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Modelling allows to simulate the behavior of a system for a variety

of initial conditions,excitations and systems configurations 

- often in a much shorter time than would be required to 

physically build and test a prototype experimentally

The quality and the degree of the approximation of the model can be 

determined only by a validation against experimental measurements. 

The convenience of the model means that it is capable of performing 

extensive parametric studies, in which independent parameters 

describing the model can be varied over a specified range in order to gain 

a global understanding of the response. 

A more relevant model might be one which provides results more 

rapidly - even if a degradation in a solution accuracy results.

NEURAL NETWORK  MODELS OF  PHYSICAL PROCESSES



Analog Computer vs. Neural Network Tools
for Physical Processes Modelling

� Both the Analog Computers and the Neural Networks are continuous 

modelling devices.

� The Analog Computer (AC) allows to solve the linear or nonlinear differential

and/or integral equations representing mathematical model of a given physical 

process.  The coefficients of these equations must be exactly known as they are

used to program/adjust the coefficient-potentiometers of the AC’s computing 

-elements (OpAmps).  The AC doesn’t follow a sequential computation, all its 

computing elements perform simultaneously and continuously. 

As an interesting note, “because of the difficulties inherent in

analog differentiation the [differential] equation is rearranged so that it can be

solved by integration rather than differentiation.” [A.S. Jackson, Analog 

Computation, McGraw-Hill Book Co., 1960].



� The Neural Network (NN) doesn’t require a prior mathematical model. 

A learning algorithm is used to adjust, sequentially by trail and error 

during the learning phase, the synaptic-weights/ coefficient-potentiometers 

of the neurons/computing-elements. As the AC, the NN don’t follow a 

sequential computation, all its neuron performing simultaneously and 

continuously.  The neurons are also integrative-type computing/processing 

elements.

>>   Analog Computer vs. Neural Network Tools for Physical Processes Modelling
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NN Modelling of 

3D Electromagnetic Fields for a 

Virtual Prototyping Environment 



EMC  Modelling  for Electronic Design Automation

Optimum Approach to EMC Design

• {Design+Test+Analysis} Synergy

• EMC_Behavior = F (Design_Principle, 

Analysis&Modeling&Simulation_Tools,

Test_Methodology&Instrumentation)

System

Sub-System

Equipment

Motherboard

P.C. Board

Component/Device

EMC Design Levels



Multiple PCBs can be integrated in any way as desired to define a 

complete electronic system, including mechanical parts. 

The final system can be interactively tested on an enhanced-reality

virtual work-bench as a final product, by concurrently running 

what-if experiments in a multi-domain (mechanical, electrical, 

thermal)environment. 

The design cycle is shortened, the cost of  the tests is reduced,  the

quality of the product is improved, and the time-to-market is reduced.



EM Virtual Prototyping Environment for the 
Interactive Design of Very High Speed Circuits

� user-centered, task driven point of view; 

� interactive functions: 

(i)     walk-through the 3D virtual world; 

(ii)    specify material, electrical, and thermal specifications of 

circuit components; 

(iii)   3D manipulation of the position, shape, size, of the circuit 

components and layout; 

(iv)   visualization the electrical wave forms, 3D Electromagnetic 

(EM) field and thermal field effects in different regions of 

the electronic circuit.



� 3D scenes are composed of multiple objects: boards, components, connectors.

� any object is characterized by its usual  3D geometric shape and  safety-envelopes (the 

3D geometric space points where the intensity of a given field radiated by that object

becomes smaller than a specified threshold value), each type of field (EM, thermal) will 

have its own safety-envelope (the geometric safety-envelope being the object shape itself);

� any object can be selected/becomes active by attaching a manipulator to it;

� The main objective is to detect a collision caused by a linear transformation 

(translation, rotation or scaling) between the selected object and the other 

objects in the scene.  

� for each transformation of the selected/active object, the program updates the 3D geometric

parameters and the  bounding box of the object; 

� then the  program checks for collision between the safety-envelopes selected object and

those of the other objects in the scene;  

� when a collision is detected, the active object returns to its position just before the collision



Rotation-translation  manipulator dragger



Editing material properties



Assembling multiple PCBs 



circuit theory to describe the conducted disturbances (such as 

overvoltages, voltage dips, voltage interruptions, harmonics, 

common ground coupling);

equivalent circuit with either distributed or lumped parameters

(such as in low frequency electromagnetic field coupling expressed 

in terms of mutual inductances and stray capacitances, field-to-line 

coupling using the transmission line approximation, and cable crosstalk);

formal solutions to Maxwell's equations and the appropriate 

field boundary conditions (as for example in problems involving 

antenna scattering and radiation).

Electromagnetic Compatibility (EMC) Modelling Methods



*   Classical numerical EM modelling using sequential algorithms

such as TLM (transmission-line matrix) or FEM (finite element method) 

is computer intensive, particularly as spatial discretization, geometry 

complexity, and domain size requirements become more demanding.

*   More efficient parallel and distributed computing techniques must be 

developed to reduce the execution time for these methods so that they can 

be used in commercial CAD software. Speed of execution is particularly 

important when the field analysis is to be coupled with optimization, 

which may require several hundred analyses to be performed within a     

reasonable time. NN models

Parallel  and  Distributed Processing  Techniques  
for Electromagnetic Field  Solution



NN modeling of the 3D EM field radiated by a dielectric-ring
resonator antenna

� I. Ratner, H.O. Ali, E.M. Petriu, "Neural 
Network Simulation of  a Dielectric Ring 
Resonator Antenna,"  J. Systems Architecture, 
vol. 44, No. 8, pp. 569-581, 1998.
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Finite Element Method (FEM)

1400 frequency steps 2-16 GHz;

31 dielectric constants;   a = d = 5.14 mm

∇ x H = (σ + jωε)E

∇ x E = -jωµH

Maxwell’s equations:

∇ x H = -jωµ (σ + jωε)H∇ x

>> NN modeling of dielectric-ring resonator antenna EMF



NEURAL NETWORK

� Two input neurons (frequency,  dielectric constant)  + Two hidden layers (5 neurons 

each, with hyperbolic tangent activation function) + One output linear neuron;

� Backpropagation using the Levenberg-Marquard algorithm;

� 55 s /200 epochs to train the NN  off lineon  SPARC 10 UNIX station;

� 0.5 s to render on line5,000 points of the EM field surface- model, SPARC 10 UNIX.

FEM numerical 

Solution  =>

1.3x105  s  on 

SPARC 10 UNIX

>> NN modeling of dielectric-ring resonator antenna EMF



MODEL CALIBRATION

The whole idea of virtual prototyping relies on the ability  

to develop models conformable to the physical objects and 

phenomena which represent reality very closely.

There is a need for calibration techniques able to validate

the conformance with the physical  reality of the models

incorporated in the new prototyping  tools.   



Experimental Measurements

� The EM field training data are conveniently obtained as analytical

estimations of far-field values in 3D space and frequency from near-field 

data using the finite element method combined with method of integral 

absorbing boundary conditions.

� The near field data could be obtained analytically and/or by physically 

measuring EM field values at for given frequency values and 3D space locations.

� This approach allows to replace the usual cumbersome open site far-field

measurement technique by anechoic chamber measurements.



The amount and extent of the area of measurements is significantly 

reduced by collecting data in the near-field only and calculating 

then the far-field values using Poggio's equation:

where:

-S1 is the surface on which measurements are made, 

closed or made closed,

-n is the normal to S1 and

is the free space Green’s function.
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• This equation states that if the field values and their derivatives are  known on a closed 

surface enclosing all inhomogeneities, then the field outside the surface can be calculated.



Experimental setup for the 
noninvasive measurement 
of the 3D near field data

Computer vision recovery of the 
3D position of the EM probe



Neural Network Modeling of 

3D Objects



Initial 3D pointcloud of sample
points representing the object

{(xi, yi, zi) | i = 1,...,N}

Neural-network model of the
object

{(xp, yp, zp) | p = 1,...,P}

xi, yi, zi xp, yp, zp

Transformed (translated, rotated,
scaled, bent, tapered, twisted)

object
{(Xi, Yi, Zi) | i = 1,...,N}

Neural Network Architecture
for 3D Object Representation

MLFF SOM Neural Gas

Xi, Yi, Zi

MLFF

Compare the performance of three NN architectures used for 3D Object modelling:

• Multilayer Feedforward Neural Network (MLFFNN) 

• Self-Organizing Map (SOM) 

• Neural Gas Network



MLFFNN

Pointcloud of sample points
representing the objectO
{(xi, yi, zi) | i = 1,...,N}

xi, yi zi

Transformed object pointcloud

{(X i, Yi, Zi) | i =1,..., N }

X i, Yi , Zi

Transformation Function:

translation, rotation, scaling, 

and deformations (bending, tapering, twisting)



Transformation Function – NN Architecture
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Transformation Function - Training Mode

Motion Estimation



Transformation Function - Generation Mode

Original

Tapering

Rotation

Translation,

Rotation,

Scaling

Twisting

Bending



MLFF Representation

generates a value proportional to the distance between an

input point and the modeled object surface

Pointcloud of sample points
representing the object O
{(xi, yi, zi) | i = 1,...,N}

MLFFNN

xi, yi zi

Continuous volumetric
neural-networkmodel of the object

with given accuracy {(xi, yi, zi) |

(xi,yi,zi)∈ O}



MLFFNN Representation – NN Architecure

• Activation Function

– sigmoid

• Training/Testing Data

– normalized points in 

the [-1 1 –1 1 –1 1] cube

• Learning

– supervised

– scaled-gradient descent 
backpropagation

Representation module

...

OR

X2

Z2

Y2

X

Y

Z

XY

YZ

XZ

...

-4

-4

-0.5

AND

AND



MLFFNN Representation - Training Mode

• Models objects given 

as pointclouds

• Decisions:

– inputs to use

– number of neurons 

in hidden layer

– values for training 

parameters

– number of extrasurfaces 

and distance

outside
extrasurface

inside
extrasurface

object

surface

d

 -1

  1



250 points, 6-3-1, 1 

extrasurface, d=0.055, 550 

epochs, mse: 0.14, 7 min.

19000 points, 14-7-1, 4

extrasurfaces, d=0.055, 1100

epochs, mse: 0.4, 3.3 hrs51096 points, 20-10-1, 5

extrasurfaces, d=0.055, 2000

epochs, mse: 0.67, 5.2 hrs.

19080 points, 10-5-1, 5

extrasurfaces, d=0.055, 1200

epochs, mse: 0.35, 2.8 hrs.

7440 points, 8-4-1, 5 

extrasurfaces, d=0.055, 

1100 epochs, mse: 0.24, 

1 hr

2500 points, 12-6-1, 2

extrasurfaces, d=0.06, 1020

epochs, mse: 0.39, 45 min.

MLFFNN  Modelling - Results



W12(i)

(x, y, z) points

in the

[-1 1 -1 1 -1 1]

cube

X

Z

Y

Reference

weight matrix
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linear interpolation

(n steps, i =1,...,n)
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X
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Target
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(xm, ym, zm)

of the morphed
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MLFFNN Representation – Applications          Object Morphing



MLFFNN Representation – Applications         Set  Operations
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MLFFNN Representation – Applications        

Object Collision Detection 



2.4% 4.9% 1.6% 99.1%

93.3% 3.3% 91.7% 3.1%

95% 99.1% 5.78% 98.3%

91.7% 6.6% 1.6% 92.5%

MLFFNN Representation – Applications         Object Recognition
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• simple and compact (weights+architecture)

• less memory usage

• continuous volumetric model (though 
trained with surface)

• information about the entire object space

• provides desired accuracy

• represents objects of varied complexity

• preserves details

• morphing, set operations, recognition, 
collision detection (convenience)

• computationally 

expensive (for both 

learning and rendering)

• lack of local control of 

the object

MLFFNN  Modelling – Summary

Advantages Disadvantages



SOM and Neural Gas 

- Compressed Representation Models

Compressed NN  model of the 3D object

{(xp, yp, zp) | p = 1,2, …, P }, where P<N 

SOM / Neural Gas

Pointcloud of sample points

representing the objectO

{(xi, yi, zi) | i = 1,..., N}

xi, yi zi

xp, yp zp



SOM Representation – NN Architecture

• Activation Function

– soft competition

• Learning

– unsupervised

input layer
...

[ x
i,

y
i,

z
i
]

w
ji

y
j

K=2

K=1

winning
neuron



• Activation Functions:

– soft competition

– neighbourhood ranking

• Learning

– unsupervised

Neural Gas Representation – NN Architecture



Initial 

pointcloud

Neural Gas

SOM

19080 points 
14914 points 13759 points 

1125 points, 

42 min.

1125 points, 

26 min.

875 points,

11 min.

875 points,

24.5 min.

875 points

22 min.

875 points, 

10 min.

er= 0.0098

er= 0.0125

SOM and Neural Gas   Modelling - Results



SOM and Neural Gas  Modelling – Applications          Object Morphing



SOM and Neural Gas  Modelling – Applications          Segmentation 



• simple and compact (weights)

• compressed

• less memory usage

• desired accuracy

• objects of varied complexity

• details 

• morphing, motion detection, 
segmentation

• computational expensive 

for high accuracy

• no information about the 

object space

• no direct surface 

representation

SOM and  Neural Gas Modelling – Summary

Advantages Disadvantages
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Compactness 



• The use of neural network modeling advantageous mainly for simplicity 
and compactness

• MLFNN – continuous model, information on the entire object space, 
many applications, but time consuming

• SOM and Neural Gas – compressed model while maintaining the 
properties of the object, very good accuracy, less time consuming

• The use of different techniques depends on the application 
requirements.

MLFF, SOM, and Natural Gas Modelling  of 3D Objects

CONCLUSIONS



Neural Network Adaptive Sampling 

of 3D Surface Elastic Properties



Recovery of the elastic material properties requires touching each point of interest on the 

explored object surface and then conducting a strain-stress relation measurement on each of 

the touched points.
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The elastic behaviour at any given 

point (xp, yp, zp) on the object surface 

is described by the Hooke’s law: 

where Ep is the modulus of elasticity ,  

s p is the stress, and e p is the strain 

on the normal direction. 

Tactile probing is a time consuming 

Sequential operation

Find fast sampling procedures 

able to minimize the number of the 

sampling points by selecting only 

those points that are relevant to the 

elastic characteristics.

non-uniform adaptive sampling 

algorithm of the object’s surface, 

which exploits the SOM (self-organizing 

map) ability to find optimal finite 

quantization of the input space.



Initial3D geometric

model of the object's surface

{(xi, yi, zi) | i = 1,...,N}
SOM / Neural Gas

Adaptive-sampled3D geometric

model of the object surface

{(xp, yp, zp) | p = 1,...,P}

RoboticTactile

Probing

Adaptive-sampled3D geometric

&

elastic composite model

of object's surface

{(xp, yp, zp, Ep) | p = 1,...,P}

xi, yi, zi

xp, yp, zp

Ep

Adaptive Sampling Control of the Robotic Tactile Probing 

of Elastic Propertiesof 3D Object Surfaces



Starting from a 3D point-cloud, a neural gas NN yields a reduced set of points on the 3D 

object’s surface which are relevant  for the tactile probing. The density of these tactile 

probing points is higher in the regions with more pronounced variations in the geometric 

shape. A feedforward NN is then employed to model the force/displacement behavior of 

selected sampled points that are probed simultaneously by a force/torque sensor and the 

active range finder.

3D pointcloud

of data

Sample

points

Deformation

profiles

Force

Measurements

Feedforward

Neural Network

F

profile(f0)

profile(f1)

profile(f2)

profile(f3)

f0

f1

f2

f3

Neural gas

network

Range

finder

Force/Torque

sensor

Neural Network Mapping an Clustering of Elastic Behavior from 

Tactile and Range Imaging



Sampling points selected with

the neural gas network.

Variable elasticity object used

for experimentation.



Sampling points selected with

the neural gas network for the ball.

Elastic ball used

for experimentation.



Different magnitudes of a 

normal force are applied 

successively on the selected 

sampling points using the 

probe attached on the 

force/torque sensor and a 

range profile is collected with 

the laser range finder for 

each force magnitude. 



There is no need to recover the explicit displacement information from 
the range profiles. Instead the NN models use the raw range data as a 
function of applied force, F, without explicitly defining values for the 
displacement. For each cluster of similar elasticity, a feed-forward NN 
with two input neurons (F and a), 45 hidden neurons (H1-H45) and one 
output neuron (Z), is used to learn the relation between forces and the 
corresponding geometric profiles provided by the range finder. 

F

Z

...

H1

H45

H2

α



The NN associated with each material were trained for 10,000 

epochs using the Levenberg-Marquardt variation backpropagation 

algorithm with the learning rate set to 0.1. The whole data set is used 

for training in order to provide enough samples. The training takes 

approximately 10 min. on a Pentium IV 1.3GHz machine with 512MB 

memory. For the rubber, the sum-squared error reached during 

training is 3.7 x10-3, for cardboard is 3.5 x10-2 while for the foam is 

2.2x10-2. As expected, the error is lower for the rubber where data is 

more compact and less noisy, while it remains slightly higher for the 

cardboard and even higher for the foam. But in all cases, excellent 

convergence is achieved.  



Deformation profiles for semi-stiff material (cardboard).



Deformation profiles for smooth material (foam).



Real and modeled deformation curves using neural network for semi-stiff material 
(cardboard) under a normal force of: a) F=0.1N, b) F=0.37N, and c) F=2.65N.

(a) (b) (c)

Real and modeled deformation curves using neural network for smooth material 

(foam) under a normal force of: a) F=0N, b) F=0.93N, and c) F=3.37N.

(a) (b) (c)



Real and modeled deformation

curves using neural network for 

rubber under a normal force of: 

a) F=0N,  b) F=65.52N, and 

c) F=80.5N. 

(a) (b)

(c)



(a) (b)

Real and modeled deformation curves using neural network for rubber under 

forces applied at different angles: 

a) F=65N, a1=10° and F=65N, a2=170°,
b) F=36N, a1=25°, and F=36N, a2=155



Real, modeled and estimated deformation profiles detail of estimated deformation profiles 

using neural network for rubber ball for increasing forces applied at 75-degree angle.



Modelling Avatar Behaviours in 

Interactive Virtual Environments. 



Face 

muscle-

activation 

instructions

Joint-

activation 

instructions

Voice

synthesizer

Face Model

(Facial Action Coding ) 

Body Model

(Joint Control )

FACE & BODY 

RECOGNITION

AND 3-D MOTION 

TRACKING

HUMAN

OPERATOR

SPEECH 

RECOGNITION

ANIMATION

SCRIPT

3-D ARTICULATED AVATAR MODEL



ANIMATION

SCRIPT

Voice

synthesizer

Face 

muscle-

activation 

instructions

Joint-

activation 

instructions

Face Modell

(Facial Action Coding ) 

Body Model

(Joint Control )

3-D ARTICULATED AVATAR

Avatar Machine-level Instructions 

Story-level 

Instructions

� COMPILER

� INVERSE KINEMATIC CONTROL

� SCHEDULER

� CONCURRENCY MANAGER



Scripting Language: Abstraction Levels

• Three levels of abstraction for the avatar animation scripting language:

– Highest: story-level description

• constrained English-like description

• syntactic and semantic analysis to extract information such as: main player(s), 

action, subject and object of the action, relative location, degree, etc.

• translate in a set of skill-level instructions, that may be executed sequentially or 

concurrently 

– Middle: skill-level macro-instructions

• describe basic body and facial skills (such as walk, smile, wave hand, etc.)

• each skill involves a number of muscle/joint activation instructions that may be 

executed sequentially or concurrently

– Lowest: muscle/joint activation instructions

• activation of individual muscles or joints to control the face, body or hand 

movement



Personalizing Skills

• Add “personality” to skill-level macro-instructions

– different avatars may perform a certain skill in a “personalized” way

• examples: “walk like Charlie Chaplin”

“write like Emil”

– there is a skill generalization/specialization relationship (similar to object-
oriented systems) between

• a generic skill

• one or more specialized (or personalized) skills 

• Personalizing skills

– by using Neural Network models

• off-line training

• on-line rendering 



STORY-LEVEL DESCRIPTION

…..

DanielA sits on the red chair. 

DanielA  writes “Hello” on stationary.

DanielA sees HappyCat under the white 

table and starts smiling. 

HappyCat grins back.

……

SKILL-LEVEL (“MACRO”) INSTRUCTIONS

…..

DanielA’s right hand moves the pen to follow the trace representing  “H”.

DanielA’s right hand moves the pen to follow the trace representing  “e”.

DanielA’s right hand moves the pen to follow the trace representing  “l”.

DanielA’s right hand moves the pen to follow the trace representing  “l”.

DanielA’s right hand moves the pen to follow the trace representing  “o”.

……



DanielA’s specific style

of  moving his right arm 

joints to write “H”

( NN model capturing

DanielA’s writing personality )

Rotate Wrist to a i 

Rotate Elbow to b j  

Rotate Shoulder  to g k  

Wrist

Elbow

Shoulder

x

y

z

3-D Model of 

DanieA’s 

Right Hand

SKILL-LEVEL MACRO-INSTRUCTIONS

…

DanielA’s right hand moves the pen to follow the trace representing  “H”.

…

� M. Costa, P. Crispino, A. Hanomolo, and E. Pasero, "Artificial Neural Networks and the Simulation of Human 

Movements in CAD Environments", International Conference on Neural Networks, 1997, vol. 3, pp. 1781 -1784 



Thank You!


