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A correct compiler

Guaranteed correct: K1 ∼ K2 ⇐⇒ [[K1]] ' [[K2]]

Need to unpack

[[−]] : Knots → π

specify target language, π-calculus
specify a source language, Knots

notion of equivalence, ∼, in Knots
notion of equivalence, ', in π-calculus
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Related work

Goubault, Van Glabbeek, Pratt and others have extensively
investigated connections between algebraic topology and
process algebras
Herlihy has investigated connections between algebraic
topology and concurrent algorithms
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Our contribution

The work cited above is primarily oriented around mining
the more mature body of maths (algebraic topology) for
insights into the younger body (concurrency) – using space
to investigate behavior
The present work is about turning the tables – using
behavior to investigate space

We exhibit an encoding of knots as processes in which
knots are equivalent (ambient isotopic) iff their encodings
as processes are equivalent (weakly bisimilar)
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Invariants

The emergence of computing gave rise to algebraic
structures where representation of behavior is refactored

The λ and π-calculi are distinguished by explicit internal
representations of dynamics
C.f. structures like vector spaces where dynamics is
expressed by maps between structures

Can these new structures be mined for invariants?
What sort of information might the internal representation
of dynamics be sensitive to?
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Proof methods

Concommitantly, bisimulation has emerged as a powerful
proof method

Intuitive
Entities are distinguished iff there is a distinguishing
experiment

Adaptable
Find the proper notion of experiment

Sporting all manner of up-to techniques

How far can the scope of bisimulation be extended?
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Space as behavior

These two observations are linked – bisimulation has been
an exceptionally effective notion and methodology across
these algebraic structures
Underlying this link is common world-view (very explicit in
the λ and π calculis)

Ontology arises out of behavior
Things are because they do
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Trefoil as computing device
Working with projections

work with knot 
projections

Figure: Trefoil as projection
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Trefoil as computing device
Crossings as circuits

interpret 
crossings

as 
logical gates

Figure: Crossings as circuits
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Trefoil as computing device
Wiring it all together
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Figure: Trefoil as device
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Crossing circuits
x0

y0

x1

y1

C(x0, x1, y0, y1, u) :=

x1?(s).y0!(s).(C(x0, x1, y0, y1, u)|u!)

+y0?(s).x1!(s).(C(x0, x1, y0, y1, u)|u!)

+x0?(s).u?.y1!(s).(C(x0, x1, y0, y1, u))

+y1?(s).u?.x0!(s).(C(x0, x1, y0, y1, u))
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Wires and buffers

W (x , y) := (ν n m)(Waiting(x , n, m)|Waiting(y , m, n))

Waiting(x , c, n) :=

x?(v).(ν m)(Cell(n, v , m)|Waiting(x , c, m))

+c?(w).c?(c).Ready(x , c, n, w)

Ready(x , c, n, w) :=

x?(v).(ν m)(Cell(n, v , m)|Ready(x , c, m, w))

+x!(w).Waiting(x , c, n)

Cell(c, v , n) := c!(v).c!(n).0
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Main theorem

Main theorem: K1 ∼ K2 ⇐⇒ [[K1]] ' [[K2]]

Need to unpack

[[−]] : Knots → π

specify target language, π-calculus
specify a source language, Knots

notion of equivalence, ∼, in Knots
notion of equivalence, ', in π-calculus
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Target language: pi in 5
Syntax

SUMMATION

M, N ::= 0 | x .A | M + N
AGENT

A ::= (~x)P | [~x ]P

PROCESS

P, Q ::= N | P|Q |X 〈~y〉 | (rec X (~x).P)〈~y〉 | (ν ~x)P

x?(~y).P , x .(~y)P
x!(~y).P , x .[~y ]P

Meredith, Snyder Knots as processes
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Target language: pi in 5
Structural equivalence

The structural congruence, ≡, between processes is the least
congruence closed with respect to alpha-renaming, satisfying
AC for | and +, 0 following axioms:

1 the scope laws:

(ν x)0 ≡ 0,

(ν x)(ν x)P ≡ (ν x)P,

(ν x)(ν y)P ≡ (ν y)(ν x)P,

P|(ν x)Q ≡ (ν x)(P|Q), if x 6∈ FN (P)

2 the recursion law:

(rec X (~x).P)〈~y〉 ≡ P{~y/~x}{(rec X (~x).P)/X}

Meredith, Snyder Knots as processes
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Target language: pi in 5
Operational semantics

|F | = |C|
x .F | x .C → F ◦ C

COMM

PAR
P → P ′

P|Q → P ′|Q
P → P ′

(ν x)P → (ν x)P ′ NEW

P ≡ P ′ P ′ → Q′ Q′ ≡Q
P → Q

EQUIV

(~y)P ◦ (ν~v)[~z]Q , (ν~v)(P{~z/~y}|Q)

As usual, write ⇒ for →∗.
Meredith, Snyder Knots as processes
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Target language: pi in 5
Bisimulation

Definition
An agent, B, occurs unguarded in A if it has an occurence in A
not guarded by a prefix x . A process P is observable at x ,
written here P ↓ x , if some agent x .A occurs unguarded in P.
We write P ⇓ x if there is Q such that P ⇒ Q and Q ↓ x .
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Target language: pi in 5
Bisimulation

Definition
A barbed bisimulation is a symmetric binary relation S between
agents such that P S Q implies:

1 If P → P ′ then Q ⇒ Q′ and P ′ S Q′.
2 If P ↓ x , then Q ⇓ x .

P is barbed bisimilar to Q, written P ' Q, if P S Q for some
barbed bisimulation S.
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Contexts

SUMMATION

MM , MN ::= � | x .MA | MM + MN

AGENT

MA ::= (~x)MP | [~x ]MP

PROCESS

MP ::= MN | P|MP |(rec X (~x).MP)〈~y〉 | (ν ~x)MP

Definition (contextual application)
Given a context M, and process P, we define the contextual
application, M[P] := M{P/�}. That is, the contextual
application of M to P is the substitution of P for � in M.
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Shape of the encoding

Now we are in a position to unpack the general shape of the
encoding. It’s just a parallel composition of crossings and wires
wired up to respect the graph underlying the knot projection

[[K ]] =

(v0...v4n−1)(Π
n−1
i=0 (ν u)[[C(i)]](v4i , ..., v4i+3, u)

|Πn−1
i=0 W (vω(i,0), vω(i,1))|W (vω(i,2), vω(i,3)))

Meredith, Snyder Knots as processes
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A (very) little knot theory

A knot is an embedding of the circle into R3

Two knots, K1 and K2 can be composed, K1#K2 by cutting
each and fusing the respective ends together
A prime knot cannot be represented as the composition of
knots
We can work with knot projections because of a
well-known theorem stating that knots are ambient isotopic
iff you can convert the projection of one into the projection
of the other via a sequence of the Reidemeister moves.

Figure: Trefoil as device
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Reidemeister moves

In ‘digitizing’ knots by working with their projections we
obtained another notion of equivalence: the Reidemeister
moves operationalize ambient isotopy.

R1

R2

R3

Figure: Reidemeister moves

Meredith, Snyder Knots as processes



Introduction
General encoding

Main theorem: proof sketch
Conclusions and future work

Target language
Source language

Source language

Candidates for a language for representing knots as input to
the encoding

Dowker-Thistlethwaite codes
unique for prime knots

John Horton Conway’s Tangle Calculus a.k.a. Knotation
Representation theorem for rational tangles

Signed planar graphs
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DT-codes by example

DT Code: 8,10,2,12,4,6

Figure: DT-code example
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DT-codes
Just the facts

Provides a bijective map, DT , between
{i : odd(i), 1 ≤ i ≤ 2n}
{i : even(i), 2 ≤ i ≤ 2n}

Connects C(i) to
C(i − 1)
C(i + 1)
C(DT−1(DT (i)− 1))
C(DT−1(DT (i) + 1))

Provides enough information to say whether i-path or
DT (i)-path is the over-crossing

Meredith, Snyder Knots as processes
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DT-codes
Wiring algorithm

let DTWiring i dt dti knot acc = if (i <= (numCrossings knot))
then let ic = (2*i - 1) in (DTWiring (i+1) dt knot (union acc [
W(x1(C(knot,ic)), (if (over dt ic-1) then y0 else y1));
W(y0(C(knot,ic)), (if (over dt ic+1) then x1 else x0));
W(x0(C(knot,ic)), (if (over dt (dti ((dt i)-1))) then y0 else y1));
W(y1(C(knot,ic)), (if (over dt (dti ((dt i)+1))) then x1 else x0)) ]))
else acc
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Supporting definitions

Definition
We will say that the encoding of a knot is live as long as it is
firing. If it ever ceases to push signal through, then it is dead.
We demand that [[K ]]|initialSignal be live before we are willing
to admit it as a representation of the knot.
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Ambient isotopic knots have bisimilar encodings

Since K1 ∼ K2 we know there is a sequence of
Reidemeister moves converting K1 to K2

Each move corresponds to a bisimilarity preserving
transformation on the process encoding
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R-move interfaces

For the following two lemmas we have to keep the
interface, i.e. splice points, of the left and right hand sides
of the R-move the same. So, for R l

1 and R l
2 we must

restrict the ports that are not the splice points.
Algebraically,

[[R l
1]](y0, y1) =

(ν x0 x1)((ν u)C(x0, x1, y0, y1, u)|W (x0, x1))

[[R l
2]](x00, x01, x10, x11) =

(ν y00, y01, y10, y11, )((ν u0)C(x00, x01, y00, y01, u0)

|W (y00, y11)|W (y01, y10)|(ν u1)C(x10, x11, y10, y11, u1))

Technically it will be convenient to break out the restrictions

Meredith, Snyder Knots as processes
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A picture
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Figure: Contexts
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R-move interfaces
Example
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Figure: Reidemeister move and context
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R-moves: context lemma

∀i ∈ {1, 2, 3} if K1
Ri→ K2 then there exists a context M and

(possibly empty) vector of distinct names, ~w s.t.

(ν ~w)[[K1]]〈v : w〉 = (ν ~w)M[[[R l
i ]]]

[[K2]] = M[[[Rr
i ]]]

Pf: This follows directly from the definition of the encoding.
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R-moves: substitution lemma

We argue that R l
i is bisimilar to Rr

i in the context of a live
encoding.That is if

[[K ]]|initialSignal is alive, and
[[K ]]|initialSignal = M[[[R l

i ]]]

then we can substitute [[Rr
i ]] in its place without change of

behavior, i.e.

∀i ∈ {1, 2, 3} (ν ~w)M[[[R l
i ]]] ' M[[[Rr

i ]]]

Meredith, Snyder Knots as processes
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R-moves as bisimilarity preserving xforms

R1

R2

R3

Figure: Reidemeister moves as bisimilar processes
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R-moves: technical meaning of forward direction

[[K1]] is an abstraction in 4#(K1)

[[K2]] is an abstraction in 4#(K2)

let #Min(K ) := min{#(K ′) : K ′ ∼ K}
We assert that there is an
4#Min(K1) ≤ n ≤ 4 ∗max{#(K1),#(K2)} for any vector of
names, ~v , s.t.

|~v | = n,
v [i] 6= v [j] ⇐⇒ i 6= j
there exists two vectors of names, ~w1, ~w2, also all distinct,
s.t.

(ν ~w1)[[K1]]〈~v : ~w1〉 ' (ν ~w2)[[K2]]〈~v : ~w2〉

with | ~wi | = 4#(Ki)− n.

Meredith, Snyder Knots as processes
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R-moves: technical meaning of forward direction
Strengthening

Let

LC([[K ]]〈~u〉, ~v) :=

{(ν u)C(~z) : ∃P [[K ]]〈~u〉 = (ν u)C(~z)|P}
LW ([[K ]]〈~u〉, ~v , ~w) :=

{W (a, b) : ∃P [[K ]]〈~u〉 = W (a, b)|P, a, b ∈ ~v , a, b 6∈ ~w}
L([[K ]]〈~u〉, ~v , ~w) :=

ΠC∈Lc([[K ]]〈~u〉,~v)C|ΠW∈LW ([[K ]]〈~u〉,~v ,~w)W

we also have

L([[K1]]〈~v : ~w1〉, ~v , ~w1 : ~w2) = L([[K2]]〈~v : ~w2〉, ~v , ~w1 : ~w2)

Meredith, Snyder Knots as processes
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Forward direction: moral content

When the knots are ambient isotopic the encodings share
a set of crossings and wires at least as big as a minimal
crossing representative of the isotopy class.
And the other parts are R-move complications of wires that
would complete the knot from shared core – hidden under
restriction.
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R-moves: one step lemma

If K1 is one R-move away from K2 then

[[K1]]〈v〉 ' (ν w)[[K2]]〈v : w〉

This follows directly from the context and substitution lemmas.
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R-moves: iteration of one-step lemma

Even if you have a simplifying step followed by a
complicating step, you can iterate the one-step lemma,
mimicking the Reidemeister theorem.
The reason is that crossings in a complicating step can
never be involved in any other part of the context. They are
effectively hidden behind the interface defined by the
simplified side of the R-move.
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R-moves: R l
1 → Rr

1; Rr
2 → R l

2
R l

1 → Rr
1

The R l
1 → Rr

1 step means we have a context M such that

(ν x0 x1)[[K1]]〈~v0 : x0 : x1〉
= (ν x0 x1)M[[[R l

1]]]

' M[[[Rr
1]]]

= [[K2]]〈~v0〉
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R-moves: R l
1 → Rr

1; Rr
2 → R l

2, cont.
Rr

2 → R l
2

The Rr
2 → R l

2 step means we have a context M ′ such that

(ν y00 y01 y10 y11)[[K3]]〈~v1 : y00 : y01 : y10 : y11〉
= (ν y00 y01 y10 y11)M ′[[[R l

2]]]

' M ′[[[Rr
1]]]

= [[K2]]〈~v1〉
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We emphasize ~v0, ~v1 are just lists of distinct names with
|~v0| = |[[K2]]| = |~v1|

so, pick ~v0 = ~v1, dropping subscript, to conclude

(ν x0 x1)[[K1]]〈~v : x0 : x1〉 '
(ν y00 y01 y10 y11)[[K3]]〈~v : y00 : y01 : y10 : y11〉

with [[K2]]〈~v〉 forming the shared core
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Bisimilar encodings come from isotopic knots

Strategy: assume encodings are bisimilar but knots not
ambient isotopic and derive contradiction.

W.l.o.g. demand knots be given in minimal crossing
projections
If crossing numbers are different then free names differ –
contradicting bisimilarity
Therefore crossing numbers must be the same

Πn−1
i=0 [[C(i)]](...)|Πn−1

i=0 W (...)|W (...) '
Πn−1

j=0 [[C(j)]](...)|Πn−1
j=0 W ′(...)|W ′(...)

⇒ Πn−1
i=0 W (...)|W (...) ' Πn−1

j=0 W ′(...)|W ′(...)
If any of these wires differ, then there is a distinguishing
barb
But, if none of them differ the knots must be ambient
isotopic because their respective sets of crossings are
wired identically – contradiction

Meredith, Snyder Knots as processes
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Except for one little problem

If we treat R3 moves with hiding, we may hide “essential”
crossings!

R1

R2

R3

Figure: Reidemeister moves as bisimilar processesMeredith, Snyder Knots as processes
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The bisimulation must yield

We take bisimulation up to a commutation context

Definition
A bisimulation up to R is a symmetric binary relation S between
agents such that P S Q implies: If P → P ′ then Q ⇒ Q′ and
P ′R S RQ′. P is bisimilar up to R to Q, written P ' Q, if P S Q
for some bisimulation up to R S.
We pick R as generated from structural equivalence plus R3:
(P, Q) where P = M[Rσ

3 ], M[Rσ
3 ] = Q

Meredith, Snyder Knots as processes
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Conclusions

Computational calculi constitute a reasonable new source
of invariants.
Bisimulation is a proof method ready for wider exploitation.
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Future work

Some things we haven’t said
Knot sum has a direct representation in this encoding
Kauffman bracket has a direct representation in this
encoding
Encoding factors through and encoding of graphs

Applications and future developments
Structure of knots now susceptible to inspection via
Hennessy-Milner logics
Applications to biology – protein folding
Approach generalizes to give a direct representation of spin
networks
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