ISCIS – International Symposium on Computer and Information Sciences, 11-13 October 2000, Istanbul

Advances in Computer and Information Sciences

Dr. Tuncer Ören

Professor Emeritus, University of Ottawa, Canada and Vice-Director, Information Technologies Research Institute TUBITAK - Marmara Research Center, Gebze-Kocaeli, Turkey http://www.btae.mam.gov.tr/~tuncer Tuncer.Oren@scs.com

© Tuncer Ören 2000.10.11

To be part of the 15th annual ISCIS:

- For all the contributing scientists coming from several countries as well as for their Turkish counterparts:
 - a great source of pride and joy

• For me:

- a source of honor

"One can be part of civilization to the extent one *contributes* to its advancement and not by procuring and using/consuming its products and/or services alone."

The **cumulative bibliography** of the ISCIS Proceedings (Diri 2000) :

- **reflects** the **international efforts** for the *accumulation of advanced knowledge* on Computer and Information Sciences and
- **testifies** the *ISCIS' contributions* to the advancement of contemporary civilization.

KNOWLEDGE, KNOWLEDGE PROCESSING, and THE SHIFT OF PARADIGM

- For a long time in the history of civilization, **being knowledgeable was** an important asset.
- Information age realities provide tools *to store* and *interactively access* a vast amount of knowledge.
- All the knowledge we get through formal education can reside on a single CD-ROM where the knowledge can be stored for interactive search without any loss.

- Libraries were places to work as **repositories of human knowledge**. Now, information technology shrinks drastically the storage requirements and offers interactive search capabilities.
- Furthermore, "with Internet, geography became history."

- Knowledge processing ability became more important than knowledge itself.
- Indeed, knowledge is necessary but not sufficient to solve problems. For example, *neither a library nor a CD-ROM can* solve a problem.
- Therefore, knowledge processing and **especially cognitive knowledge processing** have to be explored to get the benefits of computerization.

KNOWLEDGE PROCESSING EVERYWHERE

Knowledge processing is done by two types of machines or systems:

- machines for knowledge processing and
- machines with knowledge processing abilities.

	fixed-wired tools	variable-wired tools	stored-program tools
machines for knowledge processing	 abacus astrolabe	 unit record hybrid computers 	 computers PC notebook palm wearable <i>implentable?</i>
machines with knowledge processing abilities			

	fixed-wired tools	variable-wired tools	stored-program tools
machines for knowledge processing	 abacus astrolabe 	 unit record hybrid computers 	 computers PC notebook palm wearable <i>implentable</i>?
machines with knowledge processing abilities	• automata	• Jacquard loom	 computer- embedded systems (CES) (pre-/re-/auto-) programmable systems

Types of knowledge processing	Types of CES	Examples
Set parameter values & comp.	Knowledge-based CES	Camera reads directly film speed
Optimization	Optimizing CES	Tracking missile Vehicle-sensing road
Reasoning	Reasoning or rule-based CES	Rule-based robot
Simulation	Simulative CES	Predictive displays generated via on-line simulation
Multiparadigm kp ability	Multiparadigm CES	(semi-)autonomous system with abilities for comp., opt., reasoning, and sim.)

Highlights of Software Engineering Paradigms

Paradigm	Types of Programming	
Imperative programming	 Procedural programming Structured programming Object-based programming 	
Interactive programming	• Event-based programming	
Declarative programming	Functional programmingLogic programming	
Delegated programming	 Agent-based programming 	

WHAT'S NEXT? Some Points

Denning, P.J. and R.M. Metcalfe (1997). Beyond Calculation – The Next Fifty Years of Computing. New York: Copernicus/Springer-Verlag.

Computers are still very young.

What we witness is just the beginning.

1. Software agents

- Agents are software modules
 - with **cognitive abilities** that
 - can work as **assistants** to users (humans or other agents)
- They can observe their environments as well as they can affect it.
- **Cognitive abilities** include:

(quasi-)autonomy, perception, motivation, reasoning, assessing, understanding, learning, goal processing, and goal-directed knowledge processing.

Mobile agents and distributed computing

 extend the concept of computational platform to whole or part of the net on intranets and on the Internet.

2. System theories

provide strong backgrounds for cognitive, i.e., **intelligent computerization**.

For example,

systems with **understanding** abilities systems with **learning** abilities systems with **adaptation** abilities systems with **anticipation** abilities

is becoming an important paradigm for both civilian and military applications.

Holonic systems

• Holons* provides a powerful paradigm to conceive, model, support, and manage dynamically organizing complex cooperative systems.

* from Greek *holos*, whole

 A holonic system is composed of autonomous entities (called holons) that can *deliberately reduce their autonomy*, when need arise, to collectively achieve a goal.

4. Agent-directed simulation

Agent-directed simulation

= synergy of simulation and software agents

- Agent simulation
- Agent-based simulation
- Agent-supported simulation

- Agent simulation is simulation of agents that represent natural or engineered intelligent systems.
- Multi-agent simulation denotes simulation of a collection of agents (or agency).

- Agent simulation or multi-agent simulation is very important and promising!
- Can simulate any intelligent entity (humans, intelligent weapons, intelligent systems, ...)

- Agent-based simulation is a simulation study where the behavior of models are generated by using agent technology.
- May have technical merits;

however, **agent simulation** is more intuitive to grasp! (since it deals with simulation of intelligent entities.)

Agent-supported simulation is simulation where agent technology is used to support simulation operations.

Agent-supported simulation

- 1. to support user/software interface functions:
 - help, guidance, very high-level problem specification, explanation, interpretation
- 2. agent-supported simulation quality assurance. (VV&A)
- 3. to support **processing of simulation programs**
 - agent-supported simulation program
 generation / integration (HLA)
 - agent-supported simulation program
 comprehension. (for program maintenance)

5. Holonic system simulation

Holonic agent simulation

 (or holon simulation, in short)
 is an important type of agent
 simulation where agents represent
 holons.

We have seen: "Advances in Computer and Information Sciences"

- 1. ISCIS 2000 15th ISCIS
- 2. Knowledge, knowledge processing, and shift of paradigm
- 3. Knowledge processing everywhere
- 4. What's next? Some points:
 - Software agents, system theories,
 - Cooperation: holonic systems
 - Agent-directed simulation
 - Holonic system simulation