
 

 

Dynamic Model Updating in Simulation with Multimodels:  
A Taxonomy and a Generic Agent-Based Architecture  

                                  
 

Levent Yilmaz 
 

Tuncer I. Ören 
M&SNet: AMSL (The Auburn Modeling and 

Simulation Laboratory)  
Computer Science and Engineering 

Auburn University 

M&SNet: OC-MISS (Ottawa Center of the 
McLeod Institute of Simulation Sciences)  

School of Information Technology and 
Engineering (SITE), University of Ottawa  

Auburn, AL, USA 
yilmaz@eng.auburn.edu 

Ottawa, ON, Canada 
oren@site.uottawa.ca 

 
 

Abstract 
Dynamic model update and replacement are critical 
capabilities for modeling problems, the underlying 
processes of which are uncertain. The trajectory of 
most complex social phenomena, including conflicts, 
for instance, is never fixed and predictable. 
Symbiotic simulation is yet another emergent 
challenge that requires model adaptivity in response 
to emerging conditions within the actual system. In 
such experiments simulation parameters, as well as 
scenarios may shift, invalidating a priori assumptions 
or analysis. Multimodel formalism and runtime 
dynamic model updating are suggested as potential 
approaches to deal with uncertainty. A taxonomy of 
multimodels, a generic agent-based architecture for 
static structure, and single aspect multimodels with 
exploratory (goal-directed) behavior are presented to 
explore issues in multimodel simulation.   
 
Keywords: agent, composability, methodology, 
multimodel, multisimulation.   

1.0 Introduction 
For most realistic modeling problems, the nature of 
the problem changes as the simulation unfolds. Initial 
parameters and models can be irrelevant under 
emergent conditions, or there may be a need for 
switching to new set of models (i.e., multi-stage 
processes). For instance consider the water and ice in 
a mix: we have two submodels to represent: ice and 
water. Both submodels exist at the same time; we add 
(or subtract) calories; ice melts or water freezes and 
accordingly the two masses change. Each submodel 
is governed simultaneously by different (physical) 
laws (melting of the ice, heating of the water). Once 
all ice melts, only one subsystem is active; the ice 
subsystem becomes latent and the only active 
subsystem is the one representing the water. We 
continue adding calories; water is heated –under the 
present pressure. If the pressure is the one 
corresponding to sea level and if the water is pure, 

then at 100º C (or 212º F) the water starts 
evaporating. This may require a new submodel to 
study the dynamics of evaporation and heating of the 
steam. Adaptivity in simulations and scenarios (not 
just parameter spaces), is necessary to deal with 
emergent conditions and evolve systems in a flexible 
manner. Uncertainty and change is more pervasive in 
social phenomena (i.e., social conflicts). The 
trajectory of a realistic conflict scenario is never 
fixed due to changing attitudes, emotions, and 
motives between adversarial parties. Multi-stage 
games [Bennett 1987], for instance, characterize 
conditions where preference of actors change during 
a conflict, resulting in (simulation) games with new 
options and strategies to choose from. Extension and 
generalization of the multimodel formalism, which is 
originally formulated in [Ören 1987], can create new 
vistas to explore and study such multi-stage games. 
Symbiotic simulation is yet another development area 
of concern raised in a recent conference [Fujimoto et 
al. 2002] as a grand challenge with relevance to 
various application domains. In symbiotic simulation 
information about the actual performance and 
accuracy characteristics of the system are acquired 
during actual simulation rather than before. The 
immediate factor raised by these challenges is that 
there is a need for run-time switching of models 
based on interpretation of emergent, potentially 
unforeseen conditions to facilitate dynamic run-time 
simulation composition.  
 
This paper explores multimodel formalism and 
suggests potential strategies for their simulation. To 
this end, in section 3 we introduce a taxonomy of 
multimodel types. Requirements for dynamic model 
updating in multimodel simulation are also discussed 
in section 3. Section 4 presents the rationale for an 
agent-based approach to multimodel simulation. In 
section 5 we conclude by discussing potential 
avenues of future research. 



 

 

2.0 Background on Multimodel Formalism  
A multimodel is a modular model that subsumes 
multiple submodels that together represent the 
behavior of the model. Multimodel formalism was 
originally introduced by [Ören 1987, 1991] to 
facilitate generalization of discontinuity in piecewise 
continuous systems. The multimodeling concept 
influenced the development of combined simulation, 
which entails the integration of continuous and 
discrete simulations within the same system 
description. For instance, as a special case of 
multimodel, coupled multiformalism specification 
developed by Praehofer [1992] extended DEVS 
formalism to provide a simulation environment for 
combined continuous/discrete-event simulation. 
Fishwick and Zeigler [1992] applied a special case of 
the multimodel to simulate qualitative dynamics of a 
physical system. Yet, in each one of these 
multimodel formalizations, submodels share the same 
address space, and they are updated based on switch 
statements; hence, existing formalisms are not only 
inflexible (i.e., hardwired), but also do not operate on 
truly distinct arbitrary models. 

3.0 Issues in the Specification and 
Simulation of Multimodels   

To systematically analyze possible multimodel 
design space, we present a preliminary ontology of 
multimodels and elaborate on the requirements for 
dynamic model updating to realize multimodel 
formalism. 

3.1 An Ontology of Multimodels 
Figure 1 illustrates a taxonomy of possible 
multimodel types based on various plausible 
constraints imposed on the submodel structure and 
activation policies. Based on the submodel structure 
of a multimodel the taxonomy considers the number 
of submodels active at a given time and the 
variability of the structure as the criteria. 
Conventional multimodels [Ören 1987, 2001], where 
only one model is active at a time can be 
characterized as single aspect (sequential) 
multimodels. In both cases, the states of the dormant 
models need to be saved and resumed once they are 
activated. Yet, re-instantiation of these latent models 
with a new up-to-date state information is needed to 
facilitate continuity in the overall model behavior.  
Multiaspect models [Ören 2001] operate under 
conditions, where more than one submodel can co-
exist simultaneously to represent distinct aspects of 
the same phenomena. Multimodels can have static or 
dynamic structures. Dynamic structure multimodels 
enable not only variation of the number of 
submodels, but also their alteration (i.e., evolution). 

Extensible multimodels enable inclusion of new 
submodels that are unforeseen at the design time, 
while alteration of existing submodels results in 
evolutionary behavior or mutation of submodels. The 
ability of a model to respond to and alter its own 
structure or behavior is plausible through reflective 
models. Computational reflection can be used to 
facilitate introspective access or operate on (alter) 
model’s own computation through intercessory 
reflection [Maes 1987]. Different model update 
policies and mechanisms result in various design 
options for multimodels. The activation policy of a 
multimodel is based on the nature of information 
necessary for the activation of submodel(s) along 
with the location of this information. Depending on 
the nature of the activation information multimodels 
can be constraint-driven, pattern-directed, or goal-
directed.  
 
Constraint-driven multimodels are controlled by 
stationary [Fishwick and Zeigler 1992] or adaptive 
transition policies that can have learning capabilities. 
Various reinforcement learning strategies can be used 
to maximize utilities, payoffs, or rewards in 
constraint-driven multimodel simulation. By 
choosing those actions in a given state that maximize 
a scalar reinforcement or feedback received after 
each action, the policy can adapt its action award 
structure by using a Markov decision process. 
Pattern-directed multimodels, on the other hand, 
follow a fixed cyclic or acyclic pattern (i.e., 
sequence) of submodel activations. Model selection 
can also be based on goal-directed (teleological) 
activation. Such models with planning facilities 
enable exploring a state space with alternative 
submodels, the preconditions of which are consistent 
with the observed conditions. In this viewpoint 
submodels are simply operators in a state space 
search algorithm implemented by the planner that is 
interfaced with the multimodel. Pattern-directed 
activation can guide selection of known submodel(s). 
A simple case is metamorphic models where the 
number of submodels is finite and their sequence is 
fixed (i.e., egg, larva, pupa, butterfly metamorphosis 
requires 4 submodels). Based on the location of 
information necessary for the activation of a 
submodel, we have to consider two cases. Active 
multimodels initiate updates due to internal emergent 
conditions that satisfy the transition conditions 
embedded with their specification [Ören 1987]. In 
externally activated multimodels (i.e., passive 
multimodels), the decision to qualify and switch to a 
submodel is external to enable flexible and 
customizable update mechanisms or protocols 
[Fishwick and Zeigler 1992].  



 

 

 

only one 

2 or more  

number of submodels 
active at a given time 

multiaspect 
model 

dynamic-
structure MM 

number of  
submodels 

fixed

extensible 

depends on 
model’s 
stage 

variable-structure 
MM 

extensible MM

multistage model 

submodel 
structure alteration of 

submodels 

no

yes 

non-mutational 
MM 

mutational MM 

evolutionary MM 

submodel 
activation 
(behavior) 

multimodel 

nature of 
knowledge 
to activate 
submodels 

constraint-driven 

pattern-directed 

goal-directed 

metamorphic MM  
 

adaptive MM 

acyclical MM 

cyclical MM 

exploratory MM 

location of 
knowledge 
to activate 
submodels 

within the MM (internal 
activation of submodels) 

active MM 

passive MM outside the MM (external 
activation of submodels) 

Figure 1.  A Taxonomy of Multimodels (MMs) 

static-structure    
MM 

single aspect MM 
(sequential MM) 

va
ri

ab
ili

ty
 - 

st
ru

ct
ur

e 
is

: 

dy
na

m
ic

 

static 



 

 

3.2 Requirements for Dynamic Model Update 
The challenges in dynamic model updating in 
multimodel formalism are the issues involved in 
substituting a new model without taking the simulator 
offline. The following five conditions present the 
basic requirements (Litmus test) for dynamic model 
replacement. 
 
• Activation: Submodel replacement must be 

initiated, either internally by a submodel or 
externally by a scheduler. 

• Integrity: The consistency of submodels 
undergoing replacement needs to be preserved. 
The event scheduling and simulation protocol 
need to be restricted or regulated to facilitate 
interleaving of module replacement activities 
with the simulation events. 

• Submodel Instantiation: The new (or selected) 
submodel must be dynamically loaded and 
linked into the run-time environment of the 
simulator (simulation engine). This requires new 
model and simulator decoupling strategies that 
avoid persistent connections. Also, the intricate 
details of complex submodel construction 
process should be as independent of the 
multimodel as possible to enable flexible update. 

• State Reconstruction: The state of a model 
must be reconstructed or at least resume from a 
specific state when re-instantiated after an update 
operation. This requires externalization through 
abstraction, state saving, transmission, and 
reconstruction after the update operation. 

• Simulator Rebinding: Once a model is loaded 
and linked to the run-time environment, the 
simulator needs to be bound to the new model. 

4.0 A Conceptual Basis for Agent-Based 
Multimodel Simulator 

Given the requirements above we now outline the 
components of a generic agent-supported approach 
that can facilitate realization of static structure, single 
aspect multimodels with exploratory behavior. 

4.1 Agent-Supported Simulation of 
Multimodels 

The requirements of dynamic model replacement 
requires computational support to observe simulation 
state, reason to qualify models for update, facilitate 
model (re)binding, and plan for goal-directed 
activation by exploring potential paths within the 
state space of the problem domain. Each submodel 
can be viewed as an operator that transforms the state 
of the simulation. Agent paradigm provides the 
necessary computational infrastructure to attain these 

objectives. Agents are capable of observing, 
perceiving, and reasoning about their environment to 
act or proact with goal-driven responses [Ferber 
1999]. The notion of mediator and facilitators are 
widely used as a semantic integration solution for 
disparate information systems. The underlying 
rationale for using facilitators is to bridge the gap 
between resources through a level of indirection. The 
same argument applies to model binding and 
rebinding, as well. That is, flexible update 
mechanisms need decoupling between a simulator 
and models that it operates on. The following 
sections suggest the requisite components of a 
generic architecture for multimodel simulators. 

4.2 Dynamic Model Replacement with 
Facilitator Agents 

A facilitator agent, as shown in Figure 2, is a 
decorator (wrapper) [Gamma et al. 1996] that 
decouples the simulator from submodels to enable 
run-time composition. In the envisaged approach the 
facilitator instantiates a model and sends back the 
simulator a logical handle for the model (i.e., M1) as 
opposed to actual physical reference. This provides 
the facilitator with the necessary flexibility to update 
the model seamlessly without changing its interface. 
When the simulator (i.e., DEVS simulator instance) 
needs to perform an operation on the model object, 
the invocation is made on the facilitator, with the 
logical handle as the parameter. The facilitator uses 
the handle to delegate the operation to the model 
instance (i.e., DEVS model object) it encapsulates. 
The facilitator maintains a permanent level of 
indirection between the simulator and the model. The 
premise of the approach is that the facilitator acts as 
model facility that is parameterized to switch from 
one model to another by a parameter update. 
 
 
 
 
 
 
 
 
 
 

 
    Figure 2: Facilitator Agent 

 
A setParameter (i.e., setModel) operation on a 
facilitator object, as shown in Figure 2, can enable 
rebinding the handle with a new parameter. The 
parameterization of facilitators is reminiscent of the 
power of templates in modern modeling and 
simulation construction languages. Yet, the main 



 

 

difference is the runtime (re)binding of parameters to 
facilitate dynamic model updates.  

4.3 Goal-Directed Exploration with 
Scheduler Agents 

External activation of submodels requires facilities to 
guide the submodel selection process. While a 
predefined pattern for model switching is possible,   
goal-directed exploration may be needed in cases 
where uncertainty exists. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Scheduler Agent 
 
A scheduler agent, as shown in Figure 3, can have 
planning capability that drives a simulator with 
alternative models by updating the parameterized 
model facility (i.e., facilitator). A scheduler agent 
extends the FSA-controlled multimodel [Fishwick 
and Zeigler 1992] approach by incorporating 
deliberative reasoning facilities [Ferber 1999] to 
explore the state space of the multimodel. A 
hypothetical planning process within a scheduler 
agent is shown in Figure 4. We assume a rule-based 
reasoning process, where the activation conditions of 
submodels are defined in terms of a production 
system.  
 
 
 

 
 
 

Figure 4: Submodel Qualification  
 
The SOAR agent system [Rosenbloom et al. 1993] 
provides the rationale and significance of such an 
approach for deliberative reasoning. The input to the 
process refers to the observed condition (see section 
4.4) used by the elaborate state component of the 
planner. The elaboration phase maps (or generalizes) 
the observed concrete simulator conditions to the 
abstract state of the multimodel so that planning can 
be performed in terms of abstract value (state space) 
manipulation. 
 

Note that the qualifier conditions (precondition) of 
submodels are defined in terms of abstract predicates 
that facilitate submodel selection. During the model 
proposition phase all submodels, the preconditions of 
which are implied by the current observed state of the 
multimodel are identified. Formally, model 
qualification can be defined in terms of a 
specification matching function, M, defined as 
follows: M: Spec x Spec → {T, F}. A specification 
match is useful if it can ensure that the qualified 
submodel satisfies a query Q (i.e., output of the 
elaboration phase), if and only if, for any submodel S 
and Q, M(A,Q) : {Qpre}=> {Spre }, which means that 
submodel S has a weaker condition compared to the 
query (observed state). A more strict condition can be 
defined by taking the postconditions (if available) of 
submodels into account: M(A,Q) : [{Qpre}=> {Spre }] 
and  [{Spost}=> {Qpost }]. An agent-based planning 
layer connected to a simulator would be capable of 
identifying, qualifying, and, if necessary, choosing an 
operator that represents a specific model based on the 
specified preferences and options. Furthermore, in 
the case of an impasse or lack of knowledge on 
preferences, a planning layer can guide exploring 
alternative contexts in some order. Plausible models 
can be maintained by focus points. A focus point 
manages branch points in the model scheduling stack. 
Suppose that an observed abstract state (i.e., 
transition condition) is at the top of the stack. If only 
a single model qualifies for exploration, then it is 
selected for the update operation. Yet, if more than 
one model matches the condition, a simulation focus 
point is generated to manage newly created 
simulation branching (discontinuity) points, each one 
of which would have its own contexts. When a path 
is exhausted, the closest focus point selects the next 
available model to instantiate the simulation frame or 
return to the context that generated the focus point. 
As simulation state space is explored, a network of 
focus points is generated. Determining which focus 
point should be active at any given time is the 
responsibility of the scheduler agent.  

4.4 Observer Agents for Update Notifications 
Dynamic submodel replacement requires monitoring 
simulation conditions to determine if any of the 
potential state variables or objects of interest are 
changed. State changes within the simulator objects 
of interest could be an indicator of a scenario or 
phase change in the simulation; hence, the need for 
dynamic model update and replacement may arise. 
While polling the simulation state is possible to 
detect changes, continuous scanning of the simulation 
state space would incur an unnecessary cost that will 
degrade the efficiency of the simulation engine. 



 

 

Furthermore, low and high granularity polling levels 
can cause inaccuracy and performance problems, 
respectively. Low polling rate may result in missed 
significant changes, whereas high polling rate could 
potentially result in unnecessary processing. Using 
observer agents, as shown in Figure 5, with a 
subscription and notification facility could enable 
more efficient monitoring of a simulation as long as 
simulator provides a notification interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Monitoring with Observer Agents 

4.5 Momento Agents for State Restoration 
A momento agent captures and externalizes a 
model’s internal state, so that it can be restored to its 
state later. The challenge is to avoid violation of the 
model encapsulation. In dynamic model replacement 
it is critical for the scheduler to assure the integrity of 
the simulation during updates. We suggest the 
association of a momento agent with each model. The 
scheduler agent requests from the simulator to access 
the momento agent of the present model to save its 
state. The state of a model can simply be the values 
of its variables, including its current phase. The 
momento agent can simply be a proxy [Gamma et al. 
1996] for the model so that it can present the 
interface of the model, along with other facilities 
such as state externalization. Next time the model is 
instantiated, the simulator can set its state by simply 
invoking a setState message on the momento.   

5.0 Conclusions 
Multimodeling formalism influenced the 
development of several methodologies, including 
combined simulation [Preahofer 1992], FSA-
controlled multimodeling [Fishwick and Zeigler 
1992], and MOOSE [Cupert and Fishwick 1997]. 
Yet, we are still scratching the surface of what is 
possible with the very basic dynamic model update 
concept. The taxonomy presented in this paper is an 
indicator for the potential for various types of 
multimodels, each one of which can be useful for 
variety of problem domains, such as multi-stage 
conflict analysis. The generic agent-based approach 

described in section 4 presents a reasonable strategy 
to realize multimodel simulators. Yet, more research 
is needed to identify intricate details of observing the 
simulation state, reason to qualify models for update, 
facilitate run-time model rebinding, and plan for 
goal-directed activation of submodels. 

References 
Bennett G. P. (1987). Analyzing Conflict and Its 

Resolution: Some Mathematical Contributions. 
Clarendon Press, Oxford.  

Cubert R. M. and P. A. Fishwick (1997). “Moose: An 
Object-Oriented Multimodeling and Simulation 
Application Framework,” Simulation  vol 70, no. 6, 
pp.  379-395. 

Ferber J. (1999). Multi-Agent Systems: An 
Introduction to Distributed Artificial Intelligence. 
Harlow, UK: Addison Wesley. 

Fishwick A. P. and B. P. Zeigler. (1992). “A 
Multimodel Methodology for Qualitative Model 
Engineering,” ACM Transactions on Modeling and 
Simulation, vol. 2, no. 1, pp. 52-81. 

Fujimoto R., D. Lunceford, E. Page, A. Uhrmacher 
(2002). Technical Report of the Dagstuhl-Seminar 
Grand Challenges for Modelling and Simulation.  

Gamma E., R. Helm, R. Johnson, J. Vlissides. (1996). 
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley. 

Maes P. (1987). “Concepts and Experiments in 
Computational Reflection,” ACM SIGPLAN 
Notices. vol . 22 no. 2, pp. 147-155. 

Ören T.I. (1987). “Model Update: A Model 
Specification Formalism with a Generalized View 
of Discontinuity,” In: Proceedings of the Summer 
Computer Simulation Conference, Montreal, 
Quebec, Canada, 1987 July 27-30, pp. 689-694. 

Ören T.I. (1991). “Dynamic Templates and Semantic 
Rules for Simulation Advisors and Certifiers,” In: 
Knowledge-Based Simulation: Methodology and 
Application, P.A. Fishwick and R.B. Modjeski 
(Eds). Springer-Verlag, Berlin, Heidelberg, New 
York, Tokyo, 53-76.  

Ören T.I. (2001). Towards a Modelling Formalism 
for Conflict Management. In: Discrete Event 
Modeling and Simulation: A Tapestry of Systems 
and AI-based Theories and Methodologies. H.S. 
Sarjoughian and F.E. Cellier (eds.), Springer-
Verlag, New York, pp. 93-106. 

Praehofer H. (1992). System theoretic foundations for 
combined discrete-continuous system simulation. 
Ph.D. dissertation, Johannes Kepler University, 
Linz, 1991. 

Rosenbloom P. S., J. E. Laird, and A Newell (1993). 
The Soar Papers: Research on Integrated 
Intelligence. Cambridge, MA: MIT Press. 


