Robot Sensing and Perception

some of the research done in the SMRLab

Emil M. Petriu, Dr. Eng., FIEEE Professor School of Information Technology and Engineering University of Ottawa Ottawa, ON., K1N 6N5 Canada petriu@site.uottawa.ca

Why natural binary coding cannot be used in practice for absolute position recovery ?

A *n*-bit code would be needed for each quantization step, resulting in *n* binary tracks in parallel with the guide-path. For instance, the encoding of a 160 m long guide-path with a 0.01 m resolution would need 14 tracks running in parallel with the guide path

→ pseudo-random encoding provides a practical solution allowing absolute position recovery with any desired n-bit resolution while employing only one binary track, regardless of the value of n.

A (2ⁿ-1) term Pseudo-Random Binary Sequences (PRBS) generated by a *n*-bit modulo-2 feedback shift register is used as an *one-bit / quantization-step* absolute code. The absolute position identification is based on the PRBS window property. According to this any *n*-tuple seen through a *n*-bit window sliding over PRBS is unique and henceforth it fully identifies each position of the window.

The figure shows, as an example, a 31-bit term PRBS: 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, generated by a 5-bit shift register. The 5-bit n-tuples seen through a window sliding over this PRBs are unique and represent a 1-bit wide absolute position code.

Serial-parallel *pseudo-random / natural* code conversion algorithm

Pseudo-random encoded track (one bit per quantization step) allows recovery of the absolute position of an optically guided Automated Guided Vehicle (AGV)

Optically guided AGV tracking the pseudo-random encoded track

Pseudo-random encoded guide path allows recovery of the absolute position of an AGV using computer vision

University of Ottawa School of Information Technology - *SITE*

Computer vision recognition of the pseudo-random binary code

University of Ottawa School of Information Technology - *SITE*

Model-based recognition of a pseudo-random encoded object

Wall-mounted pseudo-random encoded guide path allows recovery of the absolute position of the AGV using computer vision

Pseudo-random encoding for computer vision recovery of the 3D position of a probe mapping the electromagnetic–field radiated by a telephone set

Computer vision recovery of the pseudo-random code

University of Ottawa School of Information Technology - *SITE*

Illustrating the window property in a Pseudo-Random Binary Array (PRBA). The 3-by-2 code seen trough a window on a 7-by-9 PRBA is unique and used as absolute code for the window position (*i*,*j*).

Pseudo-Random Binary Array (PRBA) encoding for the recovery of the 2D absolute position of a free ranging mobile robot using computer vision

Mobile robot navigation using multiple IR sensors and vision

Model-based telepresence control of the mobile robot

University of Ottawa School of Information Technology - *SITE*

Recovery of the 3D shape of objects using structured light

University of Ottawa School of Information Technology - *SITE*

Point identification problem in pseudo-random encoded structured light

Pseudo-random color encoded structured-light grid projected on a 3D object

Pseudo-random color encoded structured light grid projected on a cube

Recovered corner points at the intersection of grid line edges

Haptic perception of 3D object geometry: the robot arm provides the *kinesthetic* capability and the tactile sensor probe provides *the cutaneous* information

Force Sensitive Resistor (FSR) tactile sensor array, 16-by-16 sensing elements on a 1 square inch area

Instrumented passive compliant wrist for tactile exploration of objects

"Tactile display" for computer-human interaction allowing humans to feel through their own touch sense computer-generated geometric profiles. It consists of an array of 8-by-8 vibrators on a 1 square inch area.