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Abstract

Cognates are words in different languages that
have similar spelling and meaning. They can
help a second-language learner on the tasks of
vocabulary expansion and reading comprehen-
sion. The learner also needs to pay attention
to pairs of words that appear similar but are in
fact false friends: they have different meaning
in some contexts or in all contexts. In this paper
we propose a method to automatically classify
a pair of words as cognates or false friends. We
focus on French and English, but the methods
are applicable to other language pairs. We use
several measures of orthographic similarity as
features for classification. We study the impact
of selecting different features, averaging them,
and combining them through machine learning
techniques.

Keywords: similarity measures, machine
learning, cognates and false friends, second-
language learning, machine translation.

1 Introduction

When learning a second language, a student can
benefit from knowledge in his/her first language
(Gass 87) (Ringbom 87). Cognates – words that
have similar spelling and meaning in the two lan-
guages – help with vocabulary expansion and with
reading comprehension. On the other hand, there
are also pairs of words that appear similar, but
have different meaning in some or all contexts:
false friends. Dictionaries often include informa-
tion about false friends, and there are dictionaries
devoted exclusively to them – for example (Prado
96).

Cognates have also been employed in natural
language processing. The applications include
sentence alignment (Simard et al. 92; Melamed
99), inducing translation lexicons (Mann &
Yarowsky 01; Tufis 02), improving statistical ma-
chine translation models (Al-Onaizan et al. 99),
and identification of confusable drug names (Kon-
drak & Dorr 04). All those applications depend
on an effective method of identifying cognates by
computing a numerical score that reflects the like-
lihood that the two words are cognates.

In this paper we propose a method to automat-
ically classify pairs of words as cognates or false
friends. Our approach to the identification of cog-
nates is based on several orthographic similarity
measures that we use as features for classification.
We test each feature separately; we also test, for
each pair of words, the average value of all the fea-
tures. Then we explore various ways to combine
the features, by applying several machine learn-
ing techniques from the Weka package (Witten &
Frank 00). The two classes for the automatic clas-
sification are: Cognates/False-Friends and Unre-
lated. Cognates and False-Friends can be distin-
guished on the basis of an additional “translation”
feature: if the two words are translations of each
other in a bilingual dictionary, they are classified
as Cognates; otherwise, they are assumed to be
False-Friends.

Although French and English belong to differ-
ent branches of the Indoeuropean family of lan-
guages, they share an extraordinary high num-
ber of cognates. The cognates derive from sev-
eral distinct sources. The majority are words of
Latin and Greek origin that permeate the vocab-
ularies of European languages, e. g., éducation -
education and théorie - theory. A small number of
very old, “genetic” cognates go back all the way
to Proto-Indoeuropean, e. g., mère - mother and
pied - foot. Other cognates can be traced to the
conquest of Gaul by Germanic tribes after the col-
lapse of the Roman Empire, and by the period of
French domination of England after the Norman
conquest.

While our focus is on French and English, the
methods that we describe are also applicable to
other language pairs. Nowadays, new terms re-
lated to modern technology are often adopted
in similar form across completely unrelated lan-
guages. Even if languages are written in distinct
scripts, approximate phonetic transcription of or-
thographic data is relatively straightforward in
most cases. For example, after transcribing the



Japanese word for sprint from the Katakana script
into semi-phonetic supurinto, it is possible to de-
tect its similarity to a French word sprinter, which
has the same meaning.

2 Related Work

Previous work on automatic cognate identifica-
tion is mostly related to bilingual corpora and
translation lexicons. Simard et al. (Simard et
al. 92) use cognates to align sentences in bi-
texts. They employ a very simple test: French-
English word pairs are assumed to be cognates if
their first four characters are identical. Brew and
McKelvie (Brew & McKelvie 96) extract French-
English cognates and false friends from bitexts
using a variety of orthographic similarity mea-
sures. Mann and Yarowsky (Mann & Yarowsky
01) automatically induce translation lexicons on
the basis of cognate pairs. They found that edit
distance with variable weights outperformed both
hidden Markov models and stochastic transduc-
ers. Kondrak (Kondrak 04) identifies genetic cog-
nates directly in the vocabularies of related lan-
guages by combining the phonetic similarity of
lexemes with the semantic similarity of glosses.
Kondrak & Dorr 04) report that a simple average
of several orthographic similarity measures out-
performs all individual measures on the task of
the identification of drug names.

For French and English, substantial work
on cognate detection was done manually.
LeBlanc and Seguin (LeBlanc & Séguin 96)
collected 23,160 French-English cognate pairs
from two general-purpose dictionaries: Robert-
Collins (Robert-Collins 87) and Larousse-Saturne
(Dubois 81). 6,447 of the cognates had identi-
cal spelling, disregarding diacritics. Since the two
dictionaries contain approximately 70,000 entries,
cognates appear to make up over 30% of the vo-
cabulary.

The use of cognates in second language teach-
ing was shown to accelerate vocabulary acquisi-
tion and to facilitate reading comprehension tasks
(LeBlanc et al. 89). Morphological rules for con-
version from English to French were also proved
to help. Tréville (Tréville 90) proposed 25 such
rules. An example is: cal → que in pairs such as
logical - logique, political - politique.

3 Background

3.1 Definitions

We adopt the following definitions. The defini-
tions are language-independent, but the examples
are pairs of French and English words, respec-
tively.

Cognates, or True Friends (Vrais Amis), are
pairs of words that are perceived as similar and
are mutual translations. The spelling can be iden-
tical or not, e. g., nature - nature, recognition -
reconnaissance.

False Friends (Faux Amis) are pairs of words
in two languages that are perceived as similar
but have different meanings, e. g., main “hand” -
main, blesser “to injure” - bless.

Partial Cognates are pairs of words that have
the same meaning in both languages in some but
not all contexts. They behave as cognates or as
false friends, depending on the sense that is used
in each context. For example, in French, fac-
teur means not only “factor”, but also “mailman”,
while étiquette can also mean “label”.

Genetic Cognates are word pairs in related
languages that derive directly from the same word
in the ancestor (proto-) language. Because of
gradual phonetic and semantic changes over long
periods of time, genetic cognates often differ in
form and/or meaning, e. g., père - father, chef -
head. This category excludes lexical borrowings,
i. e., words transferred from one language to an-
other at some point of time, such as concierge.

Unrelated pairs are words that exhibit no or-
thographic similarity. They can be translations of
each other, e. g., glace - ice, but not necessarily,
e. g., glace - chair.

3.2 Orthographic Similarity Measures

Many different orthographic similarity measures
have been proposed. Their goal is to quantify hu-
man perception of similarity, which is often quite
subjective. In this section, we briefly describe the
measures that we use as features for the cognate
classification task.

• IDENT is a baseline measure that returns 1
if the words are identical, and 0 otherwise.

• PREFIX is a simple measure that returns the
length of the common prefix divided by the
length of the longer string.1 E. g., the com-

1The PREFIX measure can be seen as a generalization
of Simard et al. (Simard et al. 92) approach.



mon prefix for factory and fabrique has length
2 (the first two letters) which, divided by the
length of 8, yields 0.25.

• DICE (Adamson & Boreham 74) is calcu-
lated by dividing twice the number of shared
letter bigrams by the total number of bigrams
in both words:

DICE(x, y) =
2|bigrams(x)∩bigrams(y)|

|bigrams(x)|+|bigrams(y)|

where bigrams(x) is a multi-set of charac-
ter bigrams in word x. E. g., DICE(colour,
couleur) = 6/11 = 0.55 (the shared bigrams
are co, ou, ur).

• TRIGRAM is defined in the same way as
DICE, but employs trigrams instead of bi-
grams.

• XDICE (Brew & McKelvie 96) is also defined
in the same way as DICE, but employs “ex-
tended bigrams”, which are trigrams without
the middle letter.

• XXDICE (Brew & McKelvie 96) is an exten-
sion of the XDICE measure that takes into
account the positions of bigrams. Each pair
of shared bigrams is weighted by the factor:

1
1+(pos(a)−pos(b))2

where pos(a) is the string position of the bi-
gram a.2

• LCSR (Melamed 99) stands for the Longest
Common Subsequence Ratio, and is com-
puted by dividing the length of the longest
common subsequence by the length of the
longer string. E. g., LCSR(colour, couleur)
= 5/7 = 0.71

• NED is a normalized edit distance. The edit
distance (Wagner & Fischer 74) is calculated
by counts up the minimum number of edit
operations necessary to transform one word
into another. In the standard definition, the
edit operations are substitutions, insertions,
and deletions, all with the cost of 1. A nor-
malized edit distance is obtained by dividing
the total edit cost by the length of the longer
string.

2The original definition of XXDICE does not specify
which bigrams should be matched if they are not unique
within a word. In our implementation, we match non-
unique bigrams in the order of decreasing positions, start-
ing from the end of the word.

• SOUNDEX (Hall & Dowling 80) is an ap-
proximation to phonetic name matching.
SOUNDEX transforms all but the first letter
to numeric codes and after removing zeroes
truncates the resulting string to 4 characters.
For the purposes of comparison, our imple-
mentation of SOUNDEX returns the edit dis-
tance between the corresponding codes.

• BI-SIM, TRI-SIM, BI-DIST, and TRI-DIST
belong to a family of n-gram measures (Kon-
drak & Dorr 04) that generalize LCSR and
NED measures. The difference lies in con-
sidering letter bigrams or trigrams instead
of single letter (i. e., unigrams). For exam-
ple, BI-SIM finds the longest common sub-
sequence of bigrams, while TRI-DIST calcu-
lates the edit distance between sequences of
trigrams. n-gram similarity is calculated by
the formula:

s(x1. . .xn, y1. . .yn) = 1
n

∑n
i=1 id(xi, yi)

where id(a, b) returns 1 if a and b are identi-
cal, and 0 otherwise.

4 The Data

The training dataset that we used consists of 1454
pairs of French and English words (see Table 1).
They were extracted from the following sources:

1. An on-line3 bilingual list of 1047 basic words
and expressions. (After excluding multi-
word expressions, we manually classified 203
pairs as Cognates and 527 pairs as Unre-
lated.)

2. A manually word-aligned bitext (Melamed
98). (We manually identified 258 Cognate
pairs among the aligned word pairs.)

3. A set of exercises for Anglophone learners of
French (Tréville 90) (152 Cognate pairs).

4. An on-line4 list of “French-English False Cog-
nates” (314 False-Friends).

A separate test set is composed of 1040 pairs
(see Table 1), extracted from the following
sources:

1. A random sample of 1000 word pairs from
an automatically generated translation lex-
icon. (We manually classified 603 pairs as
Cognates and 343 pairs as Unrelated.)

3http://mypage.bluewin.ch/a−z/cusipage/basicfrench.html
4http://french.about.com/library/fauxamis/blfauxam.htm



Training set Test set

Cognates 613 (73) 603 (178)
False-Friends 314 (135) 94 (46)
Unrelated 527 (0) 343 (0)

Total 1454 1040

Table 1: The composition of data sets. The num-
bers in brackets are counts of word pairs that are
identical (ignoring accents).

2. The above-mentioned on-line list of “French-
English False Cognates” (94 additional False-
Friends).

In order to avoid any overlap between the two
sets, we removed from the test set all pairs that
happened to be already included in the training
set. The dataset has a 2:1 imbalance in favour
of the class Cognates/False-Friends; this is not a
problem for the classification algorithms (the pre-
cision and recall values are similar for both classes
in the experiments presented in Section 5). All
the Unrelated pairs in our datasets are transla-
tion pairs. It would have been easy to add more
pairs that are not translations, but we wanted to
preserve the natural proportion of cognates in the
sample translation lexicons.

5 Evaluation

We present evaluation experiments using the
two datasets described in Section 4: a train-
ing/development set, and a test set. We classify
the word pairs on the basis of similarity into two
classes: Cognates/False-Friends and Unrelated.
Cognates are distinguished from False-Friends by
virtue of being mutual translations. We test var-
ious feature combinations for our classification
task. We test each orthographic similarity mea-
sure individually, and we also average the values
returned by all the 13 measures. Then, in order
to combine the measures, we run several machine
learning classifiers from the Weka package.

5.1 Results on the Training Data Set

Table 2 presents the results of testing each of the
13 orthographic measures individually. For each
measure, we need to choose a specific similarity
threshold for separating Cognates/False-Friends
from the Unrelated pairs. For the IDENT mea-
sure, the threshold was set to 1 (identical spelling
ignoring accents). For the rest of the measures, we

Orthographic Threshold Accuracy
similarity measure

IDENT 1 43.90%

PREFIX 0.03845 92.70%

DICE 0.29669 89.40%

LCSR 0.45800 92.91%

NED 0.34845 93.39%

SOUNDEX 0.62500 85.28%

TRI 0.0476 88.30%

XDICE 0.21825 92.84%

XXDICE 0.12915 91.74%

BI-SIM 0.37980 94.84%

BI-DIST 0.34165 94.84%

TRI-SIM 0.34845 95.66%

TRI-DIST 0.34845 95.11%

Average measure 0.14770 93.83%

Table 2: Results of each orthographic similar-
ity measure individually, on the training dataset.
The last line presents a new measure which is the
average of all measures for each pair of words.

determined the best thresholds by running Deci-
sion Stump classifiers with a single feature. Deci-
sion Stumps are Decision Trees that have a single
node containing the feature value that produces
the best split. The values of the thresholds ob-
tained in this way are also included in Table 2.

The training dataset for machine learning ex-
periments consists of 13 features for each pair of
words: the values of the 13 orthographic similar-
ity measures. We trained several machine learn-
ing classifiers from the Weka package: OneRule (a
shallow Decision Rule that considers only the best
feature and several values for it), Naive Bayes, De-
cision Trees, Instance-based Learning (IBK), Ada
Boost, Multi-layered Perceptron, and a light ver-
sion of Support Vector Machine.

The Decision Tree classifier has the advantage
of being relatively transparent. Some of the nodes
in the decision tree contain counter-intuitive de-
cisions. For example, one of the leaves classifies
an instance as Unrelated if the BI-SIM value is
greater than 0.3. Since all measures attempt to
assign high values to similar pairs and low values
to dissimilar pairs, the presence of such a node
suggest overtraining. One possible remedy to this
problem is more aggressive pruning. We kept low-
ering the confidence level threshold from the de-
fault CF = 0.25 until we obtained a tree without



Classifier Accuracy on Accuracy
training set cross-val

Baseline 63.75% 63.75%

OneRule 95.94% 95.66%

Naive Bayes 94.91% 94.84%

Decision Trees 97.45% 95.66%

DecTree (pruned) 96.28% 95.66%

IBK 99.10% 93.81%

Ada Boost 95.66% 95.66%

Perceptron 95.73% 95.11%

SVM (SMO) 95.66% 95.46%

Table 3: Results of several classifiers for the task
of detecting Cognates/False-Friends versus Unre-
lated pairs on the training data (cross-validation).

TRI-SIM <= 0.3333

| TRI-SIM <= 0.2083: UNREL (447.0/17.0)

| TRI-SIM > 0.2083

| | XDICE <= 0.2: UNREL (97.0/20.0)

| | XDICE > 0.2

| | | BI-SIM <= 0.3: UNREL (3.0)

| | | BI-SIM > 0.3: CG_FF (9.0)

TRI-SIM > 0.3333: CG_FF (898.0/17.0)

Figure 1: Example of Decision Tree classifier,
heavily pruned (confidence threshold for pruning
CF=16%).

counter-intuitive decisions, at CF = 0.16 (Fig-
ure 1). Our hypothesis was that the latter tree
would perform better on a test set.

The results presented in the rightmost column
of Table 3 are obtained by 10-fold cross-validation
on training dataset (the data is randomly split
in 10 parts, a classifier is trained on 9 parts and
tested on the tenth part; the process is repeated
for all the possible splits). We also report, in the
middle column, the results of testing on the train-
ing set: they are artificially high, due to over-
training. The baseline algorithm in the Table
3 always chooses the most frequent class in the
dataset, which happened to be Cognates/False-
Friends. The best classification accuracy (for
cross-validation) is achieved by Decision Trees,
OneRule, and Ada Boost (95.66%). The perfor-
mance equals the one achieved by the TRI-SIM
measure alone in Table 2.

Error analysis: We examined the misclassi-
fied pairs for the classifiers built on the training
data. There were many shared pairs among the
60–70 pairs misclassified by several of the best
classifiers. Most of the false negatives were ge-

netic cognates that have different orthographic
form due to changes of language over time. False
positives, on the other hand, were mostly caused
by accidental similarity. Several of the measures
are particularly sensitive to the initial letter of
the word, which is a strong clue of cognation.
Also, the presence of an identical prefix made
some pairs look similar, but they are not cognates
unless the word roots are related.

5.2 Results on the Test Set

The rightmost column of Table 4 shows the results
obtained on the test set described in Section 4.
The accuracy values are given for all orthographic
similarity measures and for the machine learning
classifiers that use all the orthographic measures
as features. The classifiers are the ones built on
the training set.

The ranking of measures on the test set dif-
fers from the ranking obtained on the training
set, which may be caused by the absence of ge-
netic cognates in the test set. Surprisingly, only
the Naive Bayes classifier outperforms the simple
average of orthographic measures. The pruned
Decision Tree shown in Figure 1 achieves higher
accuracy than the overtrained Decision Tree, but
still below the simple average. Among the in-
dividual orthographic measures, XXDICE per-
forms the best, supporting the results on French-
English cognates reported in (Brew & McKelvie
96). Overall, the measures that performed best on
the training set achieve more than 93% on the test
set. We conclude that our classifiers are generic
enough: they perform very well on the test set.

5.3 Results on the Genetic Cognates

Dataset

Greenberg (Greenberg 87) gives a list of “most
of the cognates from French and English”. The
list serves as an illustration how difficult it would
to demonstrate that French and English are ge-
netically related by examining only the genetic
cognates between those two languages. We tran-
scribed the list of 82 cognate pairs from IPA to
standard orthography. We augmented the list
with 14 pairs from the Comparative Indoeuropean
Data Corpus5and 17 pairs that we identified our-
selves. The final list contains 113 true genetic
cognates that go back to Proto-Indoeuropean6.

5http://www.ntu.edu.au/education/langs/ielex/
6http://www.cs.ualberta.ca/˜kondrak/cognatesEF.html



Classifier Accuracy Accuracy
(measure or on genetic on test
combination) cognates set set

IDENT 1.76% 55.00%

PREFIX 36.28% 90.97%

DICE 13.27% 93.37%

LCSR 24.77% 94.24%

NED 23.89% 93.57%

SOUNDEX 39.82% 84.54%

TRI 4.42% 92.13%

XDICE 15.92% 94.52%

XXDICE 13.27% 95.39%

BI-SIM 29.20% 93.95%

BI-DIST 29.20% 94.04%

TRI-SIM 35.39% 93.28%

TRI-DIST 34.51% 93.85%

Average measure 36.28% 94.14%

Baseline — 66.98%

OneRule 35.39% 92.89%

Naive Bayes 29.20% 94.62%

Decision Trees 35.39% 92.08%

DecTree (pruned) 38.05% 93.18%

IBK 43.36% 92.80%

Ada Boost 35.39% 93.47%

Perceptron 42.47% 91.55%

SVM (SMO) 35.39% 93.76%

Table 4: Results of testing the classifiers built on
the training set (individual measures and machine
learning combinations). The middle column tests
on the set of 113 genetic cognate pairs. The right-
most column tests on the test set of 1040 pairs.

We decided to also test the classifier trained
in Section 5.1 on this genetic cognates set. The
results are shown in the middle column of Table
4. Among the individual measures, the best ac-
curacy is achieved by SOUNDEX, because it is
designed for semi-phonetic comparison. Most of
the simple orthographic measures perform poorly.
The misclassifications are due to radical changes
in spelling, such as: frère - brother, chaud - hot,
chien - hound, faire - do, fendre - bite. One ex-
ception is PREFIX, which can be attributed to
the fact that the initial segments are the most
stable diachronically. TRI-SIM and TRI-DIST
also did relatively well, thanks to their robust de-
sign based on approximate matching of trigrams.
The IDENT measure is almost useless here be-
cause there are only two identical pairs (long -

long, six - six) among the 113 pairs. Since the
set contains only cognates, our baseline algorithm
would achieve 100% accuracy by always choosing
the Cognates/False Friends class.

The results on genetic cognates suggest that
a different approach may be more appropriate
when dealing with closely related languages (e.g.,
Dutch and German), which share a large number
of genetic cognates. For such languages, recur-
rent sound and/or letter correspondences should
also be considered. Methods for detecting recur-
rent exist (Tiedemann 99; Kondrak 04) and could
be used to improve the accuracy on genetic cog-
nates. However, for languages that are unrelated
or only remotely related, the identification of ge-
netic cognates is of little importance. For exam-
ple, in our lexicon sample of 1000 words, only 4
out of 603 French-English cognate pairs were ge-
netic cognates.

5.4 Three-way Classification

We also experimented with a three-way classifica-
tion into Cognates, False-Friends and Unrelated.
We used an extra feature in our machine learning
experiments, which is set to 1 if the two words
are translations of each other, and to 0 other-
wise. Since all the examples of pairs of class Un-
related in our training set were mutual transla-
tions, we had to add Unrelated pairs that are not
translations. (Otherwise all pairs with the trans-
lation feature equal to 0 would have been classi-
fied as False-Friends by the machine learning algo-
rithms.) We generated these extra pairs automat-
ically, by taking French and English words from
the existing Unrelated pairs, and pairing them
with words other then their pairs. We manually
checked to insure that all these generated pairs
were not translations of each other by chance.

As expected, this experiment achieved slightly
lower results than the ones from Table 2 when
running on the same dataset (cross-validation).
Most of the machine learning algorithms (except
the Decision Tree) did not perfectly separate the
Cognate/False-Friends class. We conclude that
it is better to do the two-way classification that
we presented above (into Cognates/False-Friends
and Unrelated), and then split the first class into
Cognates and False-Friends on the basis on the
value of the translation feature. Nevertheless, the
three-way classification could still be useful pro-
vided that the translation feature is assigned a
meaningful score, such as the probability that the



two words occur as mutual translations in a bi-
text.

6 Conclusion and Future Work

We presented several methods to automatically
identify cognates and false friends. We tested a
number of orthographic similarity measures indi-
vidually, and then combined them using several
different machine learning classifiers. We eval-
uated the methods on a training set, on a test
set, and on a list of genetic cognates. The re-
sults show that, for French and English, it is pos-
sible to achieve very good accuracy even without
the training data by employing orthographic mea-
sures of word similarity.

In future work we plan to automatically
identify partial cognates, which have senses that
behave as cognates and senses that behave as
false friends. Word sense disambiguation would
make it possible to place the partial cognates
in their context. We plan to use translation
probabilities from a word-aligned parallel corpus.
Another direction of future work is to produce
complete lists of cognates and false friends, given
two vocabulary lists for the two languages. We
would also like to apply the methods presented
in this paper to other pairs of languages.
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PhD thesis, Université de Montreal, 1990.
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