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Abstract 

 
A broad range of problems involve multiple levels and resolutions of scientific or engineering phenomena. 
Hence, the significance of simulation modeling at multiple levels, scales, and perspectives is well recognized. 
Multiscale modeling is highly interdisciplinary, with progress occurring independently across fields. Yet, 
disparate efforts involving the design and development of various types of multimodels result in incoherent 
solutions that lack a common unifying framework. This paper provides a rationale for a taxonomy of discrete-
event based multimodel methodology that is equally applicable for continuous and discontinuous-change 
models expressed in ordinary differential equations and hence explores the viability of realization of a unified 
multimodel formalism. A multimodel is perceived as a container component that can be (re)configured with 
alternative model families. Technical challenges in model updating and agent support in model relationship 
management across levels and scales in multimodels are discussed. Novel agent-augmented model design 
patterns are presented to illustrate plausibility of interchangeable strategies for the realization of different 
types of multimodels within a single coherent framework. 

 
 

1 Introduction  

Many real-world phenomena can not be 
modeled by one single model; rather, they 
require the use of a set of complementary 
models that together are able to describe the 
whole process. Various efforts in computational 
science (Weinan and Engquist 2003) and social 
science (Gilbert and Troitzsch 1999) are 
indicative of the need for tools that facilitate 
development of models that span multiple scales 
to integrate the continuum from the micro to 
macro resolution of the same phenomena. While 
simulation modeling and computational science 
communities are actively developing model 
representation strategies that can capture 
multiple scales, formalisms (Zeigler at al. 2000), 
resolutions (Davis and Bigelow 2002), and 
perspectives (Davis 2000) in terms of existing 
conventional simulation tools, there does not yet 
exist a unifying formalism that subsumes most, 
if not all, of these formalisms. The premise of 
this paper is that, by developing a generalized 

multimodel formalism that can be configured 
with alternative strategies one can instantiate 
various types of multimodels within the same 
model development framework. Such a strategy 
is in sharp contrast with the current trend in 
developing formalisms for different modeling 
needs, where distinct solutions for multiple 
representations of scale, resolution, and staging 
are defined. We argue that agent theory that is 
well recognized as a useful paradigm for model 
representation can also be used in the 
development of the theory and methodology of 
the design of multimodels and their simulators.  
 
The paper is organized as follows. In section 2 
we provide a brief overview of current efforts in 
discrete-event multimodel development. Section 
3 suggests a generalized multimodel formalism 
based on the variation of submodel structure and 
activation policies. Section 4 presents a 
structural design strategy toward the 
development of a DEVS-based multimodel 
formalism. Section 5 extends the presented 
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structure with observer and scheduler agents that 
support submodel activation.  

2 Related Work on Multimodels 

A multimodel is a modular model that subsumes 
multiple submodels that together represent the 
behavior of a phenomenon. Multimodel 
formalism was originally developed by Ören 
(1987, 1991) as a generalization of discontinuity 
in piecewise continuous systems. In the first 
formulation, a generic architecture for contin-
uous-change models described by ordinary 
differential equations was developed and 
documented as templates. The representation 
was also extended to discrete-change models as 
well as to memoryless models, i.e., models 
without state variables. 
 
The formalism influenced the development of 
combined simulation, which entails the 
integration of continuous and discrete-event 
simulations within the same system description. 
For instance, as a special case of multimodel, 
coupled multiformalism specification developed 
by Praehofer (1992) extended DEVS (Zeigler et 
al. 2000) formalism to provide a simulation 
environment for combined continuous/discrete-
event modeling for hybrid simulation. Fishwick 
and Zeigler (1992) developed a FSA-controlled 
multimodel to simulate qualitative dynamics of 
physical systems. Davis and Bigelow (2002) 
define multiresolution as building a single 
model, a family of models, or both, to describe 
the same phenomenon at different levels of 
resolution in a mutually consistent way. Various 
efforts are underway within the computational 
biology community (Takahashi et al. 2004) to 
develop tools that are capable of capturing 
multiple algorithms, formalisms as well as levels 
and scales in representing cellular systems. 

3 Multimodels 

Most complex systems have several aspects –
some dormant– with mutual influence. To be 
able to study more than one aspect of reality and 
their interactions at the same time or 
sequentially, one needs modeling methodologies 
such as multimodels. By expanding our horizon 
based on the variations on the multimodel 

structure and submodel activation behavior, we 
can identify various types of models.  

3.1 The Rationale for a Multimodel 
Taxonomy 

Taxonomy of multimodel types based on various 
plausible constraints imposed on the submodel 
structure and activation policies is introduced in 
(Yilmaz and Ören 2004). As shown in the 
synopsis in Appendix A, we consider two main 
criteria, i.e., structure and activation behavior of 
the submodels. Based on the submodel structure 
of a multimodel, we consider the number of 
submodels active at a given time and the 
variability of the structure. Conventional 
multimodels, where only one model is active at a 
time can be characterized as single aspect 
(sequential) multimodels. Depending on the 
nature of the activation information, 
multimodels can be constraint-driven, pattern-
directed, or goal-directed. The structure of 
Appendix A also facilitates preparation of 
systematic glossaries of the terms –in this case 
types of multimodels– by providing a 
systematization of the concepts. For example, 
cyclic multimodel is a pattern-directed 
multimodel where there is a cycle in the 
selection of submodels.  Similarly, an acyclic 
multimodel is a pattern-directed multimodel 
where there is no cycle in the selection of 
submodels.   
 
This paper illustrates the adaptivity and 
flexibility required in realizing multimodels in 
terms of constraint-driven multimodels that have 
stationary or adaptive control policies for 
staging or switching models. Most complex 
phenomena operate not only over multiple scales 
and levels, but also stages. At each stage, the 
phenomena can be described in terms of an 
ensemble of models that represent the system at 
various levels and from different aspects. 
Dynamic model updating is fundamentally 
critical to multimodel design, as it is necessary 
to switch among models that represent distinct 
stages of the problem. Staging, if necessary, can 
be used to switch among models that represent 
different aspects, levels, and scales of the same 
system, unless they are defined as a coherent 
unit (ensemble). A unifying generalized 



multimodel formalism should enable both 
strategies. 

3.2 Technical Requirements in 
Multimodel Design 

The challenges in dynamic model updating in 
multimodel formalism are the issues involved in 
substituting a new model or submodel without 
taking the simulator offline. The following five 
conditions present the basic requirements 
(Litmus test) for dynamic model replacement. 
 
• Activation: Submodel replacement must be 

initiated, either internally within the 
multimodel or externally by the simulator. 

• Integrity: The consistency of submodels 
undergoing replacement needs to be 
preserved. The event scheduling and 
simulation protocol need to be restricted or 
regulated to facilitate interleaving of 
submodel replacement and/or update 
activities with the simulation events. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

• Submodel Instantiation: The new (or 
selected) submodel must be dynamically 
loaded and linked into the run-time 
environment of the simulator (simulation 
engine). This requires new model and 
simulator decoupling strategies that avoid 
persistent connections.  

• State Reconstruction: The state of a model 
must be reconstructed or at least resume 
from a specific state when re-instantiated 
after an update operation. This requires 
externalization through abstraction, state 
saving, transmission, and reconstruction 
after the update operation. 

• Simulator Rebinding: Once a model is 
loaded and linked to the run-time 
environment, the simulator needs to be 
bound to the new model. 

4 The Structure for the Macro 
Architecture of Multimodels  

A multimodel can be seen as an adaptive and 
customizable container that includes a number 
of submodels, each one of which has their own 
dependencies. That is, a unified multimodel 
needs to be configured by alternative set of 
submodels depending on the type of the problem 
and simulation objectives.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
We use the DEVS framework as a basis to 
explore multimodel design strategies, as the 
separation of model, simulator, and experimental 
frame within the DEVS framework (Zeigler at 
al. 2000) provide convenient decoupling 
mechanisms that can be extended to facilitate 
realization of dynamic model and simulation 

Figure 1: Extending DEVS Model Hierarchy with Multimodels   



updating. (As was mentioned the original 
specification of multimodels is applicable to 
continuous-change models described by 
ordinary differential equations (Ören 1987)). To 
this end, Figure 1 depicts a multimodel as a 
wrapper that aggregates submodels that are 
either atomic or coupled. Being a type of model, 
a multimodel provides the same uniform model 
interface to the simulator. The facilitator 
component aims to decouple the multimodel 
from the intricate details of instantiating a family 
of submodels to avoid explicit assumptions and 
facilitate its seamless reconfiguration with 
alternative ensembles of submodels. A common 
abstract interface is provided within the 
facilitator agent, as shown in Figure 2, to 
delegate the responsibility of initializing a 
family of models and their coupling relations to 
specialized constructor components.  

 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

By the use of a common abstract interface, the 
multimodel does not need to hardwire a protocol 
for the construction of submodel components as 
well as their coupling across levels, scales, and 
aspects being modeled. For each family of 
submodels, a separate concrete constructor is 

assigned to decouple its construction from the 
generalized multimodel component. By selecting 
a different constructor component, separate 
alternative coupling configurations of the same 
model family can be produced by the controller 
components A1 through An, as shown in Figure 
2. Each one of the constructors refers to possible 
alternative stages of the same phenomena. The 
submodels associated with constructors 
designate the aspects, levels, and scales that are 
relevant to the given stage. As the simulator 
generates the behavior of the model, depending 
on the staging decisions, the multimodel needs 
to switch to an alternate submodel that produces 
and consumes the internal and external events. 
This requires avoiding permanent binding 
between the simulator and the multimodel. As 
such, the facilitator component includes a 
facilitator agent that acts as a bridge between 
the simulator and the submodels. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The facilitator agent provides a reference to the 
controller of the ensemble of active submodel(s) 
that can be updated via update request submitted 
by the scheduler agent discussed in section 5.  
The multimodel includes a reference to the 
abstract model family constructor that can be 

Figure 2: The Facilitator Agent 



instantiated by any of the specialized constructor 
selected by the model developer at the time of 
initialization. The facilitator is parameterized 
with the same model family constructor at the 
time of its instantiation.  
 
The concrete constructor component (i.e., 
AConstructor), using a reflective API, traverses 
each one of its child nodes (i.e., A1Controller) to 
create controller objects that have the 
responsibility to instantiate ensemble of models 
that represent distinct stages, each one of which 
constitutes submodels that specify the 
phenomena at different levels, scales, and 
aspects. Model families within the constructor 
hierarchy that do not have more than one stage 
has only one controller object. Once all the 
controller objects associated with the model 
family are created, their references are returned 
back to the facilitator agent that switches among 
them under emerging conditions as the 
simulation unfolds. Notice that neither the 
multimodel nor the facilitator has direct 
reference or knowledge about the individual 
models and their coupling relationships. The 
facilitator agent brings a level of indirection, by 
which permanent connection between the 
simulator and submodels of the multimodel are 
avoided. Achieving the integrity and consistency 
among multiple models within an ensemble 
require managing relations among the 
submodels. The model family implementor 
abstract interface shown in Figure 2 provides a 
programmatic interface to a list of submodels 
that are active or latent within the multimodel.  
 
The facilitator agent interleaves discrete-event 
simulation events with the update events to 
assure the integrity of the multimodel. An 
update task scanning phase within the controller 
object uses a set of update rules to determine if 
there exist any imminent updates due to 
modified state of any of the submodels in the 
ensemble to assure consistency across scales, 
levels, and aspects. This set of rules is 
independent of the submodel activation policy 
managed by the strategy component, by which 
the multimodel is configured. 

5 Agent Support in Submodel Update 
and Activation in Multimodels 

Depending on the activation policy of 
submodels, multimodels are classified into 
various types, including constraint-driven, 
pattern-directed, goal-driven multimodels. Each 
one of these multimodel types requires a distinct 
protocol and mechanism for activating 
submodels.  
 
 

 
 
 
 
 
 
 
 
 
Figure 3: Submodel Activation Policies 

 
While a pattern-directed strategy involves 
selecting submodels based on a predefined 
order, a goal-directed strategy involves run-time 
model qualification based on a planning 
mechanism. As such, the strategy component of 
the multimodel design shown in Figure 1 entails 
various mechanisms by which the multimodel 
can be configured at the time of its instantiation 
to realize the designated multimodel type (i.e., 
goal-directed, adaptive, multi-aspect).  Figure 3 
presents a number of strategy components as 
they relate to the multimodel container 
component. The approach entails the definition 
of a family of multimodel control strategies 
(protocols), encapsulating each one, and making 
them interchangeable. As such, the strategy 
component lets the submodel scheduling policy 
vary independently from the multimodel that 
uses it. 
 
Figure 4 presents the gross organizational layout 
of the multimodel components with the 
emphasis on the context of the strategy 
component within the multimodel architecture. 
An abstract model is defined to represent the 
implementation-independent state space 
representation of the multimodel. This abstract 
model is constantly updated by the facilitator as 
the behavior is generated. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Components of a Multimodel 
 

The facilitator also uses the same abstract model 
to enable continuity between distinct models. 
That is, the state reconstruction requirement 
listed in section 3.2 is handled by using the 
abstract state model to (re)-initialize an activated 
model. Translation of (to) the state of submodels 
to (from) the abstract state space is handled by 
the facilitator agent. A constraint-driven 
adaptive multimodel needs to provide a 
controller that decides the conditions under 
which submodels can be switched for activation. 
Changes in the state-space are observed by an 
observer agent that subscribes to updates to the 
data components of the abstract model. The 
notifications provided to the observer agent are 
evaluated to match the transition conditions of 
the reactive controller (i.e., finite state model) 
embedded within the scheduler agent. The 
satisfiability of a transition condition associated 
with the current state of the scheduler designates 
a target state that represents a subsequent 
submodel that needs to be activated to switch to 
a new stage within the problem space. Once the 
scheduler decides to select a new submodel, the 
facilitator updates its active submodel with the 
new selection. The new active submodel is then 
used to generate the behavior of the multimodel.  
The input (I), output (O), and controller (C) 
channels depicted in Figure 4 are used to derive 
the behavior of the multimodel consistent with 
the original DEVS simulator protocols (Zeigler 
et al. 2000). The input channels are coupled with 
the facilitator agent that decides to which 

submodel the message needs to be delegated. 
Similarly, the output of the active submodel is 
passed to the output channels of the multimodel 
via the facilitator agent. The controller channel 
is used to communicate model update decisions 
to the simulator so that it switches to the 
corresponding simulator (i.e., basic simulator or 
coordinator as defined in the DEVS formalism) 
that is associated with the type of the active 
submodel (atomic or coupled model). 
 
The control policy within the scheduler agent 
can be defined either as a stationary or adaptive 
protocol with reinforcement learning 
mechanism. A stationary protocol can be defined 
as  

SP= <S, M, P, action, next>, 
 
where  
 

M={M1, M2, M3,…, Mk} 
 
denotes the set of submodels, and  S depicts the 
set of internal states, each one of which is 
labeled with m ∈ M. P denotes the percepts 
provided by observer agent. The observer agent 
maps the abstract state-space onto percepts that 
refer to the transition conditions within the 
controller policy. The action selection function 
is a mapping,  

action: S → A, 
 
from internal states to actions. Actions are 
outputs of the scheduler agent that are used to 
update the facilitator agent with the submodel 
designated by the label of S. The function next 
maps an internal state and percept onto an 
internal state:  

next: S x P →S. 
 
The behavior of a state-based scheduler for a 
stationary constraint-driven multimodel can be 
summarized as follows: The scheduler starts in 
its initial state depicting the initial submodel that 
represents the multimodel. The observer agent 
observes the changes in the abstract state space 
of the multimodel and generates a percept. The 
internal state of the scheduler is then updated 
based on the type of the percept. An action is 
performed to update the facilitator to select a 
new submodel. Often, a percept and the 



following action denote a change in the stage of 
the problem, which then requires the selection of 
a new submodel. 

6 Conclusions 
Exploring a phenomenon at multiple levels as 
well as temporal and spatial scales is becoming a 
significant concern in various scientific fields. 
This paper explored the challenges and 
requirements in multimodel design, where 
dynamic model updating is considered to be 
critical. The significance of decoupling a 
multimodel and simulator from the submodels 
via new levels of indirection is argued to be 
critical in flexible staging and switching among 
submodels that represent the behavior of a 
phenomenon at different aspects, levels, and 
scales. The viability of realizing various types of 
multimodels (i.e., multiscale, multiresolution, 
multiaspect) within a single unifying multimodel 
formalism is emphasized. The notion of 
parameterized multimodels that can be 
reconfigured with alternative strategy and 
control objects is presented as a plausible 
approach to develop a unified and generalized 
multimodel framework. 
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Appendix A. A Synopsis of Multimodel (MM) Formalisms 
 
 
 
Based on 

 
Additional Criteria 

 
Type of multimodel (MM) 
 
(Synonyms are represented within 
parentheses) 

  
Only one 

 
Single aspect MM  
(Sequential MM) 

 

 
Number of submodels active at a given time 

2 or more Multiaspect MM 
Structure      

of Variability Static   Static-structure MM 
submodels of structure     
 (variability Dynamic Number of Extensible Extensible MM 
 of number of 

submodels) 
(Dynamic-
structure MM) 

submodels Depends on 
model’s stage 

Multistage MM 

  (Variable-
structure MM) 

Alterations of 
submodels 

 
No 

 
Non-mutational MM 

    Yes Mutational MM 
     Evolutionary MM 
    
Behavior 

(activation) 
Nature of 
knowledge 

Constraint-driven Constraint-driven MM 
(Adaptive MM) 

of 
submodels 

to activate 
submodels 

Pattern-
directed  
(Pattern-
directed MM) 
(Metamorphic 
MM) 

 
Submodel 
selection is 
cyclic 

 
 
No 

 
 
Acyclic MM 

    Yes Cyclic MM 
   

Goal-directed 
 
Goal-directed MM 
(Exploratory MM) 

    
 Location of 

knowledge  
Within the MM  
(Internal activation of submodels) 

Active MM 
(Internally activated MM) 

 to activate 
submodels 

 
Outside the MM 
(External activation of submodels) 

 
Passive MM 
(Externally activated MM) 

    
 
 
 


