> Knots as processes Towards a new kind of invariant

Greg Meredith¹ David Snyder²

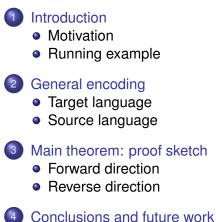
¹Biosimilarity LLC

²Department of Mathematics Texas State University San Marcos

29-04-2007 / Traced Monoidal Categories Workshop

イロト イポト イヨト イヨト

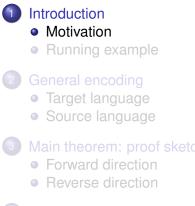
Outline



Introduction

General encoding Main theorem: proof sketch Conclusions and future work Motivation Running example

Outline



Conclusions and future work

< ∃⇒

ъ

Motivation Running example

A correct compiler

Guaranteed correct: $K_1 \sim K_2 \iff \llbracket K_1 \rrbracket \simeq \llbracket K_2 \rrbracket$

Need to unpack

- $\llbracket \rrbracket$: Knots $\rightarrow \pi$
 - specify target language, π -calculus
 - specify a source language, Knots
- notion of equivalence, ~, in Knots
- notion of equivalence, \simeq , in π -calculus

ヘロト ヘアト ヘビト ヘビト

Motivation Running example

Related work

- Goubault, Van Glabbeek, Pratt and others have extensively investigated connections between algebraic topology and process algebras
- Herlihy has investigated connections between algebraic topology and concurrent algorithms

ヘロト ヘアト ヘヨト

Motivation Running example

Our contribution

- The work cited above is primarily oriented around mining the more mature body of maths (algebraic topology) for insights into the younger body (concurrency) – using space to investigate behavior
- The present work is about turning the tables using behavior to investigate space
 - We exhibit an encoding of knots as processes in which knots are equivalent (ambient isotopic) iff their encodings as processes are equivalent (weakly bisimilar)

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Motivation Running example

Invariants

- The emergence of computing gave rise to algebraic structures where representation of behavior is refactored
 - The λ and $\pi\text{-calculi}$ are distinguished by explicit internal representations of dynamics
 - C.f. structures like vector spaces where dynamics is expressed by maps between structures
- Can these new structures be mined for invariants?
- What sort of information might the internal representation of dynamics be sensitive to?

Motivation Running example

Proof methods

- Concommitantly, *bisimulation* has emerged as a powerful proof method
 - Intuitive
 - Entities are distinguished iff there is a distinguishing experiment
 - Adaptable
 - Find the proper notion of experiment
 - Sporting all manner of up-to techniques
- How far can the scope of bisimulation be extended?

イロト イポト イヨト イヨト

Motivation Running example

Space as behavior

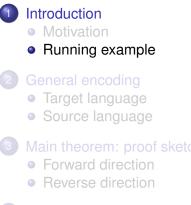
- These two observations are linked bisimulation has been an exceptionally effective notion and methodology across these algebraic structures
- Underlying this link is common world-view (very explicit in the λ and π calculis)
 - Ontology arises out of behavior
 - Things are because they do

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Introduction

General encoding Main theorem: proof sketch Conclusions and future work Motivation Running example

Outline



Conclusions and future work

▲ (型) ▶ → (三)

ъ

Motivation Running example

Trefoil as computing device Working with projections

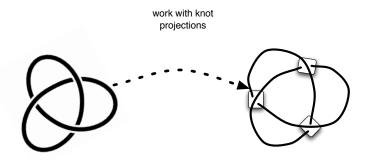


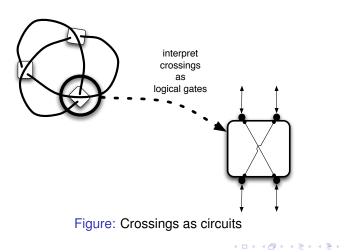
Figure: Trefoil as projection

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

э

Motivation Running example

Trefoil as computing device Crossings as circuits



э

Introduction General encoding

Main theorem: proof sketch

Conclusions and future work

Motivation Running example

Trefoil as computing device

Wiring it all together

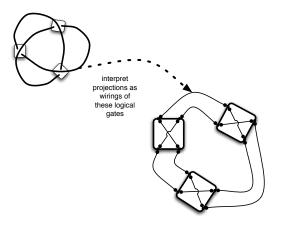


Figure: Trefoil as device

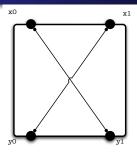
ヘロン ヘアン ヘビン ヘビン

ъ

Introduction

General encoding Main theorem: proof sketch Conclusions and future work Motivation Running example

Crossing circuits



 $C(x_{0}, x_{1}, y_{0}, y_{1}, u) :=$ $x_{1}?(s).y_{0}!(s).(C(x_{0}, x_{1}, y_{0}, y_{1}, u)|u!)$ $+y_{0}?(s).x_{1}!(s).(C(x_{0}, x_{1}, y_{0}, y_{1}, u)|u!)$ $+x_{0}?(s).u?.y_{1}!(s).(C(x_{0}, x_{1}, y_{0}, y_{1}, u))$ $+y_{1}?(s).u?.x_{0}!(s).(C(x_{0}, x_{1}, y_{0}, y_{1}, u))$

Motivation Running example

Wires and buffers

 $W(x, y) := (\nu n m)(Waiting(x, n, m)|Waiting(y, m, n))$

$$\begin{split} & \textit{Waiting}(x, c, n) := \\ & x?(v).(\nu \ m)(\textit{Cell}(n, v, m)|\textit{Waiting}(x, c, m)) \\ & + c?(w).c?(c).\textit{Ready}(x, c, n, w) \\ & \textit{Ready}(x, c, n, w) := \\ & x?(v).(\nu \ m)(\textit{Cell}(n, v, m)|\textit{Ready}(x, c, m, w)) \\ & + x!(w).\textit{Waiting}(x, c, n) \end{split}$$

$$Cell(c, v, n) := c!(v).c!(n).0$$

Target language Source language

Main theorem

Main theorem: $K_1 \sim K_2 \iff \llbracket K_1 \rrbracket \simeq \llbracket K_2 \rrbracket$

Need to unpack

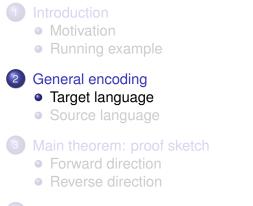
- $\llbracket \rrbracket$: Knots $\rightarrow \pi$
 - specify target language, π -calculus
 - specify a source language, Knots
- notion of equivalence, ~, in Knots
- notion of equivalence, \simeq , in π -calculus

ヘロン 人間 とくほ とくほ とう

э.

Target language Source language

Outline



Conclusions and future work

▲ (□) ト → 三

Target language Source language

Target language: *pi* in 5 Syntax

SUMMATION $M, N ::= 0 \mid x.A \mid M + N$

AGENT $A := (\vec{x})P \mid [\vec{x}]P$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

PROCESS $P, Q ::= N | P|Q | X \langle \vec{y} \rangle | (\text{rec } X(\vec{x}).P) \langle \vec{y} \rangle | (\nu \vec{x})P$

 $\begin{array}{rcl} x?(\vec{y}).P & \triangleq & x.(\vec{y})P \\ x!(\vec{y}).P & \triangleq & x.[\vec{y}]P \end{array}$

Target language Source language

Target language: *pi* in 5 Structural equivalence

The *structural congruence*, \equiv , between processes is the least congruence closed with respect to alpha-renaming, satisfying AC for | and +, 0 following axioms:

the scope laws:

$$\begin{array}{rcl} (\nu \ x)0 &\equiv & 0, \\ (\nu \ x)(\nu \ x)P &\equiv & (\nu \ x)P, \\ (\nu \ x)(\nu \ y)P &\equiv & (\nu \ y)(\nu \ x)P, \\ P|(\nu \ x)Q &\equiv & (\nu \ x)(P|Q), \ \text{if} \ x \notin \mathcal{FN}(P) \end{array}$$

the recursion law:

$$(\operatorname{rec} X(\vec{x}).P)\langle \vec{y} \rangle \equiv P\{\vec{y}/\vec{x}\}\{(\operatorname{rec} X(\vec{x}).P)/X\}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Target language Source language

Target language: *pi* in 5 Operational semantics

$$rac{|F| = |C|}{x.F \mid x.C
ightarrow F \circ C}$$
 Comm

PAR
$$\frac{P \rightarrow P'}{P|Q \rightarrow P'|Q}$$
 $\frac{P \rightarrow P'}{(\nu x) P \rightarrow (\nu x) P'}$ New

$$rac{P\equiv P' \qquad P'
ightarrow Q' = Q}{P
ightarrow Q}$$
 Equiv

$$(\vec{y}) P \circ (\nu \vec{v}) [\vec{z}] Q \triangleq (\nu \vec{v}) (P \{\vec{z}/\vec{y}\} | Q)$$

As usual, write \Rightarrow for \rightarrow^* .

イロト 不得 とくほと くほとう

∃ <2 <</p>

Target language Source language

Target language: *pi* in 5 Bisimulation

Definition

An agent, *B*, occurs *unguarded* in *A* if it has an occurence in *A* not guarded by a prefix *x*. A process *P* is observable at *x*, written here $P \downarrow x$, if some agent *x*. A occurs unguarded in *P*. We write $P \Downarrow x$ if there is *Q* such that $P \Rightarrow Q$ and $Q \downarrow x$.

・ロト ・回ト ・ヨト ・ヨト

Target language Source language

Target language: *pi* in 5 Bisimulation

Definition

A *barbed bisimulation* is a symmetric binary relation S between agents such that P S Q implies:

$$If P \to P' then Q \Rightarrow Q' and P' S Q'.$$

2 If $P \downarrow x$, then $Q \Downarrow x$.

P is barbed bisimilar to *Q*, written $P \simeq Q$, if P S Q for some barbed bisimulation *S*.

くロト (過) (目) (日)

æ

Target language Source language

Contexts

SUMMATION AGENT $M_M, M_N ::= \Box \mid x.M_A \mid M_M + M_N \qquad M_A ::= (\vec{x})M_P \mid [\vec{x}]M_P$

> PROCESS $M_P ::= M_N \mid P \mid M_P \mid (\operatorname{rec} X(\vec{x}).M_P) \langle \vec{y} \rangle \mid (\nu \ \vec{x})M_P$

Definition (contextual application)

Given a context *M*, and process *P*, we define the *contextual* application, $M[P] := M\{P/\Box\}$. That is, the contextual application of M to P is the substitution of *P* for \Box in *M*.

・ロン ・聞と ・ ほと ・ ほとう

э.

Target language Source language

Shape of the encoding

Now we are in a position to unpack the general shape of the encoding. It's just a parallel composition of crossings and wires wired up to respect the graph underlying the knot projection

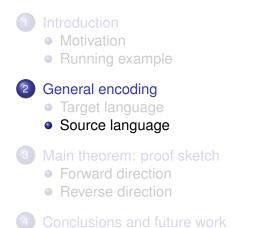
$$\llbracket K \rrbracket = (v_0 \dots v_{4n-1}) (\Pi_{i=0}^{n-1} (\nu \ u) \llbracket C(i) \rrbracket (v_{4i}, \dots, v_{4i+3}, u) |\Pi_{i=0}^{n-1} W(v_{\omega(i,0)}, v_{\omega(i,1)}) | W(v_{\omega(i,2)}, v_{\omega(i,3)}))$$

イロト イポト イヨト イヨト

Target language Source language

▲ 御 ▶ ▲ 臣

Outline



Target language Source language

A (very) little knot theory

- A knot is an embedding of the circle into \mathbb{R}^3
- Two knots, K₁ and K₂ can be composed, K₁#K₂ by cutting each and fusing the respective ends together
- A prime knot cannot be represented as the composition of knots
- We can work with knot projections because of a well-known theorem stating that knots are ambient isotopic iff you can convert the projection of one into the projection of the other via a sequence of the Reidemeister moves.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Target language Source language

Reidemeister moves

In 'digitizing' knots by working with their projections we obtained another notion of equivalence: the Reidemeister moves *operationalize* ambient isotopy.

$$_{R1}$$
 >

$$\mathbb{R}_2$$

$$\mathbb{R}^3$$

Figure: Reidemeister moves

イロト イポト イヨト イヨト

Target language Source language

Source language

Candidates for a language for representing knots as input to the encoding

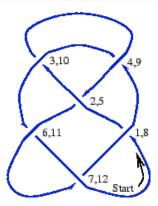
- Dowker-Thistlethwaite codes
 - unique for prime knots
- John Horton Conway's Tangle Calculus a.k.a. Knotation
 - Representation theorem for rational tangles
- Signed planar graphs

ヘロト ヘアト ヘヨト ヘ

-∃=->

Target language Source language

DT-codes by example



DT Code: 8,10,2,12,4,6

Figure: DT-code example

イロト 不得 とくほと くほとう

3

Target language Source language

DT-codes Just the facts

- Provides a bijective map, DT, between
 - $\{i : odd(i), 1 \le i \le 2n\}$
 - {*i* : even(*i*), 2 ≤ *i* ≤ 2*n*}
- Connects C(i) to
 - *C*(*i* − 1)
 - C(i+1)
 - $C(DT^{-1}(DT(i) 1))$
 - $C(DT^{-1}(DT(i) + 1))$
- Provides enough information to say whether *i*-path or DT(*i*)-path is the over-crossing

イロト 不得 トイヨト イヨト

э.

Target language Source language

DT-codes Wiring algorithm

let DTWiring i dt dti knot acc = if (i <= (numCrossings knot)) then let ic = $(2^{*i} - 1)$ in (DTWiring (i+1) dt knot (union acc [W(x1(C(knot,ic)), (if (over dt ic-1) then y0 else y1)); W(y0(C(knot,ic)), (if (over dt ic+1) then x1 else x0)); W(x0(C(knot,ic)), (if (over dt (dti ((dt i)-1))) then y0 else y1)); W(y1(C(knot,ic)), (if (over dt (dti ((dt i)+1))) then x1 else x0))])) else acc

イロト イポト イヨト イヨト

э.

Forward direction Reverse direction

Supporting definitions

Definition

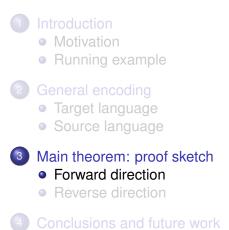
We will say that the encoding of a knot is *live* as long as it is firing. If it ever ceases to push signal through, then it is *dead*. We demand that [K]|*initialSignal* be live before we are willing to admit it as a representation of the knot.

ヘロト ヘアト ヘヨト ヘ

Forward direction Reverse direction

< 🗇 🕨

Outline



Forward direction Reverse direction

Ambient isotopic knots have bisimilar encodings

- Since K₁ ~ K₂ we know there is a sequence of Reidemeister moves converting K₁ to K₂
- Each move corresponds to a bisimilarity preserving transformation on the process encoding

イロト イポト イヨト イヨト

Forward direction Reverse direction

R-move interfaces

- For the following two lemmas we have to keep the *interface*, i.e. splice points, of the left and right hand sides of the R-move the same. So, for R^l₁ and R^l₂ we must restrict the ports that are not the splice points.
- Algebraically,

$$\begin{split} \llbracket R_1^{l} \rrbracket (y0, y1) &= \\ & (\nu \ x_0 \ x_1) ((\nu \ u) C(x_0, x_1, y_0, y_1, u) | W(x_0, x_1)) \\ \llbracket R_2^{l} \rrbracket (x_{00}, x_{01}, x_{10}, x_{11}) &= \\ & (\nu \ y_{00}, y_{01}, y_{10}, y_{11},) ((\nu \ u_0) C(x_{00}, x_{01}, y_{00}, y_{01}, u0) \\ & | W(y_{00}, y_{11}) | W(y_{01}, y_{10}) | (\nu \ u_1) C(x_{10}, x_{11}, y_{10}, y_{11}, u_1)) \end{split}$$

Technically it will be convenient to break out the restrictions

Forward direction Reverse direction

A picture

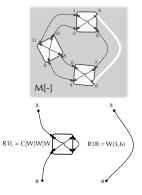


Figure: Contexts

Meredith, Snyder Knots as processes

<ロト <回 > < 注 > < 注 > 、

æ

Forward direction Reverse direction

R-move interfaces

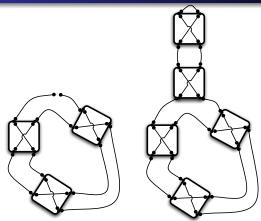


Figure: Reidemeister move and context

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Forward direction Reverse direction

R-moves: context lemma

 $\forall i \in \{1, 2, 3\}$ if $K_1 \xrightarrow{R_i} K_2$ then there exists a context *M* and (possibly empty) vector of distinct names, \vec{w} s.t.

$$(\nu \ \vec{w}) \llbracket K_1 \rrbracket \langle v : w \rangle = (\nu \ \vec{w}) M[\llbracket R_i']] \\ \llbracket K_2 \rrbracket = M[\llbracket R_i']]$$

Pf: This follows directly from the definition of the encoding.

イロト 不得 とくほ とくほとう

æ

Forward direction Reverse direction

R-moves: substitution lemma

We argue that R_i^l is bisimilar to R_i^r in the context of a live encoding. That is if

- [[K]]|*initialSignal* is alive, and
- $\llbracket K \rrbracket | initialSignal = M[\llbracket R_i^I \rrbracket]$

then we can substitute $[\![R_i^r]\!]$ in its place without change of behavior, i.e.

$$\forall i \in \{1, 2, 3\} \ (\nu \ \vec{w}) M[\llbracket R_i' \rrbracket] \simeq M[\llbracket R_i' \rrbracket]$$

ヘロト 人間 ト ヘヨト ヘヨト

Forward direction Reverse direction

R-moves as bisimilarity preserving xforms

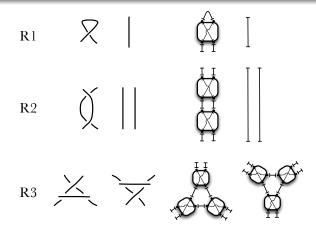


Figure: Reidemeister moves as bisimilar processes

ヘロア 人間 アメヨア 人口 ア

э

Forward direction Reverse direction

R-moves: technical meaning of forward direction

- $\llbracket K_1 \rrbracket$ is an abstraction in $4\#(K_1)$
- $[K_2]$ is an abstraction in $4\#(K_2)$
- let $\#_{Min}(K) := min\{\#(K') : K' \sim K\}$

We assert that there is an

 $4\#_{Min}(K_1) \le n \le 4 * max\{\#(K_1), \#(K_2)\}$ for any vector of names, \vec{v} , s.t.

- $|\vec{v}| = n$,
- $v[i] \neq v[j] \iff i \neq j$
- there exists two vectors of names, w₁, w₂, also all distinct, s.t.

$$(\nu \ \vec{w_1})\llbracket K_1 \rrbracket \langle \vec{v} : \vec{w_1} \rangle \simeq (\nu \ \vec{w_2})\llbracket K_2 \rrbracket \langle \vec{v} : \vec{w_2} \rangle$$

イロト イポト イヨト イヨト 三日

with $|\vec{w_i}| = 4\#(K_i) - n$.

Forward direction Reverse direction

R-moves: technical meaning of forward direction

Let

$$\begin{split} \mathcal{L}_{\mathcal{C}}(\llbracket K \rrbracket \langle \vec{u} \rangle, \vec{v}) &:= \\ & \{(\nu \ u) \mathcal{C}(\vec{z}) : \exists \mathcal{P} \llbracket K \rrbracket \langle \vec{u} \rangle = (\nu \ u) \mathcal{C}(\vec{z}) | \mathcal{P} \} \\ \mathcal{L}_{\mathcal{W}}(\llbracket K \rrbracket \langle \vec{u} \rangle, \vec{v}, \vec{w}) &:= \\ & \{W(a, b) : \exists \mathcal{P} \llbracket K \rrbracket \langle \vec{u} \rangle = W(a, b) | \mathcal{P}, a, b \in \vec{v}, a, b \notin \vec{w} \} \\ \mathcal{L}(\llbracket K \rrbracket \langle \vec{u} \rangle, \vec{v}, \vec{w}) &:= \\ & \Pi_{\mathcal{C} \in \mathcal{L}_{\mathcal{C}}(\llbracket K \rrbracket \langle \vec{u} \rangle, \vec{v})} \mathcal{C} | \Pi_{W \in \mathcal{L}_{\mathcal{W}}(\llbracket K \rrbracket \langle \vec{u} \rangle, \vec{v}, \vec{w})} \mathcal{W} \\ \text{we also have} \end{split}$$

$$L(\llbracket K_1 \rrbracket \langle \vec{v} : \vec{w_1} \rangle, \vec{v}, \vec{w_1} : \vec{w_2}) = L(\llbracket K_2 \rrbracket \langle \vec{v} : \vec{w_2} \rangle, \vec{v}, \vec{w_1} : \vec{w_2})$$

3

Forward direction Reverse direction

Forward direction: moral content

- When the knots are ambient isotopic the encodings *share* a set of crossings and wires at least as big as a minimal crossing representative of the isotopy class.
- And the other parts are R-move complications of wires that would complete the knot from shared core – hidden under restriction.

ヘロト ヘアト ヘビト ヘ

Forward direction Reverse direction

R-moves: one step lemma

If K_1 is one R-move away from K_2 then

$$\llbracket K_1 \rrbracket \langle \mathbf{v} \rangle \simeq (\nu \ \mathbf{w}) \llbracket K_2 \rrbracket \langle \mathbf{v} : \mathbf{w} \rangle$$

This follows directly from the context and substitution lemmas.

イロト イポト イヨト イヨト

æ

Forward direction Reverse direction

R-moves: iteration of one-step lemma

- Even if you have a simplifying step followed by a complicating step, you can iterate the one-step lemma, mimicking the Reidemeister theorem.
- The reason is that crossings in a complicating step can never be involved in any other part of the context. They are effectively hidden behind the interface defined by the simplified side of the R-move.

・ロト ・回ト ・ヨト ・ヨト

Forward direction Reverse direction

R-moves:
$$R_1^l \rightarrow R_1^r$$
; $R_2^r \rightarrow R_2^l$
 $R_1^l \rightarrow R_1^r$

• The $R_1' \rightarrow R_1^r$ step means we have a context *M* such that

$$(\nu x_0 x_1)\llbracket K_1 \rrbracket \langle \vec{v_0} : x_0 : x_1 \rangle$$

= $(\nu x_0 x_1) M[\llbracket R_1' \rrbracket]$
 $\simeq M[\llbracket R_1' \rrbracket]$
= $\llbracket K_2 \rrbracket \langle \vec{v_0} \rangle$

Forward direction Reverse direction

R-moves:
$$R_1^l \rightarrow R_1^r$$
; $R_2^r \rightarrow R_2^l$, cont.
 $R_2^r \rightarrow R_2^l$

• The $R_2^r \rightarrow R_2^l$ step means we have a context M' such that

$$\begin{aligned} (\nu \ y_{00} \ y_{01} \ y_{10} \ y_{11}) \llbracket K_3 \rrbracket \langle \vec{v_1} : y_{00} : y_{01} : y_{10} : y_{11} \rangle \\ &= (\nu \ y_{00} \ y_{01} \ y_{10} \ y_{11}) M' [\llbracket R_2' \rrbracket] \\ &\simeq M' [\llbracket R_1' \rrbracket] \\ &= \llbracket K_2 \rrbracket \langle \vec{v_1} \rangle \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- We emphasize v₀, v₁ are just lists of distinct names with
 |v₀| = |[K₂]| = |v₁|
- so, pick $\vec{v_0} = \vec{v_1}$, dropping subscript, to conclude

$$\begin{aligned} &(\nu \ x_0 \ x_1) [\![K_1]\!] \langle \vec{v} : x_0 : x_1 \rangle \simeq \\ & (\nu \ y_{00} \ y_{01} \ y_{10} \ y_{11}) [\![K_3]\!] \langle \vec{v} : y_{00} : y_{01} : y_{10} : y_{11} \rangle \end{aligned}$$

• with $[\![K_2]\!]\langle \vec{v} \rangle$ forming the shared core

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Forward direction Reverse direction

Outline

< 🗇 🕨

ъ

Bisimilar encodings come from isotopic knots

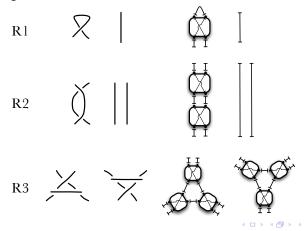
Strategy: assume encodings are bisimilar but knots not ambient isotopic and derive contradiction.

- W.I.o.g. demand knots be given in minimal crossing projections
- If crossing numbers are different then free names differ contradicting bisimilarity
- Therefore crossing numbers must be the same
 - $\Pi_{i=0}^{n-1} \llbracket C(i) \rrbracket (...) | \Pi_{i=0}^{n-1} W(...) | W(...) \simeq \Pi_{j=0}^{n-1} \llbracket C(j) \rrbracket (...) | \Pi_{j=0}^{n-1} W'(...) | W'(...)$
 - $\Rightarrow \prod_{i=0}^{n-1} W(...) | W(...) \simeq \prod_{j=0}^{n-1} W'(...) | W'(...)$
 - If any of these wires differ, then there is a distinguishing barb
 - But, if none of them differ the knots must be ambient isotopic because their respective sets of crossings are wired identically – contradiction

Forward direction Reverse direction

Except for one little problem

If we treat R3 moves with hiding, we may hide "essential" crossings!



Forward direction Reverse direction

The bisimulation must yield

We take bisimulation up to a commutation context

Definition

A bisimulation up to \mathcal{R} is a symmetric binary relation \mathcal{S} between agents such that $P \mathcal{S} Q$ implies: If $P \to P'$ then $Q \Rightarrow Q'$ and $P'\mathcal{R} \mathcal{S} \mathcal{R} Q'$. P is bisimilar up to \mathcal{R} to Q, written $P \simeq Q$, if $P \mathcal{S} Q$ for some bisimulation up to $\mathcal{R} \mathcal{S}$. We pick \mathcal{R} as generated from structural equivalence plus R_3 : (P, Q) where $P = M[R_3^{\sigma}], M[R_3^{\overline{\sigma}}] = Q$

ヘロト ヘアト ヘビト ヘ

Conclusions

- Computational calculi constitute a reasonable new source of invariants.
- Bisimulation is a proof method ready for wider exploitation.

くロト (過) (目) (日)

ъ

Future work

Some things we haven't said

- Knot sum has a direct representation in this encoding
- Kauffman bracket has a direct representation in this encoding
- Encoding factors through and encoding of graphs
- Applications and future developments
 - Structure of knots now susceptible to inspection via Hennessy-Milner logics
 - Applications to biology protein folding
 - Approach generalizes to give a direct representation of *spin* networks

イロト イポト イヨト イヨト