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“In a way, touch can be constructed as the most reliable of the [human] 

sensor modalities. When the senses conflict, touch is usually the ultimate 

arbiter.  …  Touch sensations can arise from stimulation anywhere on the 

body’s surface. Indeed, the skin can be characterized as one large receptor 

surface for the sense of touch. …  The English neurologist H. Jackson paid 

homage to the wonderful and complex abilities of the human hand by calling it

the most intelligent part of the body. The skin on the human hand contains 

thousands of mechanoreceptors (sensitive to mechanical pressure of 

deformation of the skin), as well as a complex set of muscle to guide the 

fingers as they explore the surface of an object. The mechanoreceptors play a 

key role in analyzing object detail such as texture; the muscles make their big 

contribution when grosser features such as size, weight, and shape are being 

analyzed.   But, whether exploring gross or small details, the hand and the 

finger pads convey the most useful tactile information about objects. In 

this respect, the hand is analogous to the eye’s fovea, the region of retina 

associated with keen visual acuity. There is, however, a flaw in this analogy: 

fovea vision is most acute when the eye is relatively stationary, but touch 

acuity is best when the fingers move of the object of regard ” [from [R. 

Sekuler, R. Balke, Perception,  2nd edition, McGraw-Hill, NY, 1990, Chapter 11. Touch, pp. 357-383].



The time has now arrived to add biology - and more specifically, 

human anatomy, physiology and psychology - to the scientific 

sources of knowledge for engineers to develop a new, bio-

inspired, generation of intelligent machines. 

Advocating this emergent trend, this presentation will discuss 

haptic sensors and human interfaces, and intelligent control 

algorithms for human-like multi-finger robot hands able to 

dexterously explore, grasp, and in-hand manipulate objects. 

These emergent technologies will allow the development of a new 

generation of remotely controlled intervention robots able to 

interactively perform complex tele-manipulation operations in high-

risk operational environments like nuclear power stations, 

underwater, highly infectious rooms, robotic surgery, or war zones.



Robot haptic 

perception 

mechanisms that 

emulate those of 

the humans.



Human Haptic Perception

Human haptic perception is the result of a complex dexterous manipulation 

act involving two distinct components:

(i)  cutaneous information from skin

mechanoreceptors which provide

about the geometric shape, contact

force, elasticity, texture, and temperature

of the touched object surface. The highest

density of cutaneous mechanoreceptors

is found in  fingerpads (and also in the

tongue, the lips, and the foot).

Force information is mostly

provided by muscle, tendon and 

bone joint proprioceptors;

(ii) kinesthetic information about 

the positions and velocities of

the kinematic structure (bones

and muscles) of the hand



Cutaneous tactile mechanoreceptors

• 40 % are Meissner’s corpuscles 

sensing velocity and movement    

across the skin;

• 25% are Merkel’s disks which 

measure pressure and vibrations;

•19% are Rufini corpuscles  sensing 

skin shear and  temperature changes.

• 13 % are Pacinian corpuscles

(buried deeper in the skin) sensing 

acceleration and vibrations of about 

250 Hz;

[from G. Burdea and Ph. Coiffet,  Virtual Reality 

Technology, 2nd edition, Wiley, New Jersey, 2003]

[from [R. Sekuler, R. Balke, Perception,  

2nd edition, McGraw-Hill, NY, 1990]



Tactile sensing 

receptor densities in 

the human hand       
[from R Johansson &  A Vallbo, 

“Tactile Sensory Coding in the 

Glabrous Skin of the Human 

Hand,” Technical Innovations 

in Neuroscience -TINS, 

Elsevier, pp. 27-32, Jan. 1983].



Two-point limen test: 2.5 mm fingertip, 11 mm for 

palm, [from G. Burdea and Ph. Coiffet,  Virtual Reality 

Technology, 2nd edition, Wiley, New Jersey, 2003]

Spatial resolution

• If the sensor has a large 

receptive field – it has 

low spatial resolution 

(Pacinian and Ruffini)

 If the receptive field

small - it has high 

spatial resolution 

(Meissner and Merkel)



Body maps in the motor cortex and somatosensory cortex of the cerebrum, 
[http://images.slideplayer.com/14/4280670/slides/slide_23.jpg].



Human grasping configurations [from G. Burdea and Ph. Coiffet,  

Virtual Reality Technology, 2nd edition, Wiley, New Jersey, 2003]



Tactile Sensing

Artificial Skin



The tabs of the elastic overlay  are 

arranged in a 16-by-16 array having a 

tab on top of each Merkel’s disk- like 

matrix of FSR elements sensing 

sustained pressure and shapes.

This tab configuration provides a de 

facto spatial sampling, which reduces 

the elastic overlay's blurring effect on 

the high 2D sampling resolution of the 

FSR sensing matrix.

[from S.K. Yeung, E.M. Petriu, W.S. McMath, 

D.C. Petriu, "High Sampling Resolution Tactile 

Sensor for Object Recognition," IEEE Tr. Instr. 

Meas., Vol. 43, No. 2, pp.277-282, 1994.]

Tactile probe using an elastic overlay and 

16-by-16 matrix of Force Sensing Resistors (FSR)
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The elastic overlay provides 

a  geometric profile-to-force

transduction function . The 

resulting forces are the 

measured by FSR.

Tactile probing of object 

surfaces

[ from E.M. Petriu, S.R. Das, S.K. 

Yeung, “Robotic Tactile Perception,” 

Proc. IMTC/99, IEEE Instrum. Meas. 

Technol. Conf., pp. 1266-1271, Venice, 

Italy, May 1999.]



The 16-by-16 matrix of Force 

Sensing Resistors (FSR), spaced 

1.58 mm apart on a 6.5 cm2 (1 sq. 

inch) area.  The FSR elements have 

an exponentially decreasing electrical 

resistance with applied normal force: 

the resistance changes by two orders 

of magnitude over  a pressure range of 

1 N/cm2 to 100 N/cm2.



The elastic overlay has a protective 

damping effect against impulsive contact 

forces and its elasticity resets the probe 

when it ceases to  touch the object.

The crosstalk effect present in one-piece 

elastic pads produces considerable 

blurring distortions. It is possible to reduce 

this by using a custom-designed elastic  

overlay consisting of a relatively thin 

membrane with protruding  round tabs. 

This construction allows free space for the 

material to expand in the x and y

directions allowing for a compression in 

the z direction proportional with the stress 

component along this axis. 
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[ from E.M. Petriu, S.R. Das, S.K. Yeung, “Robotic Tactile Perception,” Proc. IMTC/99, IEEE 

Instrum. Meas. Technol. Conf., pp. 1266-1271, Venice, Italy, May 1999.]



Tactile sensing artificial skin using Rufini corpuscles -like 

thermistors and a blood-vessel like source of heat distributed within the 

elastic skin.  [from E.M. Petriu, “Biology-Inspired Multimodal Tactile Sensor System,” Proc.

ROSE   2011, IEEE Int.  Symp. Robotic and Sensor Environments, pp. 54-59, Montreal, Que, 

Canada, Sep. 2011 ]



Tactile-enabled fingertip  for 

dynamic exploration of surfaces

(1) Elastic skin;  (2) MARG (Magnetic, Angular 
Rate, and Gravity) sensor  measures vibrations, 
accelerations, angular velocities and changes in 
the magnetic field emulating the functions of 
Merkel cells and Meissner corpuscles; (3) deep 
pressure sensor (MEMS barometer sensor 
emulating the functions of Pacinian corpuscles; 
and (4) supporting collar.

[from T.E. Alves de Oliveira, A.-M. Cretu, E.M. Petriu, “Multimodal Bio-Inspired Tactile Sensing 

Module for Surface Characterization," Sensors, MDPI, vol. 17, paper # 1187, pp. 1-19, May 2017]



Bio-inspired Multimodal Tactile Sensing Skin Module: (1) Merkel disk- and 

Meissner corpuscle-like shape, pressure, local skin  deformation, and slippage 

sensitive tactile array (32 taxels);  (2) Rufinni corpuscle- like vibration and stretch 

sensitive  MARG sensor; (3) compliant skin structure; (4) Pacinian corpuscule-like 

deep pressure sensor; [from T.E. Alves de Oliveira, A.-M. Cretu, E.M. Petriu, “Multimodal Bio-Inspired 

Tactile Sensing Module,” IEEE Sensors Journal, Vol. 17, Issue 11, pp. 3231 – 3243, 2017]

16  mm



System components and examples of applications for the multimodal 

tactile sensing skin module [from T.E. Alves de Oliveira, A.-M. Cretu, E.M. Petriu, 

“Multimodal Bio-Inspired Tactile Sensing Module,” IEEE Sensors Journal, Vol. 17, Issue 11, 

pp. 3231 – 3243, 2017]



Haptic Perception of 

Rigid 3D Object Shapes 



Haptic perception is the result of an active deliberate contact 

exploratory sensing act. 

A tactile probe provides the local “cutaneous” information about the 

touched area of the object.

A robotic carrier providing the “kinesthetic” capability is used to move 

the tactile probe around on the explored object surface and to provide 

the contact force needed for the probe to extract the desired cutaneous 

information (e.g. local 3D geometric shape, elastic properties, and/or 

termic impedance) of the touched object area . 

The  local information provided by the tactile probe is integrated with the 

kinesthetic position parameters of the carrier resulting in a composite 

haptic model (global geometric and elastic profiles, termic impedance 

map) of the explored 3D object. 



Robotic finger-like articulated structure with instrumented passive-compliant joint 

and a tactile probe array. Position sensors placed in the robot joints and on the instrumented 

passive-compliant wrist provide the kinesthetic information. The compliant wrist allows the probe 

to accommodate the  constraints of the touched object surface and thus to increase the local 

cutaneous information extracted during the active exploration process under the force provided 

by the robotic finger,. [from P. Payeur, C. Pasca, A.-M. Cretu, E.M. Petriu, “Intelligent Haptic Sensor System 

for Robotic Manipulation,” IEEE Tr. Instrum. Meas., Vol. 54, No. 4, pp. 1583 – 1592, 2005.]
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Model-based tactile 

object recognition

[from E.M. Petriu, S.K.S. 

Yeung, S.R. Das, A.M. Cretu, 

H.J.W. Spoelder, “Robotic Tactile 

Recognition of Pseudorandom 

Encoded Objects, IEEE Trans. 

Instrum. Meas., Vol.53, No.5, 

pp.1425-1432, 2004.]

PRA code elements are 

Braille-like embossed on 

object surfaces: 3D object 

models are unfolded and 

mapped on the encoding 

pseudo-random array.  



0    A   1   A2 A   A2 A2   A2 1   1   A2 A2 A2 A   A2    1    A 

0    0   1   A2 A2 A   1   0   A2 A2 0   1     A   A2 A2 1     0 

0   A2  0   0   A    A   A2 1   A2 A2 1   A2 A    A   0    0    A2  

0   1    A   1  A     0   A2 A   0   0   A   A2 0   A    1    A    1 

0   A2 A2 A  0     A2 0    1   1   1   1    0   A2 0    A   A2 A2

0   A2 A   1   A2  1    1    1   A   A  1    1    1   A2 1     A    A2 

0    0   A   1  1     A2 A 0   1   1    0    A  A2 1   1    A    0 

0   1    0   0   A2 A2 1    A   1   1   A   1    A2 A2 0    0    1 

0   A   A2 A   A2 0   1   A2 0   0   A2 1    0   A2 A    A2 A 

0   1   1    A2 0    1    0   A    A   A  A    0   1   0    A2 1    1

0   1   A2 A  1    A    A   A   A2 A2 A   A   A   1    A    A2 1 

0   0   A2 A  A    1   A2 0    A   A   0   A2 1   A    A    A2 0 

0   A   0    0   1    1   A   A2 A   A   A2 A   1   1    0     0    A 

0   A2 1   A2 1     0   A   1    0    0   1   A   0   1    A2 1    A2 

0   A   A   1    0    A   0   A2 A2 A2 A2 0   A   0 1     A    A  

15-by-17 PRA obtained by folding a 255 element PRS 

defined over GF(4),  with q=4, n=4, k1=2, k2=2, n1= qk1-

1=15, and n2=(qn-1)/n1=17 



The shape of the embossed symbols is specially designed for easy tactile 

recognition.  For an efficient pattern recognition, the particular shape of the 

binary symbols were selected in  such a way to meet the following conditions: 

(i)  there is enough information at the symbol level to provide an   

immediate indication of the grid orientation;

(ii) the symbol recognition procedure is 

invariant to position, and orientation;

(iii) the symbols have a certain peculiarity 

so that other objects in the scene will 

not  be mistaken for encoding symbols.

The shape of the four code 

symbols for a PRA over GF(4) 

embossed on object’s surface 

“0” “1”

“A” “A2”
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C7 C8 
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P3 P4 

P5 P6 

P7 P8 

The vertex labeled models of two simple 3D objects
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Mapping the embossed 

PRBA on the surfaces 

ofthe two 3D objects

[from E.M. Petriu, S.K.S. 

Yeung, S.R. Das, A.M. Cretu, H.J.W. 

Spoelder, “Robotic 

Tactile Recognition of 

Pseudorandom Encoded Objects, 

IEEE Trans. Instrum. Meas., Vol.53, 

No.5, pp.1425-1432, 2004.)]



The PRA encoded cube. 

[from E.M. Petriu, S.K.S. Yeung, S.R. Das, A.M. Cretu, H.J.W. Spoelder, “Robotic Tactile 

Recognition  of Pseudorandom Encoded Objects, IEEE Trans. Instrum. Meas., Vol.53, No.5, 

pp.1425-1432, 2004.]



Tactile images of the four GF(4) symbols.  The two rectangular axes on the horizontal 

plane in each image indicate the 2D node coordinates of the 16-by-16 tactile image. One 

unit on the vertical axis corresponds to 0.015875 mm (0.01/16 inch).  

[from E.M. Petriu, S.K.S. Yeung, S.R. Das, A.M. Cretu, H.J.W. Spoelder, “Robotic Tactile Recognition  of 

Pseudorandom Encoded Objects, IEEE Trans. Instrum. Meas., Vol.53, No.5, pp.1425-1432, 2004.)]



Two-layer feed-forward NN 

architecture for the classification 

of the four GF(4) symbols.
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Average error rate for noise ranging 

between 0 and 0.5

[from E.M. Petriu, S.K.S. Yeung, S.R. Das, A.M. Cretu, H.J.W. Spoelder, “Robotic Tactile Recognition  of 

Pseudorandom Encoded Objects, IEEE Trans. Instrum. Meas., Vol.53, No.5, pp.1425-1432, 2004.] 



Composite tactile image of four symbols 

on an encoded object surface 

[from E.M. Petriu, S.K.S. Yeung, S.R. Das, A.M. Cretu, H.J.W. Spoelder, “Robotic Tactile Recognition  of 

Pseudorandom Encoded Objects, IEEE Trans. Instrum. Meas., Vol.53, No.5, pp.1425-1432, 2004.)]



C1 

C2 

C3 

C4 

C5 

C6 

C7 

The four tactile recovered 

symbols are recognized, 

And their location is

unequivocally identified on

the  face of one of the 

3D objects, using the 

PRA window property. 

[from E.M. Petriu, S.K.S. Yeung, S.R. Das, A.M. Cretu, H.J.W. Spoelder, “Robotic Tactile Recognition  of 

Pseudorandom Encoded Objects, IEEE Trans. Instrum. Meas., Vol.53, No.5, pp.1425-1432, 2004.)]



Tactile-enabled fingertip exploring various texture profiles
[from T.E. Alves de Oliveira, A.-M. Cretu, E.M.  Petriu, “Multimodal Bio-Inspired Tactile Sensing 

Module for Surface Characterization," Sensors, MDPI, vol. 17, paper # 1187, pp. 1-19, May 2017].



Confusion tables for: (left) barometer, showing the misclassification of Shape 5 as Shape 
4; and (right) accelerometer on x-axis, showing the misclassification between Shapes 1 and 2   

[from T.E. Alves de Oliveira, A.-M. Cretu, E.M.  Petriu, “Multimodal Bio-Inspired Tactile Sensing Module for 

Surface Characterization," Sensors, MDPI, vol. 17, paper # 1187, pp. 1-19, May 2017].



Haptic Perception of 

Elastic 3D Object Shapes 



 “Improved accuracy and richness in object modeling and haptic 

rendering will require advances in our understanding of how to represent and 

render psychophysically and cognitively germane attributes of objects, as well 

as algorithms and perhaps specialty hardware (such as haptic or physics 

engines) to perform real-time computations” [K. Salisbury, F. Conti, F. Barbagli, 

“Haptic Rendering: Introductory Concepts,” IEEE Computer Graphics and 

Applications, Vol. 24, No. 2, pp. 24 – 32, 2004].

 Neural Networks which are able to learn nonlinear behaviors  from a limited 

set of measurement data can provide efficient  and compact multi-media 

object modeling solutions.  Due to their continuous, analog-like, memory 

behavior, NNs  are able to provide instantaneously an estimation of the output 

value for input values that were not part of the initial training set.

 NNs consisting of a collection of simple neuron circuits provide  the 

massive computational parallelism offering efficient storage, model 

transformation, and real-time rendering capabilities for  large numbers of 

composite geometric & haptic object models involved in the model-based 

interactive telemanipulation.



Recovery of the elastic material properties requires touching each point of 

interest on the explored object surface and then conducting a strain-stress 

relation measurement on each point.
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The elastic behaviour at any given 

point (xp, yp, zp) on the object surface 

is described by the Hooke’s law: 

where Ep is the modulus of elasticity ,  

s p is the stress, and e p is the strain 

on the normal direction. 

Tactile probing is a time consuming 

Sequential operation

Find fast sampling procedures 

able to minimize the number of the 

sampling points by selecting only 

those points that are relevant to the 

elastic characteristics.

non-uniform adaptive sampling 

algorithm of the object’s surface, 

which exploits the SOM (self-organizing 

map) ability to find optimal finite 

quantization of the input space.
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Adaptive Sampling Control of of Elastic Properties 

of 3D Object Surfaces

[from A.-M. Cretu, E.M. Petriu, “Neural-Network –Based Adaptive Sampling of Three-Dimensional-Object   Surface Elastic 

Properties,” IEEE Trans. Instrum. Meas.," Vol. 55, No. 2,  pp. 483-492,  2006. ]



Starting from a 3D point-cloud, a neural gas NN yields a reduced set of points that are 

relevant  for further tactile probing. The density of these points is higher in the regions with 

more pronounced variations in the geometric shape. A feed-forward NN is then employed 

to model the force/displacement behavior of  the selected sampling points that are probed 

simultaneously by a force/torque sensor and an active range finder.
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Neural Network Mapping an Clustering of Elastic Behavior

from Tactile and Range Imaging

[from  A.-M. Cretu, E.M. Petriu, “Neural-Network –Based Adaptive Sampling of Three-Dimensional-Object   

Surface Elastic Properties,” IEEE Trans. Instrum. Meas.," Vol. 55, No. 2,  pp. 483-492,  2006.] 



Force-torque sensor measuring the

interaction force and torque at the 

point of contact between the robotic

probe and the object.

Laser range-finder based recovery of the 

geometric profiles in an area around the 

contact point between the probe and the object.

Recovery of the elastic material properties requires touching each point of interest on the explored 

object surface and then conducting a strain-stress relation measurement on each point.

[from A.-M. Cretu, E.M. Petriu, “Neural-Network –Based Adaptive Sampling of Three-Dimensional-Object   

Surface Elastic Properties,” IEEE Trans. Instrum. Meas.," Vol. 55, No. 2,  pp. 483-492,  2006. ]



Sampling points selected with

the neural gas network for the ball.
Elastic ball used

for experimentation.

[from A.M. Cretu, E.M. Petriu, P.Payeur “Neural Network Mapping and Clustering of Elastic Behavior from 

Tactile and Range Imaging for Virtualized Reality Applications,” IEEE Tr. Instr. Meas., vol.  57, no. 9, pp. 

1918 – 1928, 2008.]



(a) (b)

Real and NN modeled deformation curves using for rubber under 

forces applied at different angles: 

a) F=65N, a1=10 and F=65N, a2=170,
b) F=36N, a1=25, and F=36N, a2=155

[from A.M. Cretu, E.M. Petriu, P. Payeur “Neural Network Mapping and Clustering of Elastic Behavior from 

Tactile and Range Imaging for Virtualized Reality Applications,” IEEE Tr. Instr. Meas., vol.  57, no. 9, pp. 

1918 – 1928, 2008.]



The haptic huamn-robot interfaces should have a bilateral 

architecture allowing to connect the human operator and the 

robotic manipulator as transparently as possible.

Conformal (1:1) mapping of human & robot sensory  and 

perception frameworks

Haptic Human-Robot 

Interfaces



Robot arm with tendon driven 

compliant wrist

Haptic & Visual Telerobotic System [from E.M. Petriu, D.C. Petriu, V. Cretu, "Control 

System for an Interactive Programmable Robot," Proc. CNETAC Nat. Conf. Electronics, Telecommunications, 

Control, and Computers, pp. 227-235, Bucharest, Romania, Nov. 1982.] 



Haptic Telerobotic System: (a) the tactile probe , and (b) the tactile human feedback [from

E.M. Petriu, D.C. Petriu, V. Cretu, "Control System for an Interactive Programmable Robot," Proc. CNETAC Nat. 

Conf. Electronics, Telecommunications, Control, and Computers, pp. 227-235, Bucharest, Romania, Nov. 1982.]



A desktop hapto-visual human interface allows a human teleoperator to experience the haptic feeling 

profiles at the point of contact as well as to see the image of a larger area around the  point of 

contact on the explored object as captured by a video camera mounted on the robot  manipulator. It 

includes a PHANTOM® 6DOF haptic device representing the handheld replica  of the probing 

finger that provides the haptic feedback consisting of the 3D geometric  coordinates of the point of 

contact measured by the laser range finder system and the force vector and torque components 

measured by the 6 DOF force-torque sensor at the point of contact.



Commercial “Virtual Hand Toolkit for CyberGlove/Grasp” 

providing the kinesthetic human feedback interface



H 
U 
M 
A 
N 
- 
H 
A 
N 
D

TM TM

TACTILE 
SENSATION 
RECONSTRUCTION

TM = Tactile Monitor

TS TS

TACTILE 
IMAGE 
ACQUISITION

R
O
B
O
T  
- 
H
A
N
D

TS  = Tactile Sensor

Haptic human interface placed on the operator's palm allows the human 

operator  to virtually feel by touch the object profile measured by the tactile sensors 

placed in the jaws of  the robot gripper [from E.M. Petriu, W.S. McMath, "Tactile Operator 

Interface for Semi-autonomous  Robotic Applications," Proc.Int. Symposium on Artificial Intell. 

Robotics Automat. in Space, i-SAIRS'92, pp.77-82, Toulouse, France, 1992.]



Cutaneous tactile human interface consisting of an 8-by-8 array of 

vibro-tactile stimulators. The active area  is 6.5 cm2 (same as the 

tactile sensor), [from E.M. Petriu, W.S. McMath, "Tactile Operator Interface for Semi-

autonomous  Robotic Applications," Proc.Int. Symposium on Artificial Intell. Robotics Automat. 

in Space, i-SAIRS'92, pp.77-82, Toulouse, France, 1992.]



Tactile fingertip human interface
developed at the University of  Ottawa.

It consists of miniature vibrators placed 

on the fingertips. The vibrators are 

individually controlled using a dynamic 

model of the visco-elastic tactile sensing 

mechanisms in the human fingertip. 



Interactive Robotic 

Telemanipulation



Robotic telemanipulation 

is an object-oriented act which 

requires not only specialized robotic 

hands with articulated fingers but 

also tactile, force and kinesthetic

sensors for the precise control of 

the forces and motions exerted on 

the manipulated object. 

When a fully autonomous robotic 

dexterous manipulation is 

impractical in changing and 

unstructured environments, an 

alternative approach is to combine 

the low-level robot computer control 

with the higher-level perception and 

task planning abilities of a human 

operator equipped with adequate 

human computer interfaces (HCI).
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 Telemanipulation systems should have a bilateral  

architecture that allows a human operator to connect in a 

transparent manner to a remote robotic manipulator.

 Human Computer Interfaces  (HCI) should provide easily  

perceivable and task-related sensory displays (monitors) which fit 

naturally the perception capabilities of the human operator.

 The potential of the emergent haptic perception technologies is 

significant for applications requiring object telemanipulation such 

as: (i) robot-assisted handling of materials in industry, hazardous 

environments, high risk security operations, or difficult to reach 

environments, (ii) telelearning in hands-on virtual laboratory 

environments for science and arts, (iii) telemedicine and medical 

training simulators.



Interactive Model-Based Hapto-Visual Teleoperation - a human operator equipped with haptic 

HCI  can telemanipulate physical objects with the help of a robotic equipped with haptic sensors. 
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Canadian Space Agency: 

In 1981, Canada confirmed its position 

as a world leader in space technology 

with the development of the Remote 

Manipulator System, or Canadarm. 

The RMS can be used: to deploy and 

retrieve satellites, to hold targets, to 

explore samples, and to manipulate   

hardware for the Space Shuttle.

In 1988, Canada agreed to join the 

international partners to build  a 

permanently inhabited Space Station. 

Canada's  contribution is to design, 

manufacture, and operate a robotic 

system, the Mobile Servicing System

(MSS), for  assembly, maintenance, 

and servicing tasks on the Space 

Station. 



http://www.ctv.ca/mar/static/dextre/ 

Canadian space robot 'Dextre' a high-tech marvel 
Updated Mon. Mar. 10 2008 8:35 AM ET CTV.ca News Staff

,,,, Dextre the robot will be the latest Canadian-built addition to the International Space Station.  
"Dextre is the second arm for the station built by Canada," astronaut Steve Swanson told Canada 
AM on  Monday from Cape Canaveral. "And its task is to do jobs that are more of a fine, finesse 
manipulator-type  activity. Usually we would do spacewalks to change out components that have 
broken on the station. But now with Dextre, we can do that from inside and use Dextre's arms to do 
things that a human could do." 



Da Vinci Surgical System is a robotic surgical system made 

by the American company Intuitive Surgical. Approved by the Food 

and Drug Administration (FDA) in 2000, it is designed to facilitate 

complex surgery using a minimally invasive approach, and is 

controlled by a surgeon from a console.

As of June 30, 2014, there were installed 

3,102 units worldwide. …. an estimated 

200,000 surgeries conducted in 2012

Da Vinci System  

allows the surgeon’s  

hand movements to 

be translated into 

smaller, precise 

movements of  tiny 

instruments inside  

the patient’s body.



Vision, tactile, and flex joint 

sensors allow tracking finger 

phalanges’ position, provide 

information of the object’s 

unknown orientation for in-hand 

manipulation by the two -finger 

underactuated hand with a 

fully-actuated intelligent thumb 

capable of trajectory planning. A

fuzzy logic controller  allows to 

obtain a stable grasp After grasp, 

the manipulate object can be 

reoriented by the thumb taking 

advantage of the compliance of 

the flex joint fingers

[from V. Prado da Fonseca, D.J. Kucherhan, T. E. Alves de Oliveira, D. Zhi, E.M. Petriu “Fuzzy 

Controlled Object Manipulation using a Three-Fingered Robotic Hand,” 10th Annual IEEE Int. Systems 

Conference - SysCon 2017, pp. 346 - 351, Montreal, Que, April 2017].

Multi-Finger Dexterous Robot Hand 



Tactile Enabled Prosthetic 

Fingers and Feedback Glove



Tactile Enabled Prosthetic fingertip:
• four force sensors embedded in the fingertip: one force sensing resistor measuring

exerted force amplitude (0.1 N - 20 N), and three thin pot sensors measuring the 

relative position of the force (0.7 N- 2.2 N); 

• piezoelectric vibration sensor measuring subtle vibrational patterns;

• digital temperature sensor (-10°C to +85°C, thermal gradient < 0.1 °C)

[from D. J. Kucherhan, M. Goubran, V. Prado da Fonseca, T.E. Alves de Oliveira, E.M. Petriu, V. Groza, “Object 

Recognition Through Manipulation Using Tactile Enabled Prosthetic Fingers and Feedback Glove - Experimental Study,” 

2018 IEEE International Symposium on Medical Measurements & Applications (MeMeA)  Rome, Italy, June 2018].



Tactile-enabled assistive glove
with three prosthetic fingers conveys 

multimodal tactile feedback to human 

operator’s hand while she/he performs dexterous object manipulation and 

recognition.  A Peltier thermoelectric tile provides thermal feedback.  Linear 

Resonant Actuators generate force and vibration feedback. 

Placement of the tactile actuators 

in the assistive glove:

[from D. J. Kucherhan, M. Goubran, V. Prado da Fonseca, T.E. Alves de Oliveira, E.M. Petriu, V. Groza, “Object 

Recognition Through Manipulation Using Tactile Enabled Prosthetic Fingers and Feedback Glove - Experimental Study,” 

2018 IEEE International Symposium on Medical Measurements & Applications (MeMeA)  Rome, Italy, June 2018].



Human subject exploring an 

object behind a fabric screen

*  The subject puts on the glove so 

that the three artificial fingers were 

secured to their natural fingers, tape 

was wrapped around the length of 

subject’s gloved fingers to mask the 

natural mechanoreceptors within 

each subject’s finger.

*  Directly in front of the subject was 

the map of the tactile actuators in the 

assistive glove to be used to orally 

identify the sensations felt whilst 

using the glove. 

[from D. J. Kucherhan, M. Goubran, V. Prado da Fonseca, T.E. Alves de Oliveira, E.M. Petriu, V. Groza, 

“Object Recognition Through Manipulation Using Tactile Enabled Prosthetic Fingers and Feedback Glove -

Experimental Study,” 2018 IEEE International Symposium on Medical Measurements & Applications 

(MeMeA)  Rome, Italy, June 2018].



During the active touch portion each human-subjects was asked to  conduct three 

experiments aiming to identify a mystery object within the concealed experiment 

area. Subjects were allowed unlimited time to identify the mystery object.  

Two  experiments 

used mystery 

objects that were 

common for every 

subject: the plastic 

toy alligator (item 1) 

and the wooden 

triangular block 

(item 12). 

For the third experiment, subjects were provided a mystery object which was 

randomly selected from the 22 different objects by one of the researchers. 

Objects used  

for active touch 

experiments (pen 

used for scale):

[from D. J. Kucherhan, M. Goubran, V. Prado da Fonseca, T.E. Alves de Oliveira, E.M. Petriu, V. Groza, “Object 

Recognition Through Manipulation Using Tactile Enabled Prosthetic Fingers and Feedback Glove - Experimental Study,” 

2018 IEEE International Symposium on Medical Measurements & Applications (MeMeA)  Rome, Italy, June 2018].



Active Touch
Subject 

1
Subject 2 Subject 3 Subject 4

Subject 
5

Mistery Object
# 3

Teddy bear Tiara Tiara Frog Teddy bear

Identifyed
Object

Cow Tiara Brain Frog Teddy bear

✘ ✔ ✘ ✔ ✔

Mystery object #1, 

common to all subjects, 

was the plastic alligator. 

Only two of the five 

subjects were able to 

correctly identify it. Overall 

success rate of 40%. 

Mystery object #2, common 

to all subjects, was the 

wooden triangular prism. 

Only two of the five subjects 

were able to correctly 

identify it. Overall success 

rate of 40%.

Mystery object #3 was a 

randomly selected object for 

each subject. The overall 

success rate was  60%.

[from D. J. Kucherhan, M. Goubran, V. Prado da Fonseca, T.E. Alves de Oliveira, E.M. Petriu, V. Groza, 

“Object Recognition Through Manipulation Using Tactile Enabled Prosthetic Fingers and Feedback Glove -

Experimental Study,” 2018 IEEE International Symposium on Medical Measurements & Applications 

(MeMeA)  Rome, Italy, June 2018].



Thank You !


