4th St.-Petersburg Workshop on Simulation St. Petersburg, June 18-23, 2001

Software Agents for Experimental Design in Advanced Simulation Environments

Dr. Tuncer Ören Professor Emeritus, University of Ottawa, Canada oren@site.uottawa.ca

http://www.btae.mam.gov.tr/~tuncer

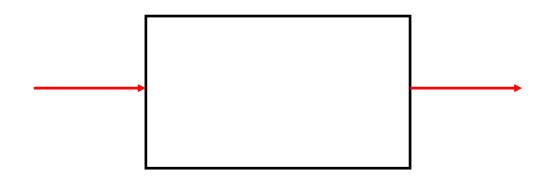
Aims:

- To promote use of software agents
 - as assistants in simulation experimentation
- As a background:
 - To review some (advanced) features of agents
 - To elaborate on types of usages of simulation
- To give references (but not details) on statistical design of simulation experiments

Plan:

- 1. Software agents introduction
 - Some characteristics
 - Some possible advanced features
- 2. Software agents and simulation: possibilities
- 3. Assistance of agents in experimentation:

for different types of usages of simulation


- 1.1 Agents are software modules
 - with **cognitive abilities** and
 - can work as **assistants** to users (and to other agents).
- They can observe their environment as well as they can affect it.
- Cognitive abilities include:

- (quasi-)autonomy, perception, goal processing, goal-directed knowledge processing, motivation, reasoning, understanding, assessing, and learning.

1. Software agents:

1.2 Some possible advanced features

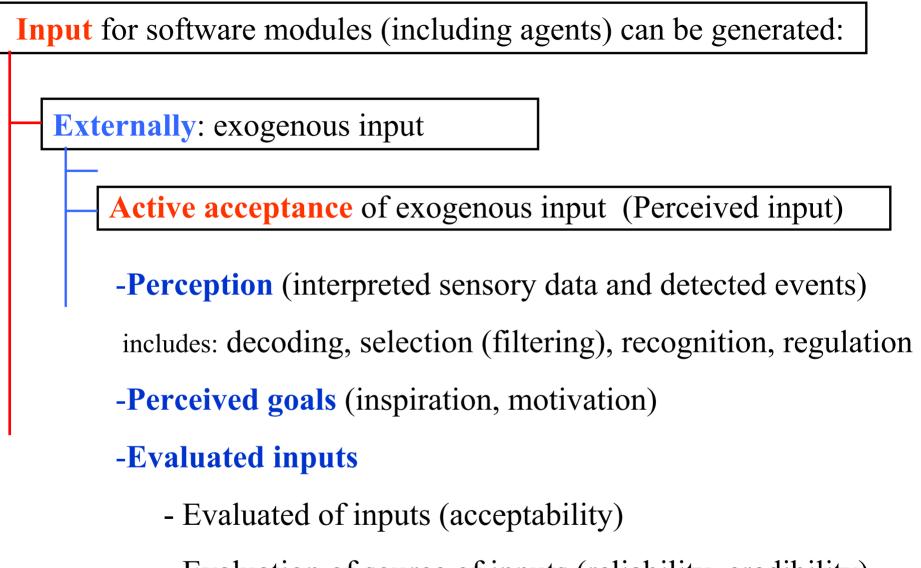
With respect to the **source of input** for software modules (including agents):

Input for software modules (including agents) can be generated:
Externally: exogenous input
Passive acceptance of exogenous input (Imposed or forced input) (Input)
Active acceptance of exogenous input (Perceived input)
Internally: endogenous input

Input for software modules (including agents) can be generated:

Externally: exogenous input

Passive acceptance of exogenous input


(Imposed or forced input) (Input)

Type of access to input:

Coupling, argument passing, knowledge in a common area, message passing

Nature of input:

- Data (facts)
- Forced events
- Sensation (converted sensory data: analog to digital)
- External goals (imposed goals)

Input for software modules (including agents) can be generated:
Externally: exogenous input Passive acceptance of exogenous input
(Imposed or forced input) (Input) Active acceptance of exogenous input (Perceived input)
Internally: endogenous input Active acceptance of endogenous input
Generation of endogenous input

Input for software modules (including agents) can be generated:

Internally: endogenous input

Active acceptance of endogenous input

-Introspection

- Perceived internal facts or events; or
- Realization of lack of them (under some conditions)

Input for software modules (including agents) can be generated:

Internally: endogenous input

Generation of endogenous input

- Anticipated facts and/or events (anticipatory systems)
- Internally generated questions
- Internally **generated hypothesis** by:
 - Expectation-driven reasoning (forward reasoning ...)
 - Model-driven reasoning
- Internal goals (Internally generated goals)

2. Software agents and simulation(Types of agent-directed simulation)

3 possibilities:

- Agent simulation
- Agent-based simulation
- Agent-supported simulation

2.1 Agent simulation:

 Simulation of natural or engineered intelligent entites represented by agents

• Mobile agents

2.2 Agent-based simulation

is a simulation study where the behavior of models are generated by using agent technology.

 May have technical merits; however, agent simulation is more intuitive to grasp! (since it deals with simulation of intelligent entities.) **2.3 Agent-supported simulation** is simulation where agent technology is used to support simulation operations.

1. Agents are used to support **user/software interface functions**

- Front-end interface functions
- Help, guidance, very high-level problem specification, ...
- *Back-end interface functions* –Explanation, interpretation, ...

- 2. Agents are used to support **processing of any specification** (for purposes other than model behavior generation)
 - Agent-supported simulation quality assurance (VV&A)

3. Agents are used to support **processing of simulation programs**

- Agent-supported simulation program generation
 / integration.
- Agent-supported **simulation program comprehension.** (for program maintenance)

3. Assistance of agents in experimentation:

The type of assistance depends on the type of usage of simulation.

There are **2** possibilities with respect to concurrency of the operations of the real system and simulation.

Stand-alone simulationOn-line simulation

3.1 Stand-alone simulation:

Use of simulation independent of the real system.

There are 3 **purposes**:

- Pure experimentation
- Training to enhance decision making skill
- Training to develop skill in the use of hardware

3.1.1 Stand-alone simulation: Pure experimentation

Most common purpose in the use of simulation for both civilian and military applications.

This type of usage supports design, analysis, control, planning, logistic operations, simulation-based acquision, and simulation-based evaluations of products and processes.

Stand-alone simulation: Pure experimentation

Conventional statistical design of experiments

3.1.2 Stand-alone simulation

Training to enhance decision making skill

This type of usage is done by *gaming simulation*.

In civilian applications: *business games*

In military applications: war games, conflict management simulation, and peace support simulation

3.1.3 Stand-alone simulation

Training to develop skill in the use of hardware

A human operator uses a virtual equipment (a simulator) to develop skills to use the equipment.

This usage corresponds

- to simulators (in civilian applications) and
- to **virtual simulation** (in military applications).

Stand-alone simulation

Training to develop skill in the use of hardware

3.2 On-line simulation:

Use of simulation concurrently with the real system.

There are 3 goals of usages:

- To support the operations of the real system
- To foster on-line diagnosis
- To augment reality

3.2 1 On-line simulation

To support the operations of the real system

Simulation can provide predictive displays.

3.2.2 On-line simulation To foster on-line diagnosis

- Run real system and simulation concurrently

and compare their behaviors.

- A **difference** may indicate **a mulfunction** of the real system.

3.2.3 On-line simulation To augment reality

In **augmented (or mixed) reality simulation,** real and virtual entities (that can be people or equipment) and the environment can exist at the same time.

Hence, operations can take place in a richer *augmented reality environment*.

Reality is a special case of simulation!

We have seen:

1. Software agents - introduction

Some characteristics

Some possible advanced features: Types of inputs

- 2. Software agents and simulation: possibilities
- 3. Assistance of agents in experimentation:

for different types of usages of simulation