} -A^4 & 0 \\ 0 & A^8 \end{pmatrix} = \begin{pmatrix} e^{4\pi i/5} & 0 \\ 0 & -e^{2\pi i/5} \end{pmatrix}.$$

Spin Network Gymnastics



$$\Delta = \left[\begin{array}{c} -1/\delta \\ \end{array}\right] = \left[\begin{array}{c} -1/\delta \\ \end{array}\right] = \left[\begin{array}{c} (\delta - 1/\delta) \\ \end{array}\right]$$

$$\Delta = \left[\begin{array}{c} (\delta - 1/\delta) \\ \end{array}\right] = \left[\begin{array}{c} (\delta - 1/\delta) \\ \end{array}\right] = \left[\begin{array}{c} (\delta - 1/\delta) \\ \end{array}\right]$$

$$\Delta = \delta^2 - 1$$

$$\Theta = (\delta - 1/\delta)^2 \delta - \Delta/\delta$$

Closure, Bubble and Recoupling

$$\begin{vmatrix} a \\ = \begin{vmatrix} a \\ \end{vmatrix} = \begin{vmatrix} a \\ \end{vmatrix} = \begin{vmatrix} \Delta a \\ \end{vmatrix} =$$

The 6-j Coefficients

$$= \sum_{j} \left\{ \begin{array}{l} a & b & i \\ c & d & j \end{array} \right\} \underbrace{ \left\{ \begin{array}{l} a & b & i \\ c & d & j \end{array} \right\}}_{j} \underbrace{ \left\{ \begin{array}{l} a & b & i \\ c & d & j \end{array} \right\}}_{\Delta_{j}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & j \end{array} \right\}}_{\Delta_{j}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & j \end{array} \right\}}_{\Delta_{j}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & j \end{array} \right\}}_{\Delta_{j}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & j \end{array} \right\}}_{\Delta_{j}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & j \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d & k \end{array} \right\}}_{\Delta_{k}} \underbrace{ \left\{ \begin{array}{l} A & b & i \\ C & d &$$

Local Braiding

$$\begin{array}{c}
a & b \\
 & = \lambda_c^{ab} \\
 & c
\end{array}$$

$$\lambda_c^{ab} = (-1)^{(a+b-c)/2} A^{(a'+b'-c')/2}$$

$$x' = x(x+2)$$

Redefining the Vertex is the key to obtaining Unitary Recoupling Transformations.

New Recoupling Formula

$$= \sum_{k} \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{i k} \sqrt{\frac{\Delta a \Delta b}{\Delta_{j}}} \sqrt{\frac{\Delta c \Delta d}{\Delta_{j}}} \Delta_{j} \delta_{j}^{k}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{i j} \sqrt{\frac{\Delta a \Delta b}{\Delta_{j}}} \sqrt{\frac{\Delta c \Delta d}{\Delta_{j}}} \Delta_{j}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{i j} \sqrt{\frac{\Delta a \Delta b}{\Delta_{j}}} \sqrt{\frac{\Delta c \Delta d}{\Delta_{j}}} \Delta_{j}$$

$$= \begin{bmatrix} a & b & i \\ c & d & j \end{bmatrix}$$

$$= \begin{bmatrix} \Delta a \Delta b & \Delta b \Delta c \Delta d \\ \Delta i & \Delta b \Delta c \Delta d \end{bmatrix}$$

The Recoupling Matrix is Real Unitary at Roots of Unity.

$$=\sum_{c} \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{ij} \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{ij}$$

$$=\frac{\begin{bmatrix} a & b \\ c & d \end{bmatrix}_{ij}}{\sqrt{\Delta_{a}\Delta_{b}\Delta_{c}\Delta_{d}}}, \frac{\begin{bmatrix} a & b \\ c & d \end{bmatrix}_{j}}{\sqrt{\Delta_{a}\Delta_{b}\Delta_{c}\Delta_{d}}}=\frac{\begin{bmatrix} b & d \\ d & d \end{bmatrix}_{i}}{\sqrt{\Delta_{a}\Delta_{b}\Delta_{c}\Delta_{d}}}$$

$$M[a,b,c,d]_{ij} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{ij}$$

$$\Rightarrow \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{T} = \begin{bmatrix} a \\ c \end{bmatrix}$$

Theorem. Unitary Representations of the Braid Group come from Temperley Lieb Recoupling Theory at roots of unity.

$$A = e^{i\pi/2r}$$

Sufficient to Produce Enough Unitary
Transformations for Quantum
Computing.

Quantum Computation of Colored Jones Polynomials and WRT invariants.

B P(B)
$$\begin{vmatrix} a & b & b \end{vmatrix} = 0 \quad \text{if } b \neq 0$$

$$\begin{vmatrix} a & b & b \end{vmatrix} = 0 \quad \text{if } b \neq 0$$

$$\begin{vmatrix} a & b & b \end{vmatrix} = B(0,0) \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

$$\begin{vmatrix} a & b & b \end{vmatrix} = B(0,0) \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

$$\begin{vmatrix} a & b & b \end{vmatrix} = B(0,0) \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

Need to compute a diagonal element of a unitary transformation.

Use the Hadamard Test.

Colored Jones Polynomial for n = 2 is Specialization of the Dubrovnik version of Kauffman polynomial.

$$= A^{4} + A^{-4} +$$

Will these models actually be used for quantum computation?
Will quantum computation actually happen?
Will topology play a key role?
Time will tell.