Stable Design of Fuzzy Controllers for Robotic Telemanipulation Applications

Radu-Emil Precup¹, Stefan Preitl¹, Emil M. Petriu², József K. Tar³, Mircea-Bogdan Rădac¹, Claudia-Adina Dragoş¹

¹“Politehnica” University of Timisoara, Romania
²University of Ottawa, Canada
³Budapest Tech, Hungary
MOTIVATION

- **Robotic telemanipulation**: considered from the perspective of the networked control systems (NCSs), which provides advantages.

- **Iterative Feedback Tuning (IFT)**:
 - gradient-based approach, based on input-output data recorded from the closed-loop system to minimize objective functions (o.f.s) specifying the control system (CS) performance indices;
 - closed-loop experimental input-output data to calculate the estimated gradient of the o.f., several experiments performed at each iteration, update law to calculate the controller parameters.

- A new class of Takagi-Sugeno PI-fuzzy controllers (PI-FCs) mapped from the IFT-based designed linear PI controller parameters. **Stability analysis** (nonlinearity vectors) as convenient way to guarantee the convergence of IFT algorithms.
IFT ALGORITHMS

- Control system structure with IFT:

- ρ – parameters vector.
- First controller task: **initially stabilize** the CS \Rightarrow employing another simple initial tuning method is strictly necessary. One solution: the ESO method.
IFT ALGORITHMS (cont’d 1)

General expression of the o.f. J:

$$J(\rho) = \frac{1}{2N} \cdot \sum_{k=1}^{N} \{ [L_y(q^{-1}) \delta y(k, \rho)]^2 + \lambda [L_u(q^{-1})u(k, \rho)]^2 \}$$

N – length of each experiment, L_y, L_u – weighting filters, to emphasize certain frequency regions, λ – weighting constant, δy – output error, $\delta y = y - y_d$.

Optimization problem:

$$\rho^* = \arg \min_{\rho \in SD} J(\rho)$$

(2)

SD – stability domain (constraint).

Solving (2) iteratively – Newton’s method:

$$\rho^{i+1} = \rho^i - \gamma^i (H_J(\rho^i))^{-1} est\left[\frac{\partial J}{\partial \rho} (\rho^i) \right]$$

(3)

i – index of current iteration, $est[x]$ – estimate (generally) of the variable x, $\gamma^i > 0$ – parameter to determine the step size, H – Hessian:

$$H_J(\rho^i) = \frac{\partial}{\partial \rho} \left[\frac{\partial J}{\partial \rho} (\rho^i) \right]$$
IFT ALGORITHMS (cont’d 2)

Calculation of estimates of gradient and Hessian of J: two real-time experiments (per iteration) with the CS, the first – normal one and the second – gradient one.

Normal experiment: reference input fed to the CS. Gradient experiment: the reference input is the control error in the first experiment. Subscript corresponds to experiment index:

$$
est \left(\frac{\partial J}{\partial \rho} (\rho^i) \right) = \left(1/N\right) \frac{1}{C(q^{-1}, \rho^i)} \cdot \left(\frac{\partial C}{\partial \rho} (q^{-1}, \rho^i) \right) \sum_{k=1}^{N} \{L_y^2(q^{-1}) \cdot \delta y(k, \rho^i) y_2(k, \rho^i) + \lambda L_u^2(q^{-1}) \cdot u_1(k, \rho^i) u_2(k, \rho^i) \}$$

$$
est[H_J(\rho^i)] = \left(1/N\right) \frac{1}{C(q^{-1}, \rho^i)} \left[\frac{\partial C}{\partial \rho} (q^{-1}, \rho^i) \right] \cdot \left[\frac{\partial C}{\partial \rho} (q^{-1}, \rho^i) \right]^T \cdot \sum_{k=1}^{N} \left[L_y^2(q^{-1}) y_2^2(k, \rho^i) + \lambda L_u^2(q^{-1}) u_2^2(k, \rho^i) \right]$$
IFT ALGORITHMS (cont’d 3)

- IFT algorithm – steps A to E:

 Step A. Set the parameters in the o.f., the (initial) step size and the initial controller parameters, \(\rho^0 \).

 Step B. Do the two experiments with the CS and record the input-output data pairs \((u_1, y_1)\) and \((u_2, y_2)\).

 Step C. Generate the output of the reference model, \(y_d \), and calculate the output error, \(\delta y \).

 Step D. Calculate the estimates of the gradient and Hessian of J, with the control signal taken from the first experiment.

 Step E. Calculate the next set of parameters according to the update law (3).
FUZZY CONTROL SYSTEM DESIGN

- Takagi-Sugeno PI-fuzzy controller:
FUZZY CONTROL SYSTEM DESIGN (cont’d 1)

- Example of rule base (SUM and PROD operators in the inference engine, weighted area method for defuzzification):

<table>
<thead>
<tr>
<th>Δe_k</th>
<th>e_k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB</td>
</tr>
<tr>
<td>PB</td>
<td>$\Delta u_k = f_k$</td>
</tr>
<tr>
<td>PS</td>
<td>$\Delta u_k = f_k$</td>
</tr>
<tr>
<td>ZE</td>
<td>$\Delta u_k = f_k$</td>
</tr>
<tr>
<td>NS</td>
<td>$\Delta u_k = \eta f_k$</td>
</tr>
<tr>
<td>NB</td>
<td>$\Delta u_k = \eta f_k$</td>
</tr>
</tbody>
</table>

- Parameter η with typical values $0<\eta<1$ to improve the CS performance by alleviating the overshoot.

$$f_k = K_P (\Delta e_k + \alpha e_k)$$ \hspace{1cm} (8)
FUZZY CONTROL SYSTEM DESIGN (cont’d 2)

- Parameters in (8): discrete-time PI controller

\[C(s) = k_c \left(1 + sT_i\right) / s = k_c \left[1 + 1/(sT_i)\right] \]

- Tustin’s method:

\[K_P = k_c \left[1 - T_s / (2T_i)\right], \quad \alpha = 2T_s / (2T_i - T_s) \]

- Design: PI-FC tuning condition

\[B_{\Delta e} = \alpha B_e \quad (12) \]

- \(B_e \) – by the stability analysis method.
FUZZY CONTROL SYSTEM DESIGN (cont’d 4)

- Input-output map of PI-FC (nonlinear)

\[u = N(e) = \sum_{\lambda=0}^{\infty} a_{\lambda+1} \sin[(\lambda + 1) \frac{\pi}{\theta} e] \]

\[z = \sigma b, \quad b = [b_1 \quad b_2 \quad ... \quad b_{\lambda+1}]^T, \]

\[z = [z_1 \quad z_2 \quad ... \quad z_{\lambda+1}]^T, \quad \sigma = [\sin[(2i + 1) \frac{\pi}{\theta} e_j]_{i,j=1,\lambda+1}, \]

\[e_j = jh_e, \quad j = 1, \lambda + 1, \]

- \(z \) – nonlinearity vector.
Matrices calculated in both steady-state regimes and transients:
\[
\Omega P = [c_{ij}]_{i=1,m, j=1,q}, \Omega Q = [d_{ij}]_{i=1,m, j=1,q}
\]

Matrix plane:
\[
M = \begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1q} \\
d_{11} & d_{12} & \cdots & d_{1q} \\
c_{21} & c_{22} & \cdots & c_{2q} \\
d_{21} & d_{22} & \cdots & d_{2q} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{mq} \\
d_{m1} & d_{m2} & \cdots & d_{mq}
\end{bmatrix}
\]

Step-type curves:
\[
c_{\rho\eta} < c < c_{(\rho+1)\varepsilon}, \ d_{\lambda\beta} < d < d_{(\gamma+1)\beta}, \ \rho, \gamma = 1, m - 1, \ \varepsilon, \beta = 1, q - 1
\]
The intersection of the curves for \(c = d = 0 \) ⇔ the coincidence points (in the matrix plane) corresponding to the limit cycles. Solutions expressed as the two coordinates in the matrix plane, the magnitude \(A_i \) and pulsation (frequency) \(\omega \) of the input signal fed to the nonlinearity.

- **Design method of PI-FCs** – detailed presentation in the paper. It makes use of the IFT algorithm, the PI-FC tuning condition (12) and the following stability result:

A limit cycle exists and the fuzzy CS admits a periodic solution sufficiently close to
\[
e = A_0 \sin(\omega_0 t)
\]

The limit cycle is stable if for a sufficiently small value of \(\sigma \) the coincidence point is placed in the matrix plane at a transient magnitude that is larger than the magnitude \(A_0 \) of the limit cycle. Hence the system will be stable. Otherwise the system will be unstable.
REAL-TIME EXPERIMENTAL RESULTS

- **Case study**: PI-fuzzy controller design for plants in servo systems as actuators for telemanipulation applications:
 \[P(s) = \frac{k_p}{s(1 + T_\Sigma s)} \]

- **ESO method** – good compromise to desired CS performance indices by the choice of the parameter \(\beta \) within the domain \(4 < \beta < 20 \) + assistance by the diagram:

- **PI tuning conditions**:
 \[k_c = 1/(\beta \sqrt{\beta T_\Sigma^2 k_p}), \quad T_i = \beta T_\Sigma \]

- **Feedforward filter**:
 \[F(s) = \frac{1}{(1 + \beta T_\Sigma s)} \]
REAL-TIME EXPERIMENTAL RESULTS (cont’d 1)

- Laboratory DC drive (AMIRA DR300): DC motor – loaded using a current controlled DC generator, mounted on the same shaft, and the drive has built-in analog current controllers for both DC machines having rated speed equal to 300 rpm, rated power equal to 30 W, and rated current equal to 2 A. Controllers – digitally implemented using a real-time control board.
Plant model: $k_P = 4900$ and $T_\Sigma = 0.035$ s. Design parameter: $\beta = 6$.

Controller parameters (sub-optimal values): $T_s = 0.01$ s, $K_P^* = 0.22$, $\alpha^* = 5.87$, $B_e^* = 0.12$, $B_{\Delta e} = \alpha^* B_e^* = 0.51$, $\eta^* = 0.76$.

Real-time results – comparison with 2-DOF PI controller for the same β:
REAL-TIME EXPERIMENTAL RESULTS (cont’d 3)

- Left: PI, right: fuzzy, up: reference input variation, down: disturbance input variation.
REAL-TIME EXPERIMENTAL RESULTS (cont’d 4)

- Left: PI, right: fuzzy, up: reference input variation, down: disturbance input variation.
REAL-TIME EXPERIMENTAL RESULTS (cont’d 5)

- Left: PI, right: fuzzy, up: reference input variation, down: disturbance input variation.
CONCLUSIONS

- Real-time experimental results validate the proposed low-cost Takagi-Sugeno PI-FC system structure using the stable design in combination with an IFT algorithm.