
Internet Security Attacks at the Basic Levels
Marco de Vivo
mdevivo@reacciun.ve
Apartado Postal 68274
Caracas, Vene~aela.

Gabriela O. de Vivo
gdevivo@reaeciun.ve

Germinal Isern
isern@reacciun.ve

GIRAS U.C.V.
I

fidence in the policies defined for the CCaTe~ (as

Abstrac t
The Internet put the rest of the world at the reach of
our computers. In the same way it also made our
computers reachable by the rest of the world. Good
news and bad news!. Over the last decade, the Internet
has been subject to widespread security attacks. Besides
the classical terms, new ones had to be found in order
to designate a large collection of threats: Worms,
break-ins, hackers, crackers, hijacking, phrackers,
spoofing, man-in-the-middle, password-sniffing, de-
nial-of-service, and so on.
Since the Intemet was born of academic efforts to
share information, it never strove for high security
measures. In fact in some of its components, security
was consciously traded for easiness in sharing.
Although the advent of electronic commerce has
pushed for "real security" in the Interact, there is yet a
huge amount of users (including scientists) very
vulnerable to attacks, mostly because they are not
aware of the nature (and ease) of the attacks and still
believe that a "good" password is all they need to be
concerned about.
We wrote this paper aiming for a better understanding
of the subject. In the paper we report some of the
major actual known attacks. Besides the description of
each attack (the what), we also discuss the way they
are carried on (the how) and, when possible, the related
means of prevention, detection and/or defense.

Keywords: TCP/IP, Client-Server, Ethernet,
Sniffing, One-Time Password, Kerberos, ICMP, Ping,
Covert Channel, Spoofing, RIP, DNS, Denial of
Service, Hijacking.

I. Introduction.

A
lthough the terms Protection and Security
ate used interchangeably in the related litera-
ture, it is worth noting that, strictly speak-
ing, they designate different subjects.

Protection [1] refers to a m e c h a n i s m for controlling
the access of programs or users to a set of resources.
Security, on the other hand, refers to a measure of con-

planned) management, of an environment. Thus, as
strange as it may appear, it is possible to have a weak
security p o l i c y even when using a very sound
mechanism of protection. As an example, imagine a
user who systematically selects as her password (a
strong protectio~ mechanism) the same as her login
name (a very weak security policy indeed!T).
The cases analyzed in this paper are mainly related to
faulty protection mechanisms: bad design, wrong im-
plementations and poor integration are at the base of
most of the attacks, including those directed to exploit
wrong security decisions.
Active vs. Passive attacks:
A successful attack is usually achieved through several
active or passive sub-attacks. In active attacks, the in-
trader interacts with the target system and tries to in-
fluence its behavior. These attacks involve some modi-
fication of the data stream or the creation of a false
stream. In passive attacks, the intruder just collects in-
formation related to (usually proceeding from) the se-
lected victim, and, normally 1, no alteration of the data
is involved. Passive attacks are in the nature of eaves-
dropping on, or monitoring of, transmissions (e.g.,
sniffing devices and keystrokes capturing programs).
Fundamental attacks:
Almost all attack strategies end with what we will call
a fundamental attack.
The goal of a fundamental attack is to allow an in-
trnder gaining entrance to the victim's system either as
a regular user or (mostly) as the superuser. There are
basically three forms of fundamental attacks:
• Password guessing or capturing. Password guessing

is also known as password cracking [4].
• Exploiting security flaws (security holes).
• Exploiting bugs in Operating System and Network

software (security holes).

We won't cover password guessing or classical secu-
rity holes because they are thoroughly studied and well
documented elsewhere. Instead, a specific passive at-
tack (sniffing) and several chosen a c t i v e attacks
will be analyzed in detail.

i

1 Data streams protected by Quantum Cryptography cannot be
eavesdropped unnoticeably [2, 3].

The presentation of the selected attacks is arranged
nearly following the TCP/IP layered approach.
We wrote this paper in an effort to provide information
about how intrusions occur. Unfornmately users and
system administrators are often unaware of the extent
end dangerousness of the threats beyond the most well
known banal attacks. Moreover, even experienced com-
puter advisers, usually get into trouble when asked
with questions of the pattern: '...but how, exactly, do
hackers break into systems?...'.
We really hope that the paper will he lp readers build a
solid understanding of the above mentioned issues, as
well as better estimating their own risks and security
requirements.

2. About TCP/IP.

In order to fully understand the issues discussed in this
paper, some basic knowledge of TCP/IP is needed. In
this section several fundamental concepts and defini-
tions, related to TCP/IP, are presentetL Additional in-
formation can be found in [$, 6, 7]. Expert readers
are invited to skip to the next section.
TCP/IP is a protocol suite conceived to allow comput-
ers of different characteristics (software and hardware),
to communicate with each other. An internet is a col-
lection of networks that all use the same protocol
suite. The Intemet (note uppercase I) is based on
TCP/IP.
A protocol suite is normally the combination of differ-
ent protocols at various layers. TCP/IP is usually con-
sidered a 4-layer system, as shown in F i g u r e 1.

* The h o s t - t o - n e t w o r k layer. This layer, also called
link layer, dim link layer or network interface layer,
handles the details of the communication media. It is
related to issues like device drivers, Ethernet, token
ring, interface cards, etc.

• The n e t w o r k layer: The network (also called inter-
net) layer is the glue that holds the whole arcbitecmre
together. It deals with the movement of packets around
the network, and defines an official packet format and
protocol cal ledlP (Internet Protocol).
IP offers a connectionless, unreliable service, called
datagram service. This means it does it best job of
moving packets from sources to t'mal destinations, but
there are no guarantees. IP also specifies an addressing
scheme based on the so called Internet addresses or IP
addresres. Every interface on an interact must have a
unique IP address.
Network layer is also related to issues like packet rout-
ing and congestion avoidance.

A P P L I C A T I O N
WWW, e-mail, etc.

T R A N S P O R T
TCP, UDP

N E T W O R K
IP

H O S T - t o - N E T W O R K
ARP, RARP, Hardware Interface.

Figure 1. TCP/IP protocol suite.

• The t ranspor t layer: The transport layer is designed
to provide a data stream between communicating ap-
plications on source and destination hosts (computers).
When an application lamning on the source host needs
to communicate with its mate on the destination host,
it just gives the message to the transport layer's soft-
ware, which in turn uses IP to send it to the target
host in form of data units (packets) known as rkm-
grams. This layer also deals with f low control, conges-
tion control, and with the creation of end points.
Two end-to-end protocols have been defined in this
layer: T C P and U D P.
TCP provides a r e l i a b l e flow of data to communicat-
ing applications. It does so, even though the service it
uses to forward packets (IP) is unreliable. Reliability
is achieved by the use of timers, counters, acknowl-
edgments and re-transmission.
UDP, on the other hand, just provides the primary
mechanism that application programs use to send data-
grams (units of information) to other application pro-
grams. The same as TCP does, it uses the underlying
IP protocol to transport a message from one machine
to another, but unlike TCP it provides the same unre-
l i ab le , connectionless datagram delivery semantics as
IP. It does not use acknowledgments, nor orders in-
coming messages, and it does not control the rate at
which information flows between the machines either.
Thus UDP messages can be lost, duplicated or arrive
out of order. Any desired reliability must be added by
the application layer. Nevertheless, UDP is a better
interface than IP to applications because it adds the
ability to distinguish among multiple destinations
within a given host computer.

• The app l i ca t i on layer: This layer contains all the
higher level protocols. Almost every TCP/IP imple-
mentation provides many common applications:

Teluet, a virtual terminal protocol for remote login.
FTP, for the transferring of data between machines.

SMTP, for electrouic mail.
It is worth noting that most networking applications
are written as two complementary programs: The
client and the server. The purpose of the application is
for the server to provide some defined service for
clients.

• R o u t e r s : Since an interact is a collection of net-
works, some special-purpose hardware is needed for
interconnecting them: routers (some computers can act
as routers also). When an IP packet is sent from a
source host, it usually does not reach directly the target
host. Instead, it is handled by several intermediate
routers running IP software. Each router, in turn, for-
wards the packet (following the routing information
stored in it) until the destination host is reached. So in
most cases, packets will require multiple hops to make
the journey.
The source and destination hosts are called end sys-
tems. The application layer and the transport layer use
end-to-end protocols since they are needed only on the
end systems. By contrast IP is a hop-by-hop protocol
became it is used (see F i g u r e 2) on the two end sys-
tems and e v e r y intermediate system (router).

• I P addresses and DNS: Each machine (hosts and
routers) on an internet must have at least a distinctly
different address so that information destined for it can
be successfully delivered. This address scheme is con-
trolled by IP. An IP address is 32 bits long (in IP ver-
sion 4) and consists of two parts: the network portion
(used to describe the network on which the host re-
sides) and the host portion (used to identify the particu-
lar hos0. Those machines connected to multiple net-
works have a different IP address on each network.
IP addresses rare usually written in dotted decimal nota-
tion. In this format each of the 4 bytes is written in
decimal from 0 to 255. Thus the hexadecimal ___Mdres_ s
C1C103B0 is represented as 193.193.3.176.
When the IP on a source host receives a unit of data to
be forwarded, it adds (as is done at each layer) informa-
tion to the data by prefixing a ~ to it. This header
(IP header) includes the IP address of the source host
and the IP address of the destination host. In this way,
every intermediate system knows exactly the final des-
tination of the packet (needed for muting) and the ad-
dress of the originating host (needed when reporting
problems with the packet).
Now, since IP addresses can be difficult to remember,
each device is generally assigned a host name (ASCII
string). Nevertheless, as IP itself only understands bi-
nary addresses, some mechanism is required to convert
the ASCII strings to network (IP) addresses and vice
versa (when needed). DNS, the Domain Name System,
is a distributed database implementing a hierarchical,

domain-based naming scheme, and used by TCP/IP
applications to map between host names and IP ad-
dresses. An example will help to understand the whole
mechanism: Suppose that hosts A and B in F i g u r e 2
are assigned the IP addresses 191.191.3.120 and
193.193.3.176 respectively. Suppose also that their
host names are: ihosta.netl.com and hostb.net2.com.
Now, if a client application running on host A
(hosta.netl.com) needs to use a server application on
host B (hostb.net2.com), it must use the DNS first to
obtain the IP address of host B. This is done as fol-
lows: The client application invokes a special program
(also rnnning on host A, of course) called the resolver
and passes to it the string 'hostb.net2.com' as an ar-
gument. Next, the resolver search its related files for
the IP address of a name server, and, once found, uses
it to query the name server about 'hostb.net2.com'.
The name server searches its portion of the data base,
and, if necessary, queries other name servers until the
desired IP address (193.193.3.176) is obtained. This
address is sent back to the resolver which in turn re-
turns it to the invoking client. At this point the con-
nection can be established.

Computer A

CLIENTS
REQUEST

Computer B

i • REPLY

S ! !
i i i

I , I I I
NETWORK

Figure 2. Two hosts co~ec ted ruing TCP/IP.

SERVERS

s TCP (3
IP S

• Ports and Sockets: As shown in Figure 2, many
different applications can be using TCP or UDP at any
one time. Several instances of a client on host A could
be interacting with the same server application on host
B, and several independent client-server sessions be-
tween the two hosts could be running simultaneously
as well. To achieve this multiplexing, TCP (UDP) de-
fines the concept of protocol port:. A protocol port is
an abstract destination point identified by a 16-bit
positive integer (port number).
When TCP (UDP) receives from the application layer

data to be transmitted, it adds information to the data
by prefixing a header to it. This header (TCP or UDP
header) includes the number of the destination port on
the machine to which the data is sent, as well as the
source port number (optional in UDP) on the source
machine to which replies should be addressed.
Now, as every application using TCP must be associ-
ated with a port number, to communicate with a re-
mote application (foreign port) a sender needs to know
b o t h the IP address of the destination machine and
the port number assigned to the application within that
machine. The pair (IP address, port number) is called a
socket and represents an end point of a TCP connec-
tion. To obtain TCP service, a connection must be
explicitly established between a socket on the sending
machine and a socket on the receiving machine. TCP
connections are thus identified by its two end points,
that is (socket1, socket2).

3. Attacks related to the link
layer.

3.1. Sniffing.

Perhaps the best known source of general information
about sniffers is the ISS Sni f fe r FAQ [8]. Let's
examine some of the items treated in that FAQ 2
(Frequently Asked Questions):

.What is sniffing:
Sni f f ing is the use of a network interface to receive
data not intended for the machine in which the interface
resides [9]. A variety of types of machines need to
have this capability. A bridge, for example, usually
has two network interfaces that normally receive all
frames traveling on the media on one interface and re-
transmit s o m e of these frames on the other interface.

Computer networks are often based on shared commu-
nication channels. It is simply too expensive to dedi-
cate local loops to the switch (hub) fox each pair of
communicating computers. Sharing means that com-
puters can receive information that was intended for
other machines. Hence, this kind of networks is par-
ticularly suitable for sniffing.
Ethernet is a very popular way of connecting
computers through shared communication channels.
Ethcmet protocol works by sending packet information
(frames) to all the hosts on the same circuit. The frame

2 Although the following discussion is mostly connected
with ethernet, this kind of attack can be directed to other
'multiple access' protocols (and even to non-broadcast ones)
as well.

header cont,~ns the proper address of the destination
machine. Only the machine with the matching address
is supposed to accept the frame. A machine (more
precisely, a network interface) that is accepting all
frames, no matter what the frame header says, is said
to be in promiscuous mode.
Because, in a normal networking environment, account
and password information is passed along ethemet in
clear-text, it is not hard for intruders, once they obtain
root (superuser's privileges), to put a machine's net-
work interface into promiscuous mode and by sniffing,
compromise all the machines on the net. Besides,
sniffing leads to loss of privacy of several kinds of in-
formation like financial account numbers, private data
(e.g., e-mails), and low-level protocol information
(e.g., IP addresses and TCP sequence numbers) among
others.

Where can sniffers be fomld:
Even though sniffers are among the main causes of
mass break-ins on the Interact today, they are also
invaluable tools for network troubleshooting. For this
reason there are several implementations widely
available (as shareware and freeware) through the
lnternet:

TCPDump ftp://ftp.ee.lbl.gov

EthDump ftp://ftp.germany.eu.net
/pub/networking/inet/ethernet/

Packetman, lnterman,
Etherman, Loadn~, ftp://ftp,cs.curtin.edu.au

NetMan /pub/netman/

All these sniffers are provided to assist in the debug-
ging of network problems. They can also be helpful in
the study of protocols and in the gathering of (network
related) statistical data. Whatever their use, access to
them should be restricted to system administrators as
well as to selected personnel.

Detecting sniffilag attacks:
When a dedicated device (in contrast to a program run-
ning on a network's known host) is used for sniffing,
detection requires physically checking all the ethemet
connections. Otherwise, vdministrators must check
(when possible) for interfaces working in promiscuous
mode (it can be done with the help of commands like
i fconf ig and programs like cpm). If sniffing is en-
abled by linking it into the kernel, there are several
commands that could also be helpful (e.g., pfs tat and
pfconfig).
Often a sniffer log becomes so large that the file space
is all used up, besides, on a high volume network a
sniffer will create a large load on the machine. These

facts can also lead to the discovery of sniffers.
Regarding PC's with non-Unix systems, observe that
except for special cases (e.g., Java, CGI programs,
etc.), command execution is not allowed but from the
console, therefore remote intruders can not turn a PC
machine into a sniffer without inside assistance.

Preventing and neutraliTin=~ sniffing attacks:
• Network segmentation: A network segment consists
of a set of machines sharing low-level devices and
wiring and seeing the same set of data on their network
interfaces. Repeaters and passive hubs do not limit the
flow of data arriving to any of its interfaces. They just
copy the incoming bits and retransmit them to the
wires on the other interfaces. S w i t c h e s , ac t i ve
hubs, and bridges, however, do limit the flow of
data, thus allowing the prevention of sniffing on un-
trustworthy machines.
• Encryption: The use of encryption renders data use-
less to intruders. There are several related packages
available. However, this solution is neither universal
nor absolute. In fact, there is a tradeoff between how
much information is encrypted and how standard the
solution is. If too much of the flowing information is
encrypted (e.g., even protocol information) then, pro-
prietary networking protocols must be used (thus pre-
cluding standard internetworking). If, by contrast, only
application level encryption is used, then a significant
amount of sensible data (mostly related to network and
operating system protocols) is still available to intrud-
ers, nevertheless, the two most popular eneryption-
based security solutions P G P [101 and S S L [11] me
both designed to guarantee the secrecy, integrity and
authenticity ofdst_o related to the application level
only (e.g., e-mails, transactions, etc.).
° Special administration of account information:
S / k e y [12] and other one-time password technology
make sniff'rag account information almost useless.
Passwords never go over the network but rather are
used to create (on both connecting sides) matching
strings of bytes.
Usually, the server presents a challenge to the connect-
ing user (or client) who, using the challenge informa-
tion and the real password, either calculates or selects
(from a previously defined list) a new string and sends
it back to the server. The string is then entered into the
server's comparing algorithm, and if a match is ob-
tained, the connection is allowed to continue. Neither
challenges nor strings are used twice.
A well-known alternative to one-time passwords is
Kerberos [13]. Kerberos is a system that allows
workstations to authenticate themselves to services
running on servers without ever sending a password in
clear text over the network. Kerberos is based on the

use of a u th en t i ca t i o n servers 3. An authentication
server (AS) knows the passwords of all users and
stores these in a centralized database. In addition an AS
shares a unique secret key with each server.
The protocol is roughly as follows:
1) When a service is needed, the client sends a request

to the authentication server.
2) The AS uses the known dient 's password and the

secret key related to the service to create an encrypted
message containing an also (differently) encrypted
service-granting ticket.
3) The message is sent back to the client which de-

crypts it, extracts the ticket, and presents it to a suit-
able server.
4) The server tries to decrypt and authenticate the

ticket. If succeeds, the requested service is granted.
* Non-promiscuous interfaces: Installing interface cards
that do not support promiscuous mode, will prevent
PC's (usually IBM compatibles) from sniffing.

4. Attacks related to the network
and transport layers.

4.1. ICMP Tunneling.

Firewalls. Ping, an d ICMp:
Roughly speaking a f i r e w a l l is a computer, software,
or both, used to restrict and monitor usage of a com-
puter or network. Firewalls are normally used to con-
trol the interface between a subnetwork and the
Interact.
The Interuet Control Message Protocol (ICMP) is an
adjunct to the IP layer. It is a couneetionless protocol
used to carry error or control messages between the IP
software on one machine (host or router) and the IP
software on another. ICMP packets are encapsulated
inside IP datagrams. Although each ICMP message
has its own format, they all begin with the same three
fields (first 4 bytes ,of the header): TYPE, CODE, and
CHECKSUM. There are 15 different types of ICMP
messages.
The p i n g command sends an ICMP echo request mes-
sage (type 8) to a specified destination. Any machine
that receives an echo request, formulates an ICMP
echo reply message (type 0) and returns it to the origi-
nal sender. Both the request and the reply can include
an optional data field. Thus ping can be used to test
whether a desfnation is reachable and responding.

I

3 Strictly speaking, Kerberos uses a special server program
for key distribution. 'The program performs two logical
functions: authentication server and ticket-granting server.
In this basic description we are using the term authentication
server to designate both logical servers as a whole.

Covert channels:
Since ping traffic is ubiquitous to almost every
TCP/IP based network and subnetwork, many firewalls
and networks consider this traffic to be benign and will
allow it to pass through, unmolested. However, that
practice can be insecure. Ignoring the obvious threat of
a denial-of-service attack, use of ping traffic can open
up covert channels through the networks in which it is
allowed.
Remember that ICMP echo packets also have the op-
lion to include a data section. Although the payload is
often timing information, there is no check by any de-
vice as to the content of the data. So, as it turns out,
this amount of data can also be arbitrary in content as
well. Therein lies the covert ehannd.
A tool exploiting this covert channel [14] canbe used
as a backdoor into a system by providing an unavowed
method of getting commands executed on a target ma-
chine. It can be used as a way to clandestinely collect
information from a machine. It can be used as a covert
method of user-machine or user-user communication.

Detection and preventiola:
If ICMP echo traffic is allowed, then this channel ex-
ists. Even with extensive firewalling and packet-filter-
ing mechanisms in place, this channel can go com-
pletely undetected for the duration of its existence.
A surplus of ICMP echo reply packets with a garbled
payload can be ready indication that the channel is in
use, but since these packets are usually not monitored,
some triggering event must happen first.
Restricting ICMP echo traffic to be accepted from
trusted hosts is useless with a connectionless protocol
such as ICMP. Forged traffic (with spoofed IP ad-
dresses) containing hidden data in the echo request
messages can still reach the target host which in turn
will send legitimate ICMP echo reply messages to the
spoofed host (where they will be dropped silently).
While the possibility exists for a smart packet filter to
check the payload field and ensure that it o n l y con-
tains legal information, such a filter for ICMP is not
in wide usage, and could still be open to deceiving.
The only sure way to destroy this channel is to deny
a l l ICMP echo traffic into the (to be protected) net-
work, a very impractical requirement, though.

5. Attacks related to the network
and transport layers.

5 .1 . IP S p o o f i n g .

The term trusted host was coined by the developers of
the UNIX networking software. If one host extends

trust to another host, then any user who has the same
username (login name) on both machines can log in
(or execute remote commands) from the trusted host to
the trusting one without present ing a password.
Trust can also be extended to different users from se-
lected hosts, and eventually to any user from any
host!!. The trusted usemames and hostnames are main-
rained in two types of special files (UNIX): . rhos ts
and hosts .equiv . Any authorized user of a host A,
can create in i t s o w n directory (on A) a t-de named
.rhosts containing the combinations of usenmme and
hosmame that may connect to i t s account on A. By
contrast, only one hosts.equiv file (/etc/hosts.equiv)
may exist on each host. If present, it contains a list of
trusted hosts. Any user of any host in the list may ac-
cess an account with the same usemame on the trust-
ing host without presenting a password.
It is worth noting that besides rlogin (the login
command from a r e m o t e host), several other com-
mands use the truaed host scheme (e.g., rcp, rdist,
rsh.) They are known collectively as r* commands.
Although trusted host is a very useful and convenient
scheme, its actual implementation is quite vulnerable
to attacks because an authentication mechanism based
soldy on IP addresses is used. In fact, when any of the
r* commands is invoked from a remote machine, the
receiving host cheeks if the IP address of the sender
matches an authorized (trusted) host. If so, the com-
mand is executed. Otherwise, either permission for ex-
ecution is denied or a password (and a l o g i n if the
originating user is not equivalent to the remote user) is
(are) prompted for on the remote machine.
1P Spoofing at tacks exploit this weak form of au-
thentication. In this type of attack, an intruder mas-
querades her host e v i l . c o r n as f r iend .eom a ma-
chine (uslmlly internal) trusted by the host tar-
g e t . c o m . The intruder does this by substituting the
IP address of the trusted machine, f r iend.corn , for the
IP address of her host, e v i l . t o m , in all of the outgo-
ing packets. The machine being attacked, tm'-
g e t . e o m , then believes that the intruder is, in fact,
the machine that it trusts, f r iend.corn , and gives it
a c c e s s .

5.1.1. ARP Spoof ing 4.

A RP, the Address Resolution Protocol, provides a
mapping between two different forms of addresses: 32-
bit IP (virtual) addresses used by the network layer, and
whatever type of physical address (e.g., Ethemet) the
associated data link uses. An Ethernet dynamic ARP

4 ARP is considered as part of the link layer. However, we
included ARP spoofing in this section because of its strong
relation with attacks to the IP based trusting mechanism.

(which has become a TCP/IP Intemet protocol stan-
dard) is specified in RFC 826 [1 $1.
The protocol works roughly as follows: When an IP
datagram is to be sent, either the destination host (the
one owning the t a rge t IP address) is in the same
physical subnet, or a gateway must be used as the first
hop. In any case, a physical Ethemet address is needed
(the destination host Ethernet address or the gateway
Ethernet address) to send the Ethemet frame encapsulat-
ing the IP packet. So, the A R P cache of the source
machine is consulted looking for an entry associating
the target (host or gateway) IP with an Ethemet ad-
dress. If there is a miss, a special Ethernet frame (an
A R P request) is broada~ed to every host on the
network. The ARP request contains the source
Ethemet and IP addresses, and the IP address of the tar-
get. Every machine receiving the request can extract
the sender's IP-to-physical address binding, and update
its cache. Additionally, the destination machine replies
with a n A R P r e p l y , containing its IP address and the
corresponding hardware address. When the ARP reply
is received by the source machine, its cache is updated
and the datagram that forced the ARP reqnest-reply to
be exchanged can finally be sent.
Since the entries in an ARP cache usually expire after
a few minutes, several attacks, aiming to forge or
tamper with the IP-to-hardware address associations,
are possible. An attacker can simply use a machine as-
signed the same IP address as a machine currently not
working. The machine to be impersonated can be
turned off, or disconnected from the network, or sim-
ply having its legitimate IP address changed by the at-
tacker. Then, after waiting a few minutes for the expi-
ration of the original entry in the cache, the intruder
will be finally able to mount the def'mitive attack
which is usually directed to a trusting server.
A thorough discussion on ARP spoofing (and on IP
spoofing in general) can be found in [16].

Preventing an ARP Spot, f:
As a basic precaution, trusting machines should load
the hardware address of trusted machines as perma-
ne n t entries in thcix ARP cache. Permanent entries do
not expire after a few minutes, and can be manually
inserted using the command arp (UNIX and Windows
95/NT).
Alternatively, a secure ARP server should be consid-
ered. An ARP server responds to ARP requests on be-
half of another machine by consulting permanent en-
tries in its own ARP cache. Even safer is to have
trusting machines configured to use ARP replies com-
ing from the ARP server rather than replies from other
sources (usually a difficult task, though). Finally,
since the use of touters removes the threat of ARP
spoofing between IP subnets, the separation of trusted

hosts from vulnerable subnets should be considered.

Detecting an ARP Spoof:
A host may attempt to detect illegitimate use of its IP
address by checking, for every ARP request received, if
the sender IP address matches its own. Besides, hosts
can be arranged to send out an ARP request for their
own IP address both on system startup and periodically
thereafter. Eventual ARP replies would indicate an
ARP spoof.
A server may also attempt to detect an ARP spoof by
one of its clients, This can be done by querying
R A R P (Reverse Address Resolution Protocol)
servers to eross-check the IP-to-hardware address as-
sociation contained in each ARP reply received. RARP
servers, maintain a database of hardware ~ s e s end
the associated IP addresses.

$.1.2. Routers and Route Spoofing.

On the Internet, both hosts and routers constantly take
part in routing decisions. The destination IP address of
every datagram (or fragment) arriving to a machine's
network layer, is checked to decide whether the data-
gram should be routed to an interface in the same
(sub)network (including direct deliveries to the ma-
chine itself) or forwarded to the next-hop router.
Attacks aiming to forge or tamper with routing tables
are the basis of Route Spoofing. Route spoofing
can be achieved in several ways, all of which involve
getting Intemet machines to misdirect non-locally
delivered IP dat0grams.

ICMP-Based Route Spoofing:

An ICMP redirect error message is sent by a router
to the sender of an IP datagram when the datagra~
should have been sent to a different router [17]. The
datagram itself does not need to be re-sent because the
router sending the [CMP redirect has already forwarded
the datagram to the right router. As a machine receiv-
ing an ICMP redirect message typically updates its
routing table, route spoofing can be achieved just by
sending illegitimate redirect messages.
Note that even ff a machine ignores redirect messages
its datagrams are still delivered (not so efficiently,
though). So, ICMP redirect spoofing can be avoided
by configuring hosts to ignore redirect messages.
Besides, for every redirect message received, a check
(using the permanent entries in the ARP cache)
should be made to verify that the message is from a
router currently used by the machine.

R/P-Based Route Spoofing:
Modern computer networks generally use dynamic

10

muting algorithms. A very popular dynamic algorithm
is dis tance v e c t o r r o u t i n g [18]. Distance vector
routing operates by having each router maintain a table
(i.e., a vector) giving the best known distance to each
destination and which line to use to get there. The
metric used might be number of hops, time delay, to-
tal number of packets queued, or something similar.
R I P [19] is a widely used implementation of vector-
distance routing. It partitions participants into active
andpassive (silent) machines. A router running RIP in
active mode broadcast, every 30 seconds, a message
consisting of pairs, where each pair contains an IP
network address and an integer distance to that net-
work (measured in hops). These advertisements me
used by receiving neighbors (touters and hosts) to up-
date their routing table. Passive machines just listen
and update their tables, they do not advertise. Only
touters can run RIP in active mode; hosts must use
passive mode.
One simple way to route spoof, is to broadcast illegit-
imate route information via UDP on port 520 (RIP's
well-known port). This can be done from almost any
PC by users with special privileges to use RIP. All
passive participants will be affected. Besides, if the set
of passive participants includes one or more routers
then the damage can be widespread.
RIP-based route spoofmg can be prevented either by
disallowing touters to use RIP passively or by allow-
ing them only a limited passive use of RIP.

Source Routing-Based Attacks:
Normally IP routing is dynamic with each muter mak-
ing a decision about which next-hop router to send the
datagram to. However, IP can optionally use source
rout ing . The idea behind source muting is that the
sender specifies the route, Two forms are provided:
• Strict source routing: The exact path is specified.
• Loose source routing: The sender specifies a list of

IP address that the datagram must traverse, but the
datagram can also pass through intermediate routers.

Besides, the Host Requirements RFC specifies that a
TCP client must be able to specify a source mute, and
that a TCP server must be able to receive a source
route, and use the reverse route for all segments on
that TCP connection (if a newer source route is re-
ceived, the earlier one is overridden).
IP spoofmg attacks based on source muting, are usu-
ally mounted with the aid of route spoofing. The fol-
lowing example illustrates how an attack of this type
is carried on:

The server target.tom extends trust to several hosts
including f r i e n d . e o m (whose legitimate IP address is
vvv.xxx.yyy.zzz). An attacker operating the host
e v i l . c o m wants to impersonate f r i e n d . c o m to

obtain some services from t a rge t . com. First of all,
the first-hop router from e v i l . e o m is set up by the
attacker (preparing the route spoof) to route to
ev i l . co rn ' s network any arriving datagram containing
vvv.xxx.yyy 7~,z as the destination address. Then the
IP address vvv.xxx.yyy.zzz is illegitimately assigned
to e v i l . c o r n by the attacker. Finally, when
e v i i . e o m begins to send OP-spoofed) packets to tar-
ge t . co rn , source routing (with the first-hop ~ in
the route) is used (otherwise answers would be prop-
erly forwarded to f r iend.corn) . So, when the server
answers (using the reverse route to vvv.xxx.yyy.zzz),
the packets are actually going to the compromised
first-hop router and getting routed to e v i !, e ore.
This type of attack can be prevented, of course, by dis-
allowing source routing on t a r g e t . e o m ' s network.

5.1.3. DNS Spoofing.

When resolver software on a host needs to convert a
domain name (e.g., jupiter.cs.yl.edu) to an IP address
(e.g., 127.0.0.127) it sends an address lookup query to
a DNS name server. Similarly, a reverse lookup query
is sent when an IP address is to be converted to a do-
main name.
D N S S p o o f i n g may occur whenever a DNS server
gets compromised by a security attack that forge or
tamper with its tables. As the responses from a DNS
server are trusted by all hosts on the Internet, a
compromised DNS server can direct clients to connect
to illegitimate servers, or deceive servers trying to
verify if an IP address corresponds to the name of a
trusted client.
DNS spoofing can be partially prevented by maintain-
ing a local database of domain names and the associ-
ated IP addresses (e.g., UNIX's/etc/hosts file). Every
server's database should contain, at least, the associa-
tions corresponding to the server's trusted hosts.
Besides, an attacker trying to impersonate a trusted
client, usually modifies the reverse lookup tables
maintained by the DNS server that is authoritative
(i.e., directly responsible) for the records related to th¢
attacker machine's IP address. However, the correct
association between the domain name of the legitimate
client and its IP address is maintained by the DNS
server that is authoritative for the client's domain
name. Not only the two authoritative servers need not
to be physically the same one, but even if they are, the
tables for reverse and forward lookups are maintained
on separate files.
So, even if the reverse lookup table gets compromised,
chances are good that the forward lookup table remains
sound (particularly if the attack comes from an external
network). Therefore as a defense to DNS spoofing, all
responses to reverse lookup queries should be

11

cross-checked by making a forward lookup query to
detect possible inconsistencies.
The following example will illustrate how DNS
spoofing is used to mount attacks:

An attacker running ev i l . eom finds r* programs on
target.eom and modifies the reverse DNS entries for
evil .corn (on eompromised.dns.eom) to look
like friend.corn (a host trusted by target.corn).
When evil .corn connects to t a rge t . co rn , the latter
sends to e o m p r o r n i s e d . d n s . e o m a reverse lookup
query (using the IP address received from ev i l . co rn)
and gets back the (spoofed) name of f r iend.corn .
As explained before, the use of products that cross-
check the responses to reverse lookup queries (e.g.,
TCP W r a p p e r [20]) may help to prevent this type
of attack.

5.1.4. TCP Connection Spoofing
Blind Attacks.

A T C P c o n n e c t i o n s p o o f i n g a t t a c k is a very
complex (IP spoofing-based) 'blind' attack. The fol-
lowing scenario outlines a typical TCP connection
spoofing attack:
The Hosts: T a r g e t is a server trusting the host
Friend, E v i l is the attacker's machine and Unreaeh
is an unreachable host.
The Events: E v i l (impersonating Fr iend) starts a
TCP connection with T a r g e t which, in turn, sends a
reply (related to the connection establishment protocol)
to the real Friend because neither DNS spoofing nor
source routing is being used.
At this point, E v i l is facing two problems:
1) It doesn't know what the answer from. T a r g e t was,
so it cannot be sure about the exact contents of the
message that must be sent to T a r g e t to continue with
the connection establishment protocol.
2) It must block the deliver (to Friend) of messages
being sent by Targe t , otherwise these unexpected
messages would induce F r i end to ask T a r g e t to
abort the connection being established (which would
frustrate the attack).
Since the attacker has been gathering enough statistics
as to predict what should be answered to T a r g e t to
continue with the connection establishment, a new
message containing a guessed reply is sent from E v i l
(impersonating Fr iend) to Targe t . If the attacker is
correct in her prediction, the connection is established,
and T a r g e t is compromised. Generally, after com-
promise, the attacker will use r* commands to insert a
backdoor.
Meanwhile, to deal" with the second problem, E v i l
(this time impersonating Unreaeh) has been flooding
F r i e n d with TCP connection requirements directed to

the TCP port it desires disabled. Since the reply mes-
sages that are being sent from F r i end to Unreaeh
will never be acknowledged, F r i end ' s queue of in-
complete connections will keep increasing until a
limit is reached after which all incoming packets re-
lated to connection establishment are silently discarded
by TCP (including the ones coming from Target) .

Now, to better understand the above scenario, some
related details will be explained:

• What is attacked?: The attack is usually directed
either to port TCP 513 (rlogin) or to port TCP 514
(rsh). Often, the command 'echo "+ +" >> ~/.rhosts'
(used in UNIX to extend trust to any user from any
host) is executed to install a backdoor.

• Why is it called a 'blind' attack?: Because E v i l ' s
TCP software never 'sees' any message from T a r g e t ' s
TCP (which is sending to F r i e n d all the datagrams re-
lated to the fake connection). Hence E v i l must rely
exclusively on guessing.

• What is guessed?: TCP is a connection-oriented, reli-
able transport protocol. Connection-oriented means the
two applications using TCP must establish a TCP
connection with each other before they can exchange
data. Reliability is provided in TCP by the use of
checksums, timers, data sequencing and acknowledg-
ments. By assigning a sequence number to e v e r y byte
transferred, and requiring an acknowledgment from the
other end upon receipt, TCP can guarantee reliable de-
livery. Sequence nUmbers are used to ensure proper or-
dering of the data and to eliminate duplicate data bytes.
Note that in a TCP session there are usually two
streams of data (every end point is receiving from one
of them and sending through the other). So an 1SN
(initial sequence number)must be assigned to each
stream when the connection is being established. To
see how it is done, let 's suppose that C is a client
wishing to connect to the server S, and analyze the
connection establishment process (often called the
three-way handshake):

1 C ~--SYN XX---> S

2 C <---SYN YY/ACK XX+I--- S

3 C ~--ACK YY+ 1---> S

1. C sends a TCP message (known as SYN request) to
S with the special flag SYN (SYNchronize sequence
numbers) set to ON. A SYN request specifies the port
number of the server that the client wants to connect
to, and the client's ISN (XX in this example).

12

2. The server responds with its own SYN message
containing S's ISN (YY) and acknowledging C's SYN
by specifying that the n e x t byte expected from C is
the byte numbered XX+ 1.
3. C acknowledges the SYN message from S, and data
transfer may take place.

The problem with the blind attack outlined in the sce-
nario is that E v i l never sees the second message,
which is in fact sent to Fr iend. So what is to be
guessed by the attacker is YY (in order to have Evil
sending the ACK YY+I message). However, this is
not an easy task because each TCP maintains a 32-bit
ISN counter that is incremented by 64,000 every half-
second, and, additionally, by 64,000 each time a con-
nection is established.
To get an idea of where in the 32-bit sequence number
space Targe t ' s TCP is, the attacker establishes sev-
eral counectious to a TCP port on Targe t , and stores
the final ISN received. Besides, the attacker calculates
the average RTI" (round-trip time) from E v i l to
T a r g e t to E v i l (most likely by using ICMP Ping
messages). Now the attacker has the baseline (the last
received ISN) and a good idea of how long it will take
an IP datagram to travel across the Internet to reach
T a r g e t (approximately half the average RTT, as most
times the routes are symmetrical). So, the attacker im-
mediately proceeds to initiate the three-way handshake
(each interim connection would increment the ISN by
64,000) and finally the spoofed segment with the pre-
dicted ACK is sent to Target . As said before, if the
guess is correct, T a r g e t is compromised.

• What must be disabled on Friend& In the SYN re-
quest sent by E v i l (impersonating Fr iend) to
Targe t , not only the destination port number is speci-
fied, but also the source port number is included (as in
every TCP segment). So when Ta rge t answers by
sending to F i end the second segment in the three-way
handshake protocol (SYN/ACK)it will use as destina-
tion port number, the same one he received as source
port number in the SYN request. Therefore, what must
be disabled on Fr i end is precisely this port. In the
outlined scenario aDenial of Service attack known
as T C P S Y N f l o o d i n g attack (or just SYN attack)
is used to disable the port. Denial of Service attacks
(and SYN attacks) are discussed in section $. 3 .
($.3 .3 .) .
• How can this attack beprevented?: This attack can be
prevented by disabling all the r* commands, or (if trust
is extended only to local hosts) by having the router(s)
deny any packet coming from outside with a source IP
address correslxmding to a local host. RARP queries
could be used to detect attacks coming from machines
on the same physical network as the target server.

An exhaustive discussion on TCP connection spoofing
attacks can be found in [21].

5.2. Hijacking.

In section $. 1 .4 . a basic, though complex, form of
connection spoofing was analyzed. The possibility of
an attack of this type, was first discussed by R. Morris
[22]. Morris' attack can easily be extended by sniffing
the network somewhere between the (trusted) client and
the (target) server. The Sniffer could be used to get the
server's ISN, and, even better, to establish a full du-
plex TCP connection with the server (assuming the
real trusted client is down, or under a denial of service
attack).
Note however that Morris' attack relies on the trusted
hosts identification scheme, and is thus useless in sit-
uatious where password authentication is required,
A different, yet related, type of attack based on sniff'rag
and IP spoofing is known as H i j a c k i n g or T C P
session hijacking.
TCP hijacking attacks are mounted to take over exist-
ing connections. Intruders bypass one-time passwords
and other strong authentication schemes by hijacking
the connection after the authentication is complete.
Suppose that a legitimate user connects to a remote
site through a login or terminal session, if the intruder
hijacks the connection after the user completed the
authentication, the remote site is compromised. An
even worse situation occurs if the user has logged into
the remote system as root, then the attacker might
issue a comma~ad to change the supemser password, or
add a privileged account to the password database.
Sniffers and hijacking software are the basic tools used
to mount hijacking attacks.
A truly skillful hijack can be fully accomplished
without divulging a single clue to the user, weaker
implementations (which can be used to hijack idle
terminM sessions) echo to the user the attacker's
keystrokes and responses from the remote host.
An interesting hijacking attack is described in [2 3].
The proposed attack is based on the creation of a
desynchronized state (with mismatching sequence
numbers) on each end of a TCP connection so that the
two points cannot exchange data any longer. A third
party host (the intruder's host) is then used to create
acceptable packets (mimicking the real ones) for both
ends. Although some flaws related to the attack can be
used to detect it, chances are good that it can be
mounted without detection.
The best way to reduce the threat of a TCP connection
spoofing is to use an encryption-based terminal proto-
col. These protocols can limit the consequences of in-
troducing fake data on the connection, because even if
the receiver accepts the data as valid, the command

13

interpreter will not be able to make sense-of it.
More details on hijacking can be found in [24].

5.3. Denial of Service.

In a denial o f service attack (D.O.S. attack), one
user takes up so much of a shared resource that none of
the resource is left for other users [25]. There are two
types of denial of service attacks. The first type of at-
tack attempts to damage or destroy resources so no-
body can use them. The second type of attack over-
loads some system service or exhausts some resource,
thus preventing others from using the service.
Networks are vulnerable to several DOS attacks. Three
important types will be discussed in the following
sections: Service Overloading, Message Flooding and
Clogging.

5.3.1. Service Overloading.

Service overloading occurs when floods of requests
are made to a server process on a single computer.
Usually these brute force attacks can cause the system
to be so busy that it is unable to process regular tasks
in a timely fashion. Many requests will be discarded
and, in some extreme cases, the attacked host will
crash. A special case of service overloading results
when a server process is forced to consume so many
resources as to cause its host to crash. A typical
example of this type of attack is known as Finger
Bomb. Finger is a client, used to gather information
about users of a host. If John Doe has an account on
the host v i c t i m . c o r n , any user on snoop.corn
could 'finger' John Doe's account by executing the
command:
s n o o p> finger johndoe@victim.com.
This finger of course is recognized as coming from
snoop.com. However if the following eornmarld were
used:
s n o o p > finger johndoe@ victim.corn@third corn
it would effectively appear as johndoe being fingered at
victim.corn from th i rd . com. Since finger servers ac-
cept nested queries, an attacker could execute:
snoop> finger johndoe@ @ @ @ @...@ @victim.com
This would cause victim.corn to finger itself recur-
sively. If victim.corn fingers itself recursively enough
times, then memory, swap space, and hard drive space
will eventually fill up, causing the machine to crash.
An obvious, though drastic, way to prevent this attack
is disabling the finger service.

5.3.2. Message Flooding.

Message f looding occurs when a user slows down a
system on the network to prevent the system from

processing its normal workload. Message flooding at-
tacks are frequently directed against authentication
servers. Under a message flooding attack, an authenti-
cation server can become so loaded as to be unable to
respond requests coming from its clients. This will al-
low the attacker's machine to easily masquerade as the
legitimate authentication server and, by answering
with bogus information to authentication queries, to
log into privileged accounts.
Often, message flooding is accomplished just by bom-
barding a server with thousand of ICMP echo request
messages (using a ping program).
Message flooding can also be used to congest network
traffic. A simple way to do this is by piping packets
between two well-known ports (ports used to pro-
vide standard TCP/UDP services) to create an infinite
sequence (e.g., sending chargen packets [port 19] over
to the echo port [port 7]). Of course, this specific type
of message flooding can be easily prevented by turning
off services that might be used to cause infinite
sequences (there are also some filtering programs that
prevent redirecting data between selected ports).

5.3.3. Clogging.

The implementatiOn of the three-way handshake proto-
col used by TCP to establish connections (see
S. 1.4.) , can be abused to mount a very nasty denial
of service attack known as TCP S Y N f looding
attack (or just SYN attack). The potential for abuse
arises at the point where the server system has sent an
acknowledgment (SYN/ACK) back to client but has
not yet received the ACK message. This is what is
known as a half-open connection. The server has built
in its system memory a queue containing all pending
connections. This queue is of finite size, and it can be
made to overflow by intentionally creating too maay
partially open connections. This can be accomplished
by flooding a server port with spoofed SYN messages.
As the packets are spoofed to impersonate unreachable
clients, the protocol will never be completed, and thus
the half-open queue will eventually fill causing the
server to be unable to accept any new incoming con-
nections.
Although the half-open connections will eventually
expire, the attacking system can just keep sending
spoofed SYN requirements faster than the victim sys-
tem can expire the pending connections.
TCP SYN flooding has been used to mount major
attacks to Interact Service Providers. The services
themselves are not harmed, just the ability to provide
them is impaired.
Blocking an ongoing attack by having a router deny
any packet coming from a specific IP address is not a
solution because Usually each of the source addresses

14

in the spoofed packets is randomly chosen, by the [13]
attacker's software, from an array of tmreachable IP
addresses.
Several patches have been released to make UNIX ker-
nels SYN-attaek resistant. If a patch is not available, [14]
then, at least, the number of half-open connections al-
lowed should be increased and the amount of time that
a connection is allowed to stay in a half-open state
should be reduced.
Additional details on TCP SYN flooding can be found [15]
in [26].

References.

[I]

[21

131

[41

[Sl

[6]

[7]

[81

[91

[lOI

[111

I121

A. Silberschatz, P. Galvin, Operating
Systems Concepts. Addison-Wesley,
Fourth Edition, 1994, pp. 431.

C.H. Bennett, G. Brassard, A.K. Ekert,
Quantum Cryptography. Scientific
American, v. 267, n.4, 1992, pp. 50-57.

Bruce Schneier, Applied Cryptography.
Wiley, Second Edition, 1996, pp. 554-557.

W. Stallings, Network and lnternetwork
Securi ty. Prentice Hall, 1995, pp. 214-217.

W. Stevens, T C P / I P I l lus t ra ted, Vol. 1.
Addison-Wesley, 199 4.

D. Comer, ln ternetworking with T C P / I P
Vol. 1. Prentice Hall, Third Edition, 199 5.

A.S. Tanenbaum, Compu te r Networks.
Prentice Hall, Third Edition, 19 9 6.

ISS Sniffer FAQ. http://www.iss.net/.

D. Atkins eta/., Internet Security. New
Riders, 1996, pp. 258-279.

S. Garfinkel, PGP: Pretty Good Privacy.
O ReiUy, 1994.

SSL Version 3.0.
http://home.netscape.com/eng/ssl3/ssl-toc.html.

N. Hailer, The S/KEY One-Time
Password System. RFC 1760,
BcUcore, February 1995.

116]

I171

[18]

[19]

[20]

1211

I22]

123]

[241

[2s]

[26]

J. Kohl, C. Neuman, The Kerberos
Network Authentication Service
RFC 1510, September 1993.

(vs).

Project Loki. Phrack Magazine,Volume
Seven, Issue Forty-Nine, File 06.
W h i t ~ by route@infonexns.com for Phrack
Magazine. Guild Productions, August 199 6.

D.C. Hummer, An Ethernet Address
Resolut ion Protocol. RFC 826, 1982.

D. Atkins et d., Internet Security. New
Riders, 1996, pp. 257-316.

W. Stevens, T C P / I P I l lus t ra ted, Vol. 1.
Addison-Wesley, 1994, pp. 119-123.

A.S. Tanenbaum, Compu te r Networks.
Prentice Hall, 3rd. ed., 1996, pp. 355-359.

C. Hedrick, Routing Information
Protocol . RFC 1058, 1988.

K. Siyan, C. Hare, Internet Flrewalis and
Network Security. New Riders, 1995,
pp. 304-306.

IP-spoofing Demystified.
By route@infonexns.com
Guild Produclions, June 1996.

R. Morris, A Weakness in the 4.2 BSD
UNIX TCP/IP Software. Computing
Science Technical Report 117. AT&T Bell
Laboratories, 1985.

L. Joncheray, A Simple Active Attack
Against TCP. Merit Network, Inc.
lpj@merit.edu, Apri l 1995.

IP Spoofing Attacks and Hijacked
Terminal Connections. CF~T Advisory
CA-95"01. Available at http://www.cert.org and
at tip://info.cert.org/pub/cert_advisories/1995.

S. Garfhakel, G. Spafford, Practical UNIX
& Internet Security. O Reilly, 2nd Edition,
1996, pp. 759-778.

TCP SYN Flooding and IP
Spoofing Attacks. CERT Advisory
CA-96.21. Available at http://www.cert.org and
at ftp://info.cert.org/pub/cert advisories/1996.

15

