## **HOMOGENEOUS TRANSFORMATION MATRICES**

## **CARTESIAN COORDINATES**



#### RECOVERING THE LOCATION OF MOVING OBJECTS: TRANSLATION



## RECOVERING THE LOCATION OF MOVING OBJECTS: ROTATION

Recovering the 3D location of a point on an object **rotating** in a given reference frame *R*.

$$^{\mathrm{R}}q^{*}=$$
 ?

Vectors can not describe the rotation!



## **RECOVERING THE LOCATION OF MOVING OBJECT:** *ROTATION* > continued



#### **RECOVERING THE LOCATION OF MOVING OBJECT:** *ROTATION* > continued



#### **RECOVERING THE LOCATION OF MOVING OBJECT:** *ROTATION* > continued



## RECOVERING THE LOCATION OF MOVING OBJECT: ROTATION >> continued



# RECOVERING THE LOCATION OF MOVING OBJECTS: Roll, Rot(z, $\phi$ )



# RECOVERING THE LOCATION OF MOVING OBJECTS: $Rot(z, \phi)$ > continued



$$y' = d \cdot \sin(\alpha + \phi)$$

$$y' = d \cdot \sin(\alpha) \cdot \cos(\phi) + d \cdot \sin(\phi) \cdot \cos(\alpha)$$

$$x = d \cdot \cos(\alpha)$$

$$y = d \cdot \sin(\alpha)$$

$$y' = y \cdot \cos(\phi) + x \cdot \sin(\phi)$$

In a similar way we get:

$$x' = x \cdot \cos(\phi) - y \cdot \sin(\phi)$$

### 3D HOMOGENEOUS TRANSFORMATION MATRICES FOR ROBOTICS

Homogeneous transformation matrices are general 4-by-4 matrices accounting for both object translation and object rotation in 3D.

$$T = \begin{pmatrix} 3-by-3 & 3-by-1 \\ \textbf{rotation} & \textbf{translation} \\ \textbf{sub-matrix} & \textbf{sub-matrix} \end{pmatrix}$$



The homogeneous transformations matrix for a general

**3D translation** 

by a vector

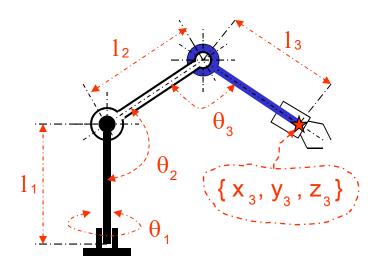
$$p_x \cdot \boldsymbol{i} + p_y \cdot \boldsymbol{j} + p_z \cdot \boldsymbol{k}$$
 is:

Trans 
$$(p_x, p_y, p_z) = \begin{pmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



The homogeneous transformations matrices for 3D rotations about the x, y, and z axes:




$$\mathbf{Rot}(x, \psi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\psi) & -\sin(\psi) & 0 \\ 0 & \sin(\psi) & \cos(\psi) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{Rot}(y,\theta) = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{Rot}(z, \phi) = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 & 0 \\ \sin(\phi) & \cos(\phi) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$



Homogeneous transformation matrices allow to calculate the final effect of a sequence of object transforms (translations and/or rotations) by multiplying the homogeneous matrices corresponding to these transforms.

