
Discrete-Event Multimodels and their
Agent-Supported Activation and Update

Abstract

A broad range of problems involve multiple levels and resolutions of scientific or engineering phenomena.
Hence, the significance of simulation modeling at multiple levels, scales, and perspectives is well recognized.
Multiscale modeling is highly interdisciplinary, with progress occurring independently across fields. Yet,
disparate efforts involving the design and development of various types of multimodels result in incoherent
solutions that lack a common unifying framework. This paper provides a rationale for a taxonomy of discrete-
event based multimodel methodology that is equally applicable for continuous and discontinuous-change
models expressed in ordinary differential equations and hence explores the viability of realization of a unified
multimodel formalism. A multimodel is perceived as a container component that can be (re)configured with
alternative model families. Technical challenges in model updating and agent support in model relationship
management across levels and scales in multimodels are discussed. Novel agent-augmented model design
patterns are presented to illustrate plausibility of interchangeable strategies for the realization of different
types of multimodels within a single coherent framework.

1 Introduction

Many real-world phenomena can not be
modeled by one single model; rather, they
require the use of a set of complementary
models that together are able to describe the
whole process. Various efforts in computational
science (Weinan and Engquist 2003) and social
science (Gilbert and Troitzsch 1999) are
indicative of the need for tools that facilitate
development of models that span multiple scales
to integrate the continuum from the micro to
macro resolution of the same phenomena. While
simulation modeling and computational science
communities are actively developing model
representation strategies that can capture
multiple scales, formalisms (Zeigler at al. 2000),
resolutions (Davis and Bigelow 2002), and
perspectives (Davis 2000) in terms of existing
conventional simulation tools, there does not yet
exist a unifying formalism that subsumes most,
if not all, of these formalisms. The premise of
this paper is that, by developing a generalized

multimodel formalism that can be configured
with alternative strategies one can instantiate
various types of multimodels within the same
model development framework. Such a strategy
is in sharp contrast with the current trend in
developing formalisms for different modeling
needs, where distinct solutions for multiple
representations of scale, resolution, and staging
are defined. We argue that agent theory that is
well recognized as a useful paradigm for model
representation can also be used in the
development of the theory and methodology of
the design of multimodels and their simulators.

The paper is organized as follows. In section 2
we provide a brief overview of current efforts in
discrete-event multimodel development. Section
3 suggests a generalized multimodel formalism
based on the variation of submodel structure and
activation policies. Section 4 presents a
structural design strategy toward the
development of a DEVS-based multimodel
formalism. Section 5 extends the presented

Levent Yilmaz

M&SNet: Auburn Modeling & Simulation Laboratory
Department of Computer Science and Engineering

Auburn University
Auburn, AL 36849, U.S.A.

 Tuncer I. Ören

M&SNet: Ottawa Center of the MISS
School of Information Technology and

Engineering (SITE), University of Ottawa
Ottawa, ON K1N 6N5, CANADA

structure with observer and scheduler agents that
support submodel activation.

2 Related Work on Multimodels

A multimodel is a modular model that subsumes
multiple submodels that together represent the
behavior of a phenomenon. Multimodel
formalism was originally developed by Ören
(1987, 1991) as a generalization of discontinuity
in piecewise continuous systems. In the first
formulation, a generic architecture for contin-
uous-change models described by ordinary
differential equations was developed and
documented as templates. The representation
was also extended to discrete-change models as
well as to memoryless models, i.e., models
without state variables.

The formalism influenced the development of
combined simulation, which entails the
integration of continuous and discrete-event
simulations within the same system description.
For instance, as a special case of multimodel,
coupled multiformalism specification developed
by Praehofer (1992) extended DEVS (Zeigler et
al. 2000) formalism to provide a simulation
environment for combined continuous/discrete-
event modeling for hybrid simulation. Fishwick
and Zeigler (1992) developed a FSA-controlled
multimodel to simulate qualitative dynamics of
physical systems. Davis and Bigelow (2002)
define multiresolution as building a single
model, a family of models, or both, to describe
the same phenomenon at different levels of
resolution in a mutually consistent way. Various
efforts are underway within the computational
biology community (Takahashi et al. 2004) to
develop tools that are capable of capturing
multiple algorithms, formalisms as well as levels
and scales in representing cellular systems.

3 Multimodels

Most complex systems have several aspects –
some dormant– with mutual influence. To be
able to study more than one aspect of reality and
their interactions at the same time or
sequentially, one needs modeling methodologies
such as multimodels. By expanding our horizon
based on the variations on the multimodel

structure and submodel activation behavior, we
can identify various types of models.

3.1 The Rationale for a Multimodel
Taxonomy

Taxonomy of multimodel types based on various
plausible constraints imposed on the submodel
structure and activation policies is introduced in
(Yilmaz and Ören 2004). As shown in the
synopsis in Appendix A, we consider two main
criteria, i.e., structure and activation behavior of
the submodels. Based on the submodel structure
of a multimodel, we consider the number of
submodels active at a given time and the
variability of the structure. Conventional
multimodels, where only one model is active at a
time can be characterized as single aspect
(sequential) multimodels. Depending on the
nature of the activation information,
multimodels can be constraint-driven, pattern-
directed, or goal-directed. The structure of
Appendix A also facilitates preparation of
systematic glossaries of the terms –in this case
types of multimodels– by providing a
systematization of the concepts. For example,
cyclic multimodel is a pattern-directed
multimodel where there is a cycle in the
selection of submodels. Similarly, an acyclic
multimodel is a pattern-directed multimodel
where there is no cycle in the selection of
submodels.

This paper illustrates the adaptivity and
flexibility required in realizing multimodels in
terms of constraint-driven multimodels that have
stationary or adaptive control policies for
staging or switching models. Most complex
phenomena operate not only over multiple scales
and levels, but also stages. At each stage, the
phenomena can be described in terms of an
ensemble of models that represent the system at
various levels and from different aspects.
Dynamic model updating is fundamentally
critical to multimodel design, as it is necessary
to switch among models that represent distinct
stages of the problem. Staging, if necessary, can
be used to switch among models that represent
different aspects, levels, and scales of the same
system, unless they are defined as a coherent
unit (ensemble). A unifying generalized

multimodel formalism should enable both
strategies.

3.2 Technical Requirements in
Multimodel Design

The challenges in dynamic model updating in
multimodel formalism are the issues involved in
substituting a new model or submodel without
taking the simulator offline. The following five
conditions present the basic requirements
(Litmus test) for dynamic model replacement.

• Activation: Submodel replacement must be

initiated, either internally within the
multimodel or externally by the simulator.

• Integrity: The consistency of submodels
undergoing replacement needs to be
preserved. The event scheduling and
simulation protocol need to be restricted or
regulated to facilitate interleaving of
submodel replacement and/or update
activities with the simulation events.

• Submodel Instantiation: The new (or
selected) submodel must be dynamically
loaded and linked into the run-time
environment of the simulator (simulation
engine). This requires new model and
simulator decoupling strategies that avoid
persistent connections.

• State Reconstruction: The state of a model
must be reconstructed or at least resume
from a specific state when re-instantiated
after an update operation. This requires
externalization through abstraction, state
saving, transmission, and reconstruction
after the update operation.

• Simulator Rebinding: Once a model is
loaded and linked to the run-time
environment, the simulator needs to be
bound to the new model.

4 The Structure for the Macro
Architecture of Multimodels

A multimodel can be seen as an adaptive and
customizable container that includes a number
of submodels, each one of which has their own
dependencies. That is, a unified multimodel
needs to be configured by alternative set of
submodels depending on the type of the problem
and simulation objectives.

We use the DEVS framework as a basis to
explore multimodel design strategies, as the
separation of model, simulator, and experimental
frame within the DEVS framework (Zeigler at
al. 2000) provide convenient decoupling
mechanisms that can be extended to facilitate
realization of dynamic model and simulation

Figure 1: Extending DEVS Model Hierarchy with Multimodels

updating. (As was mentioned the original
specification of multimodels is applicable to
continuous-change models described by
ordinary differential equations (Ören 1987)). To
this end, Figure 1 depicts a multimodel as a
wrapper that aggregates submodels that are
either atomic or coupled. Being a type of model,
a multimodel provides the same uniform model
interface to the simulator. The facilitator
component aims to decouple the multimodel
from the intricate details of instantiating a family
of submodels to avoid explicit assumptions and
facilitate its seamless reconfiguration with
alternative ensembles of submodels. A common
abstract interface is provided within the
facilitator agent, as shown in Figure 2, to
delegate the responsibility of initializing a
family of models and their coupling relations to
specialized constructor components.

By the use of a common abstract interface, the
multimodel does not need to hardwire a protocol
for the construction of submodel components as
well as their coupling across levels, scales, and
aspects being modeled. For each family of
submodels, a separate concrete constructor is

assigned to decouple its construction from the
generalized multimodel component. By selecting
a different constructor component, separate
alternative coupling configurations of the same
model family can be produced by the controller
components A1 through An, as shown in Figure
2. Each one of the constructors refers to possible
alternative stages of the same phenomena. The
submodels associated with constructors
designate the aspects, levels, and scales that are
relevant to the given stage. As the simulator
generates the behavior of the model, depending
on the staging decisions, the multimodel needs
to switch to an alternate submodel that produces
and consumes the internal and external events.
This requires avoiding permanent binding
between the simulator and the multimodel. As
such, the facilitator component includes a
facilitator agent that acts as a bridge between
the simulator and the submodels.

The facilitator agent provides a reference to the
controller of the ensemble of active submodel(s)
that can be updated via update request submitted
by the scheduler agent discussed in section 5.
The multimodel includes a reference to the
abstract model family constructor that can be

Figure 2: The Facilitator Agent

instantiated by any of the specialized constructor
selected by the model developer at the time of
initialization. The facilitator is parameterized
with the same model family constructor at the
time of its instantiation.

The concrete constructor component (i.e.,
AConstructor), using a reflective API, traverses
each one of its child nodes (i.e., A1Controller) to
create controller objects that have the
responsibility to instantiate ensemble of models
that represent distinct stages, each one of which
constitutes submodels that specify the
phenomena at different levels, scales, and
aspects. Model families within the constructor
hierarchy that do not have more than one stage
has only one controller object. Once all the
controller objects associated with the model
family are created, their references are returned
back to the facilitator agent that switches among
them under emerging conditions as the
simulation unfolds. Notice that neither the
multimodel nor the facilitator has direct
reference or knowledge about the individual
models and their coupling relationships. The
facilitator agent brings a level of indirection, by
which permanent connection between the
simulator and submodels of the multimodel are
avoided. Achieving the integrity and consistency
among multiple models within an ensemble
require managing relations among the
submodels. The model family implementor
abstract interface shown in Figure 2 provides a
programmatic interface to a list of submodels
that are active or latent within the multimodel.

The facilitator agent interleaves discrete-event
simulation events with the update events to
assure the integrity of the multimodel. An
update task scanning phase within the controller
object uses a set of update rules to determine if
there exist any imminent updates due to
modified state of any of the submodels in the
ensemble to assure consistency across scales,
levels, and aspects. This set of rules is
independent of the submodel activation policy
managed by the strategy component, by which
the multimodel is configured.

5 Agent Support in Submodel Update
and Activation in Multimodels

Depending on the activation policy of
submodels, multimodels are classified into
various types, including constraint-driven,
pattern-directed, goal-driven multimodels. Each
one of these multimodel types requires a distinct
protocol and mechanism for activating
submodels.

Figure 3: Submodel Activation Policies

While a pattern-directed strategy involves
selecting submodels based on a predefined
order, a goal-directed strategy involves run-time
model qualification based on a planning
mechanism. As such, the strategy component of
the multimodel design shown in Figure 1 entails
various mechanisms by which the multimodel
can be configured at the time of its instantiation
to realize the designated multimodel type (i.e.,
goal-directed, adaptive, multi-aspect). Figure 3
presents a number of strategy components as
they relate to the multimodel container
component. The approach entails the definition
of a family of multimodel control strategies
(protocols), encapsulating each one, and making
them interchangeable. As such, the strategy
component lets the submodel scheduling policy
vary independently from the multimodel that
uses it.

Figure 4 presents the gross organizational layout
of the multimodel components with the
emphasis on the context of the strategy
component within the multimodel architecture.
An abstract model is defined to represent the
implementation-independent state space
representation of the multimodel. This abstract
model is constantly updated by the facilitator as
the behavior is generated.

Figure 4: Components of a Multimodel

The facilitator also uses the same abstract model
to enable continuity between distinct models.
That is, the state reconstruction requirement
listed in section 3.2 is handled by using the
abstract state model to (re)-initialize an activated
model. Translation of (to) the state of submodels
to (from) the abstract state space is handled by
the facilitator agent. A constraint-driven
adaptive multimodel needs to provide a
controller that decides the conditions under
which submodels can be switched for activation.
Changes in the state-space are observed by an
observer agent that subscribes to updates to the
data components of the abstract model. The
notifications provided to the observer agent are
evaluated to match the transition conditions of
the reactive controller (i.e., finite state model)
embedded within the scheduler agent. The
satisfiability of a transition condition associated
with the current state of the scheduler designates
a target state that represents a subsequent
submodel that needs to be activated to switch to
a new stage within the problem space. Once the
scheduler decides to select a new submodel, the
facilitator updates its active submodel with the
new selection. The new active submodel is then
used to generate the behavior of the multimodel.
The input (I), output (O), and controller (C)
channels depicted in Figure 4 are used to derive
the behavior of the multimodel consistent with
the original DEVS simulator protocols (Zeigler
et al. 2000). The input channels are coupled with
the facilitator agent that decides to which

submodel the message needs to be delegated.
Similarly, the output of the active submodel is
passed to the output channels of the multimodel
via the facilitator agent. The controller channel
is used to communicate model update decisions
to the simulator so that it switches to the
corresponding simulator (i.e., basic simulator or
coordinator as defined in the DEVS formalism)
that is associated with the type of the active
submodel (atomic or coupled model).

The control policy within the scheduler agent
can be defined either as a stationary or adaptive
protocol with reinforcement learning
mechanism. A stationary protocol can be defined
as

SP= <S, M, P, action, next>,

where

M={M1, M2, M3,…, Mk}

denotes the set of submodels, and S depicts the
set of internal states, each one of which is
labeled with m ∈ M. P denotes the percepts
provided by observer agent. The observer agent
maps the abstract state-space onto percepts that
refer to the transition conditions within the
controller policy. The action selection function
is a mapping,

action: S → A,

from internal states to actions. Actions are
outputs of the scheduler agent that are used to
update the facilitator agent with the submodel
designated by the label of S. The function next
maps an internal state and percept onto an
internal state:

next: S x P →S.

The behavior of a state-based scheduler for a
stationary constraint-driven multimodel can be
summarized as follows: The scheduler starts in
its initial state depicting the initial submodel that
represents the multimodel. The observer agent
observes the changes in the abstract state space
of the multimodel and generates a percept. The
internal state of the scheduler is then updated
based on the type of the percept. An action is
performed to update the facilitator to select a
new submodel. Often, a percept and the

following action denote a change in the stage of
the problem, which then requires the selection of
a new submodel.

6 Conclusions
Exploring a phenomenon at multiple levels as
well as temporal and spatial scales is becoming a
significant concern in various scientific fields.
This paper explored the challenges and
requirements in multimodel design, where
dynamic model updating is considered to be
critical. The significance of decoupling a
multimodel and simulator from the submodels
via new levels of indirection is argued to be
critical in flexible staging and switching among
submodels that represent the behavior of a
phenomenon at different aspects, levels, and
scales. The viability of realizing various types of
multimodels (i.e., multiscale, multiresolution,
multiaspect) within a single unifying multimodel
formalism is emphasized. The notion of
parameterized multimodels that can be
reconfigured with alternative strategy and
control objects is presented as a plausible
approach to develop a unified and generalized
multimodel framework.

References

Davis K. P. (2000). “Exploratory Analysis Enabled

by Multiresolution, Multiperspective Modeling," in
Jeffrey A. Joines, Russell R. Barton, K. Kang, and
Paul A. Fishwick (eds.), Proceedings of the 2000
Winter Simulation Conference, 2000.

Fishwick P. and B. E. Zeigler. (1992). “A
Multimodel Methodology for Qualitative Model
Engineering,” ACM Transactions on Modeling and
Simulation, vol. 2, no. 1, pp. 52-81.

Gilbert N. and K. G. Troitzsch (1999). Simulation for
the Social Scientist. Open University Press.

Ören T.I. (1987). “Model Update: A Model
Specification Formalism with a Generalized View
of Discontinuity,” In: Proceedings of the Summer
Computer Simulation Conference, Montreal,
Quebec, Canada, 1987 July 27-30, pp. 689-694.

Ören T.I. (1991). “Dynamic Templates and Semantic
Rules for Simulation Advisors and Certifiers,” In:
Knowledge-Based Simulation: Methodology and
Application, P.A. Fishwick and R.B. Modjeski
(Eds). Springer-Verlag, Berlin, Heidelberg, New
York, Tokyo, 53-76.

Praehofer H. (1992). System theoretic foundations for
combined discrete-continuous system simulation.

Ph.D. dissertation, Johannes Kepler University,
Linz, 1991.

Takahashi, K., Kaizu, K., Hu, B., and Tomita, M. A
multi-algorithm, multi-timescale method for cell
simulation Bioinformatics (2004) 20(4):538-546.

Weinan E and B. Engquist, "Multiscale Modeling and
Computation", Notices of the AMS, 50(9), 1062-
1070 (2003).

Yilmaz L and T. Ören (2004). "Dynamic Model
Updating in Simulation with Multimodels: A
Taxonomy and Generic Agent-Based Architecture,"
In Proceedings of the SCSC'04. pp. 3-8.

Zeigler B. P., H. Praehofer, T. G. Kim (2000).
Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic
Systems, Academic Press.

Appendix A. A Synopsis of Multimodel (MM) Formalisms

Based on

Additional Criteria

Type of multimodel (MM)

(Synonyms are represented within
parentheses)

Only one

Single aspect MM
(Sequential MM)

Number of submodels active at a given time

2 or more Multiaspect MM
Structure

of Variability Static Static-structure MM
submodels of structure
 (variability Dynamic Number of Extensible Extensible MM
 of number of

submodels)
(Dynamic-
structure MM)

submodels Depends on
model’s stage

Multistage MM

 (Variable-
structure MM)

Alterations of
submodels

No

Non-mutational MM

 Yes Mutational MM
 Evolutionary MM

Behavior

(activation)
Nature of
knowledge

Constraint-driven Constraint-driven MM
(Adaptive MM)

of
submodels

to activate
submodels

Pattern-
directed
(Pattern-
directed MM)
(Metamorphic
MM)

Submodel
selection is
cyclic

No

Acyclic MM

 Yes Cyclic MM

Goal-directed

Goal-directed MM
(Exploratory MM)

 Location of

knowledge
Within the MM
(Internal activation of submodels)

Active MM
(Internally activated MM)

 to activate
submodels

Outside the MM
(External activation of submodels)

Passive MM
(Externally activated MM)

