Intelligent Robotic Sensor Agents

Emil M. Petriu, Dr. Eng., FIEEE
School of Information Technology and Engineering
University of Ottawa, Ottawa, ON, Canada
• Challenges for Critical Infrastructure and Environment Monitoring

• Human-Computer Interaction in Tele-Presence and Robotic Tele-Manipulation
Monitoring environment parameters is a task of great importance in many areas such as the natural environments, industrial or laboratory hazardous environments (biologically, radioactively, or chemically contaminated), polluted natural environments, water treatment plants, nuclear stations, war zones, or remote difficult to reach environments such as the deep space or underwater.

The objective is the development of a new generation of autonomous wireless Robotic Sensor Agents (RSA) for environment monitoring.

Monitoring is done by continuously collecting sensor data from a distributed network of stationary and mobile RSA deployed in the field. Sensor data of different nature are fused in a world model, which is remotely available to human supervisors as an interactive virtual environment model.
Distributed Wireless Network of Intelligent Robotic Sensor Agents for Environment Monitoring
RSAs should be capable of **selective environment perception** focusing on parameters that are important for the specific task and avoid wasting resources on processing irrelevant data.

Different **sensor planning strategies** are used for the placement of fixed and mobile RSAs in such a way as to get optimum performance during specific sensing tasks and for the real-time selection of sensing operations.
Advantages of Multiple Sensors

- **Redundancy** - Redundant information is provided from a group of sensors or by a single sensor over time when each sensor observes (possibly with different fidelity), the same features of interest.

- **Complementarity** - Complementary information from multiple sensors allows for the perception of features that are impossible to be observed using just the information from individual sensors operating separately.

- **Timeliness** - More timely information may be provided by multiple sensors due to the actual speed of operation of each sensors, or to the processing parallelism that is possible to be achieved as part of the integration process.

- **Cost** - Integrating many sensors into one system can often use many inexpensive devices to provide data that is of the same, or even superior quality to data from a much more expensive and less robust device.
Multisensor Data Fusion

MULTISENSOR FUSION

FUSION
- Symbol Level
- Feature Level
- Pixel Level
- Signal Level

SEPARATE OPERATION

GUIDING OR CUEING

SENSOR REGISTRATION

SENSOR SELECTION

SENSOR MODEL

SENSOR MODEL

SENSOR MODEL

SENSOR 1

SENSOR 2

SENSOR n
In order to provide a flexible extensible open mechanism allowing for interoperability, an agent-based resource management framework should address the functional and communication needs of each RSA.

In order to avoid fatal errors due to communication delay and randomness between the information collected from the RSA’s, we are using a distributed virtual environment that allows maintaining a shared world model of the physical environment that is explored.

The development of a distributed network of RSA’s should address wireless networking issues looking for the development of cost-effective solutions.
Monitoring the environment, in practical terms, is a **game with limited resources**. There is a limited number of RSA’s, which have limited operational parameters, communicating via a limited QoS wireless communication network.

RSA’s are not functionally and operationally identical. There are stationary and mobile agents that measure different environment parameters. Even if they measure the same type of parameters the sensors may have different characteristics. The robotic carriers may also have different operational characteristics. Like humans, the local controller of each intelligent RSA may have it’s own personality.

Human-to-human communication and cooperation require a **common language and an underlying system of shared knowledge and common values**. In order to achieve a similar degree of machine-to-machine RSA interaction and cooperation, an **RSA social framework** should be developed to allow for the management of heterogeneous functions and knowledge for a large diversity of RSAs.
Onboard control system for an autonomous wireless robotic sensor agent

MULTI-SENSOR FUSION
WORLD MODEL
MULTI-CARRIER COMMUNICATION MECHANISMS
DISTRIBUTED COMPUTING FRAMEWORK
HYBRID DELIBERATIVE/REACTIVE CONTROL

SENSORS (EXTEROCEPTORS)
NATURAL ENVIRONMENT
ACTUATORS
Six-wheel robotic platform for an experimental mobile RSA equipped with video camera, sonar, and infrared range sensors, (A. Stewart, SITE, University of Ottawa).

Two-wheel robotic platform for an experimental mobile autonomous RSA equipped with wireless camera and IR sensors, (R. Abielmona, SITE, University of Ottawa).
Frog-leaping RSA powered by a solar panel equipped with two light detector sensors and a touch probe, (A. Stewart, SITE, University of Ottawa).

Four-leg RSA platform powered by a solar panel, (A. Stewart, SITE, University of Ottawa).
RSA platform on tracks with an onboard robotic arm for hazardous material manipulation.
Learning allows RSA’s to acquire knowledge by interaction with the environment and subsequently adapt their behavior. Behavior learning methods could be used to solve complex problems that a real RSA encounters while exploring an unknown real-world environment.

Brooks’ reactive-behavior paradigm => an alternative to the traditional function oriented sensing-planning-acting control strategies. The behavior paradigm is based on a task-wise decomposition of the control functions in special-purpose simple task-achieving modules. Neither strategic planning nor carefully calibrated sensors are necessary to produce robust intelligent reactive-behavior in RSA. An autonomous RSA uses a combination of intrinsic reactive-behaviors with higher-order world model representations of the environment.

All RSA are by definition instinctive information seeking agents. When the costs of deploying sensors agents is prohibitive, RSA’s would benefit from having survival instinct, cooperation skills, adaptation and learning abilities, as well as evolutionary capacity.
Cooperating agents should be able to work together with other mobile or stationary RSA’s toward the overall goal, which is to maximize the information acquired from the environment. For instance, two cooperating RSA’s could assume the best relative positions in order for them to get a stereo image of a region of the environment. Or, a RSA could illuminate the subject for another RSA to take images. This cooperation should also allow modular RSA’s to permanently or temporarily couple forming new structures better adapted to solving specific problems. As an example, two or more RSA’s can couple to make a bridge over a trench, or one could be helped by another to get over an obstacle.

An evolutionary mechanism would allow a RSA to pass over to other RSA’s the learning experience and behavioral genes they acquired while operating in the field.
Two-wheel hexagonal-shaped modular RSA platform equipped with onboard manipulator arm, (R. Abielmona, SITE, University of Ottawa).

Two RSAs are temporarily joining in order to better perform their mission. The lead RSA has a video camera mounted on the hand of its manipulator arm, (R. Abielmona, SITE, University of Ottawa).
Two RSAs collaborating in order to carry out a given task,
(R. Abielmona, SITE, University of Ottawa).
RSA’s should be able to cannibalize / recycle other agents that are operationally dead, which otherwise will be abandoned in the field. Such a behavior would contribute to the RSA species survival. Operational resources of the incapacitated RSA’s will be cannibalized, (e.g. taking over the energy reserves, sensors and other spare parts) and used either to upgrade the operational capability of other surviving RSA or they can be combined making a new operational RSA’s from the incapacitated agents.

⇒ ??? Value of extending recycle_the_dead (..i.e. the useless) RSA cannibalism to a more aggressive big_fish_eats_smaller_fish survival of the fittest cannibal behavior.

In order to facilitate recycling, RSA’s should have:
(i) modular reconfigurable structures, with accessible and easy to assembly /disassembly components.
(ii) status advertising mechanism telling other agents about their job meaningful functional qualification and health level.
Interdependencies Between Infrastructure Elements.

- Each infrastructure element will be spatially and temporally indexed to facilitate modelling of infrastructure interdependencies.
• Each IMPW(i,k) **impact weight factor** must be specified for each input vector/condition (k) for a given specific infrastructure element (i).

• Different formats will be pursued to implement IMPW(i,k), (DBs, analytic models, NNs and fuzzy cognitive maps.)

• The resulting impact of the **input vector** INP(k) can be affected by the **internal state** INST(i) of the infrastructure element at the moment when the input vector occurs.
Disaster prevention and management requires a clear understanding and monitoring of all critical environment and infrastructure components and their interdependencies.
PUBLICATIONS

