
Web Service Selection for Multiple Agents with
Incomplete Preferences

Hongbing Wang, Jie Zhang†, Cheng Wan, Shizhi Shao, Robin Cohen‡, Junjie Xu, and Peicheng Li
School of Computer Science and Engineering, Southeast University, China, {hbw@seu.edu.cn}

†School of Computer Engineering, Nanyang Technological University, Singapore
‡School of Computer Science, University of Waterloo, Canada

Abstract—A qualitative way is desirable for web service selec-
tion according to agents’ preferences on non-functional Quality
of Service (QoS) attributes of services. However, it is challenging
when the decision has to be made for multiple agents with
preferences on attributes that may be incomplete. In this paper,
we first use a qualitative graphical representation tool called
CP-nets to describe preference relations in a relatively compact,
intuitive and structured manner. We then propose algorithms
based on this representation to select web services for multiple
agents despite the presence of incompleteness in their preference
orderings. Our experimental results indicate that this method
can always obtain some optimal outcomes which closely satisfy
all agents.

I. INTRODUCTION

Web service selection has drawn more and more atten-
tion [1], [2], [3]. The service that satisfies an agent the
most among a set of services needs to be selected based
on the agent’s preferences on non-functional QoS attributes
of services. In most existing solutions, an utility function is
used to represent an agent’s preferences, which is a powerful
quantitative approach to knowledge representation. In many
cases, it is however desirable to assess preferences in a
qualitative rather than quantitative way because a quantitative
approach may induce errors from agents in identifying their
utilities and thus make wrong selection of services. In addition,
a decision may have to be made for a group of agents with
different preferences on QoS attributes of web services [4].
Their preferences may also be incomplete. Incompleteness
of preferences represents an absence of knowledge about
the relationship between certain pairs of outcomes. It arises
naturally when we have not fully elicited agents’ preferences
or when agents have privacy concerns which prevent them
from revealing their complete preference orderings. It then
becomes difficult to comprehensively consider all the agents’
preferences and select services which satisfy them the most.

In this paper, we use CP-nets [5] to represent qualitative
preference relations in a relatively compact, intuitive and struc-
tured manner under conditional ceteris paribus (all else being
equal) preference statements. Based on this representation, we
propose a preference reasoning algorithm to first construct a
derivation tree from a CP-net for each agent and then generate
all service patterns for this agent. We also rank the service
patterns by voting semantics [6]. Finally, we merge ranked
service patterns for all agents and select a set of services
that satisfy these agents the most. The processes of service

selection for multiple agents with incomplete preferences are
demonstrated by a concrete example, and the performance
is also evaluated by a wide set of artificially generated QoS
attributes of services and values of attributes. Our method is
able to accurately select the most optimal services for agents
in different simulation scenarios, within acceptable execution
time.

II. AN EXAMPLE SCENARIO

In a typical scenario of service selection between a group
of users, each user describes her preferences. The agent acting
on behalf of the user will identify the relevant services that
satisfy this user the most. The agent will also communicate and
negotiate with other agents to reach an agreement on services
that closely satisfies all these users.

A motivating real life example for our work is the field
of enterprise information management. In this field, the most
widely used application by different departments is probably
the data storage and access service. These services need
to meet the needs of different departments. For example, a
company’s branches need to choose a proper data storage and
access service when they conduct joint marketing activities.
Each branch expresses its preferences over QoS attributes
of services. The branch A may prefer security over other
attributes (i.e. response time and price). Branch B may be
concerned more with the attribute of response time. Other
branches may prefer some other quality attributes (e.g. the
platform). If no branch can persuade other branches, no service
can satisfy all these branches. In addition, some branches may
express their preferences on only a part of the attributes. We
focus on service selection for finding services that closely
satisfy these branches.

III. PRELIMINARIES

We begin with a brief outline of relevant notions from
decision theory, CP-nets introduced by Boutilier et al. [5],
and mCP-nets and voting semantics proposed by Rossi et
al. [6], which are the fundamental concepts and methods for
the proposal of our algorithms of service selection for multiple
agents with incomplete preferences.

A. Preference Logic

Assume that the world can be in one of a set of states
S, and in each state s there are a number of actions As

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.27

565

that can be performed. Each action in one state denotes a
specific outcome. The set of all outcomes is denoted by O. A
preference ranking is a total preorder over the set of outcomes:
o1 � o2 means that outcome o1 is equal to or more preferred
than outcome o2; o1 � o2 means that outcome o1 is strictly
more preferred than outcome o2; while o1 ∼ o2 denotes that
the decision maker is indifferent between o1 and o2.

Assume a set of variables (attributes) V = {X1, ..., Xn}
with domains D(X1), ..., D(Xn). An assignment x of values
to a set X ⊆ V of variables (also called an instantiation of X)
is a function that maps each variable in X to an element of its
domain: if X = V , x is a complete assignment, otherwise x is
a partial assignment [4]. We denote by Asst(X) the set of all
assignments to X . If x and y are assignments to disjoint sets X
and Y (X ∩ Y = ∅), respectively, we denote the combination
assignment set of x and y by xy. For any outcome o, we
denote by o[X] the value x ∈ D(X) assigned to variable
X by that outcome. A subset of variables X is preferentially
independent of its complement Y = V −X iff for all x1, x2 ∈
Asst(X) and y1, y2 ∈ Asst(Y), we have: x1y1 ⊆ x2y1 iff
x1y2 ⊆ x2y2. That is, the structure of the preference relation
over assignments to X does not change and can be assessed as
other attributes vary. Let X , Y , and Z be a partition of V into
three disjoint non-empty sets. X is conditionally preferentially
independent of Y given an assignment z ∈ Asst(Z) iff for all
x1, x2 ∈ Asst(X) and y1, y2 ∈ Asst(Y), we have: x1y1z ⊆
x2y1z iff x1y2z ⊆ x2y2z. In other words, if X is conditionally
preferentially independent of Y for all z ∈ Asst(Z), then X
is conditionally preferentially independent of Y given the set
of variables Z.

B. CP-nets

CP-nets introduced by Boutilier et al. [5] is a tool for
compactly representing qualitative preference relations un-
der the ceteris paribus assumption. A CP-net over variables
V = {X1, ..., X2} is a directed graph G over X1, ..., X2

whose nodes are annotated with conditional preference tables
CPT(Xi) for each Xi ∈ V . Each conditional preference table
CPT(Xi) associates a total order �i

u with each instantiation
u of Xi’s parents Pa(Xi) = U . For each variable Xi, we
ask the user to identify a set of parent variables Pa(Xi) that
can affect her preference over various values of Xi. Formally,
given Pa(Xi) we have that Xi is conditionally preferentially
independent of V − (Pa(Xi)∪{Xi}). Given this information,
we ask the user to explicitly specify her preferences over the
values of Xi for all instantiations of the variable set Pa(Xi)
to generate the CP-net and CPT.

C. mCP-nets

We first introduce partial CP-nets as a CP-net in which
certain attributes may not be ranked. This implies that the
agent is indifferent to the values of these attributes. We put
together several partial CP-nets to represent the incomplete
preferences of multiple agents. A mCP-net [6] is a set of m
partial CP-nets which may share some attributes, such that
every attribute is ranked by at least one of the partial CP-nets.

An outcome for a mCP-net is an assignment of the values to
the attributes in all the partial CP-nets in their domains.

D. Voting Semantics

We reason about a mCP-net by querying each partial CP-net
and then merging the results, which can be seen as each agent
“voting” whether an outcome dominates another. There are
five different voting semantics: Pareto, Majority, Max, Lex,
and Rank [6]. In Pareto, outcomes are often incomparable.
Majority and Max are the weaker criteria, and many agents
often vote in favor or for incomparability. In Lex, agents
are ordered by their importance. In the Rank semantic, each
agent ranks each outcome. It is also embedded by Rossi et
al. [6] in the context of mCP-nets, but they did not provide
actual algorithm designs. We extend and implement the Rank
semantic to address multiple agents’ preferences on QoS
attributes in web service selection, by considering the case
where agents may have implement preferences and agents may
be weighted differently in making decisions on services.

IV. PREFERENCE REPRESENTATION AND REASONING

We first describe the representation for incomplete prefer-
ences of an agent using CP-nets. The example scenario in
Section II will be used throughout the current section. We
then present the processes and algorithms of our reasoning
about incomplete preferences of multiple agents for service
selection.

A. Representing Incomplete Preference

Assume that the data storage and access service of a
company can be described by a number of QoS attributes,
including Platform (A: a file system or a database), Security
(B: low or high level), Response time (C: 0 - 100ms), Price
(D: $0 - $100), and Location (E: New York, Toronto or
London). Let V = {A, B, C, D, E} be the set of the five
attributes.

Definition 1: Attribute Constraint: is used to describe the
constraints on quality attributes defined by agents. For exam-
ple, an agent may define constraints on Security as b1: low
and b2: high.

Definition 2: Preference Statement: is used to describe a
preference about one quality attribute. For example, an agent
may prefer high level security for a service. The preference
statement is b2 � b1.

If an agent X proposes its incomplete preference sequence:
Platform � Response time � Location, the partial CP-net
is shown in Figure 1. The arrows denote that one attribute
dominates another. This partial CP-net consists of only three
variables A, C, and E because the agent does not provide the
full preference information. The agent has an unconditional
preference on Platform, and it prefers a file system for storing
data. In this example, no matter which preference statement is
met between a1 and a2, c1 is always better than c2. The agent’s
preference on Location, however, depends on Response time.
For example, if the response time is longer than 50ms, agent
X is indifferent between e2 and e3, but e1 is less preferred
than e2 and e3 by X.

566

A: Platform a1 � a2

C: Response time

E: Location

a1 : c1 � c2
a2 : c1 � c2

c1 : e1 � e2 � e3

c2 : (e2, e3) � e1

file systema1 :
a2 : database

Response time≥50ms

c1 : Response time<50ms

c2 :

Location = Toronto

e1 : Location = New York

Location = London

e2 :

e3 :

(a) (b) (c)

Fig. 1. (a, b) CP-net for Agent X, (b) CPT, (c) Preference Statements

B. Service Selection Processes

The service selection processes are as follows. For each
agent, we first transform its CPT of preference description to
a derivation tree. We then generate a set of service patterns
(called aSet) that satisfy the agent’s preferences. The rank
value of each item in the aSet will be computed based on
the Rank semantic. The total rank values of each service
pattern will then be computed by merging rank values of
service patterns from each agent. The available services will
be divided into different patterns according to their quality
attribute values. Finally, the services that match the best
patterns will be chosen for all agents.

C. Preference Reasoning Algorithms

We describe the algorithms that transform CP-nets to deriva-
tion trees, generate service pattern sets from the derivation
trees, rank service patterns in each set, and merge rank values
of service patterns for service selection. We also provide
complexity analysis for these algorithms that will also be
confirmed by the experimental results in Section VI.

1) Derivation Tree: Based on an agent’s preferences rep-
resented in a CP-net, an algorithm is proposed to generate
a derivation tree. The agent’s preference statements of the
attributes that are conditioned by a smaller number of or no
other attributes will be in the upper level of the tree. Nodes are
conditioned by their parents. In the same level of the tree, the
preference statements (nodes) will be listed according to their
priorities from left to right. For the children of the same parent,
the left children are more preferred than the right children.
The pseudo-code summary for generating a derivation tree is
shown in Algorithm 1, and the derivation tree for agent X’s
preferences in Figure 1 is shown in Figure 2. a1 and a2 are in
the upper level of the tree because attribute A is unconditional.
a1 is a left child because it is more preferred.

2) Service Patterns and Rank Semantic: Service patterns of
an agent are generated from its derivation tree. We then use
the Rank semantic method to separate the service patterns into
different sets in order to find the best patterns.

Definition 3: Service Pattern: is a combination of attribute
constraints for all attributes of QoS, i.e. a1b1c1d1e1.

Input : CP-net of an agent; root of the tree Tr
Define : RUNTIME: allowed runtime of program
Output: Derivation tree Tr of the agent

Add constraints of unconditional attribute in CP-net as1

children of root, left to right according to priority;
foreach other attribute preference in CP-net do2

Find attribute constraints on condition of leftmost3

node in upper level;
Add as children, left to right according to priority;4

foreach node m
= leaf, from bottom up do5

if preference on condition of m = left node n then6

Duplicate subtree of n as m’s subtree7

else8

Find constraints on condition of m;9

Add as children, left to right based on priority;10

if run time > RUNTIME then11

break;12

Algorithm 1: Generating Derivation Tree

Definition 4: Rank of Service Pattern: is a number ex-
pressing the degree of the service pattern to meet agents’
preferences.

Definition 5: aSet: short for an analogous set is a set of
items ordered according to their values. An item in an aSet
can also be an aSet called Sub aSet.

Definition 6: Service Pattern aSet: is an aSet whose items
are service patterns ordered based on their rank values.

start

a1 a2

c1 c2

e1 e2 e3

start

a1 a2

c1 c2

e2, e3

start

a1 a2

c1 c2 c1 c2

(a) (b)

(c)

e1 e2 e3 e1

e1 e1e2, e3e2 e3 e1 e1e2, e3e2 e3

Fig. 2. Derivation Tree of CPT for Agent X

As shown in Figure 2, there may be many paths from
the top to the bottom of the derivation tree. The left paths
are more preferred than the right ones (see Algorithm 1).
The combination of all paths will become an aSet T . For

567

example, the aSet from Figure 2 is T = {T1, T2, ..., T10}, and
T1 = a1c1e1, T2 = a1c1e2 and etc. If the agent’s preferences
are incomplete, the attributes that are not in the CP-net (called
remaining attributes) should be added to each path to become
a service pattern. If the remaining attributes have their own
priority order, the order will be added into patterns for integrity
and accuracy. Suppose that the attributes of Security (B) and
Price (D) have strict priorities, b1 � b2 and d1 � d2. T1

becomes a service pattern Sub aSet as T1 = {{a1c1e1b1d1} �
{a1c1e1b1d2, a1c1e1b2d1} � {a1c1e1b2d2}}. The pseudo
code for generating all service patterns is shown in Algo-
rithm 2.

Input : Preference statements, derivation tree Tr
Output: Service pattern aSet T

int i = 0; aSet T = NULL;1

foreach path in tree Tr from left to right do2

i = i + 1;3

Combine preference statements in all levels;4

Sub aSet T [i] = NULL;5

Add the combination into T [i] as an item;6

Add T [i] into aSet T ;7

foreach remaining attribute do8

if attribute value has strict priority then9

Order preference statements by priority;10

Add them into each Sub aSet in T ;11

Algorithm 2: Generating Service Pattern aSet

Input : Service pattern aSet T , setWeight
Output: Ranked service patterns in aSet

int i = 0;1

foreach Sub aSet in T by priority do2

i = i + 1; j = 0;3

foreach service pattern in T [i] by priority do4

j = j + 1;5

Rank(pattern[j]) = i × setWeight + j;6

Algorithm 3: Ranking Service Patterns in aSet

Because T1 contains the best service patterns, we define the
initial rank of items in T1 as a number setWeight. The value of
setWeight is larger than the product of the size of aSet T and
the maximum size of the Sub aSets of T . In the example in
Section V, we set setWeight to be 100. The initial rank of the
items in T1 is then 100. The rank of each pattern in T1 will be
added by its order number. For example, Rank(a1c1e1b1d1) =
101, Rank(a1c1e1b1d2) = 102, and Rank(a1c1e1b2d1) = 102.
a1c1e1b1d2 and a1c1e1b2d1 have the same rank value because
they are in the same Sub aSet of T1. The pseudo code for
ranking service patterns is shown in Algorithm 3.

3) Merging and Selection: After we have an aSet for each
agent and service patterns with rank values in each aSet, we
now merge the aSets for all agents and compute the total rank

values of each service pattern in the merged aSet. Service
selection for the agents will depend on these total rank values
of service patterns.

Input : Total number of agents M , ranked service
pattern aSet for each agent, weight of each
agent (optional)

Output: Service patterns ordered by total rank

if no weight of agents provided then1

Weight of each agent = 1
M ;2

Initialize Rank total of each pattern = 0;3

Compute Rank total using Equation 1;4

Order service patterns according to Rank total5

foreach set of patterns with same Rank total do6

Compute weighted distance using Equation 2;7

Order them according to weighted distance;8

Algorithm 4: Merging Service Patterns

Input : Service patterns ordered by total rank, a set of
available services

Output: The best services

foreach available service do1

Find matching pattern based on attribute values;2

boolean flag = true;3

while flag do4

foreach ordered service pattern do5

Find services that match the pattern;6

if found matched services then7

flag = false;8

Return the found services;9

Algorithm 5: Service Selection

Different organizational forms exist among agents. If all the
agents have equal weight, the same pattern’s rank values of
the agents will simply be added. The pattern with the highest
total rank is the best pattern for all the agents. However, agents
may be weighted differently in making decision on services.
In this case, the total rank of service pattern j (j is the id of
the pattern) can be computed as follows:

Rank total(j) =
M∑

i=1

[Rankj
i × Weight(i)] (1)

where i is the id of an agent, M is the total number of
agents, and Rankj

i is agent i’s rank for service pattern j.
The total weight of all agents is normalized to 1. If some
patterns have the same total rank, each of these patterns will be
ordered by its weighted distance to the mean of all rank values
for this pattern. Note that the mean value can be calculated
by Equation 1 because the total weight is 1. The weighted
distance can then be computed as follows:

Dis(j) =
M∑

i=1

[Weight(i)× |Rankj
i −Rank total(j)|2] (2)

568

The pseudo code for merging service patterns and computing
their total rank values is shown in Algorithm 4.

Based on the total rank values of all service patterns, service
selection is done by matching available services with service
patterns. The services that match the patterns with the smallest
rank values will be returned to all agents. The pseudo code
for service selection is shown in Algorithm 5.

4) Algorithm Complexity Analysis: Assume that the num-
ber of attributes included in a CP-net is attNum and the
maximum number of attribute constraints in one preference
statement is maxPS. The computational complexity of line 1
in Algorithm 1 is lower than O(maxPS). The computational
complexity of the first and second For loops is lower than
O(attNum×maxPS). Because the duplicate operator costs
only O(1) time, the computational complexity of the second
For loop will decrease dramatically depending on the ratio
of duplicates. Furthermore, this algorithm gives the agent
the right to set the runtime limit. If the runtime limit is
reached, the algorithm will stop and return the left part of
the derivation tree which represents the comparatively more
preferred combination of attributes. Some methods of cutting
derivation trees may also be considered in our future work.

Suppose that the number of all service quality attributes is
aNum all and the maximum number of attribute constraints
of one attribute is maxAC. The worst case complexity of
Algorithms 2 and 3 is O(aNum allmaxAC). But, if the
attribute constraints of agents remain stable over time, this
step can be processed in advance to improve the efficiency.

If the size of aSet T is sizeT and we adopt the bin
sort method to order service patterns, the complexity of
Algorithm 4 is O(M × sizeT × log(sizeT)). The complexity
of Algorithm 5 is dependent on sizeT and the number of
available services for selection. Our experimental results in
Section VI indicate that the runtime of our algorithms is
tolerable for a large number of available services.

B: Security b1 � b2

D: Price

E: Location

b1 : d1 � d2

b2 : d1 � d2

d1 : e1 � e2 � e3

d2 : e2 � e3 � e1

(a) (b) (c)

Location = Londone3 :

e1 : Location = New York

Location = Torontoe2 :

lowb1 :

b2 : high

Price ≥ $50

d1 : Price < $50

d2 :

Fig. 3. (a,b) CP-net for Agent Y, (b) CPT, (c) Preference Statements

V. EXAMPLE DEMONSTRATION

In this section, we follow up with the example scenario
described in Section II and the preferences of agent X in
Section IV-A, and add preferences of other two agents, Y and
Z. We demonstrate the processing results of our service pattern
generation, ranking and merging algorithms.

The preferences of agents Y and Z are represented by CP-
nets, as shown in Figures 3 and 4. Agent Y proposes its incom-
plete preference sequence: Security � Price � Location, and
agent Z’s preference sequence is more complicated: Platform
� Security ∼ Response time � Location. Their preference
statements are expressed in Figure 3 (b) and Figure 4 (b). As
described in Section IV-C, we first generate derivation trees
for these two CP-nets respectively, using Algorithm 1. From
each derivation tree, we use Algorithm 2 to generate a service
pattern aSet for each agent, and rank these service patterns
using Algorithm 3. The 5 best Sub aSets for each agent from
T1 to T5 are listed in Tables I, II and III.

A: Platform
a1 � a2

B: Security

E: Location

a1 : b1 � b2, c1 � c2

a2 : b1 � b2, c1 � c2

b1c1 : e1 � e2 � e3

(a) (b)

C: Response time

b1c2 : (e2, e3) � e1

b2c1 : e1 � e3 � e2

b2c2 : e2 � e3 � e1

Fig. 4. (a,b) CP-net for Agent Z, (b) CPT

TABLE I
RANKED SERVICE PATTERN ASET FOR AGENT X

{a1c1e1b1d1}:101 � {a1c1e1b1d2, a1c1e1b2d1}:102 �
{a1c1e1b2d2}:103
{a1c1e2b1d1}:201 � {a1c1e2b1d2, a1c1e2b2d1}:202 �
{a1c1e2b2d2}:203
{a1c1e3b1d1}:301 � {a1c1e3b1d2, a1c1e3b2d1}:302 �
{a1c1e3b2d2}:303
{a1c2e2b1d1, a1c2e3b1d1}:401�{a1c2e2b1d2, a1c2e3b1d2,
a1c2e2b2d1, a1c2e3b2d1}:402�{a1c2e2b2d2, a1c2e3b2d2}:403
{a2c2e1b1d1}:501 � {a2c1e1b1d2, a2c1e1b2d1}:502 �
{a2c1e1b2d2}:503

TABLE II
RANKED SERVICE PATTERN ASET FOR AGENT Y

{b1d1e1c1a1, b1d1e1c1a2}:101�{b1d1e1c2a1, b1d1e1c2a1}:102
{b1d1e2c1a1, b1d1e2c1a2}:201�{b1d1e2c2a1, b1d1e2c2a1}:202
{b1d1e3c1a1, b1d1e3c1a2}:301�{b1d1e3c2a1, b1d1e3c2a1}:302
{b1d2e2c1a1, b1d2e2c1a2}:401�{b1d2e2c2a1, b1d2e2c2a1}:402
{b1d2e3c1a1, b1d2e3c1a2}:501�{b1d2e3c2a1, b1d2e3c2a1}:502

TABLE III
RANKED SERVICE PATTERN ASET FOR AGENT Z

{a1b1c1e1d1, a1b1c1e2d1}:101�{a1b1c1e1d2, a1b1c1e2d2}:102
{a1b1c1e3d1}:201�{a1b1c1e3d2}:202
{a1b1c2e2d1, a1b1c2e3d1}:301�{a1b1c2e2d2, a1b1c2e3d2}:302
{a1b1c2e1d1}:401�{a1b1c2e1d2}:402
{a1b2c1e1d1}:501�{a1b2c1e1d2}:502

From Tables I, II and III, we can see that a1b1c1d1e1 is in
the best Sub aSet of every agent. We can conclude that this
service pattern should be the best one for all the agents. Our

569

Algorithm 4 merges service patterns in the aSet of each agent
and assigns a total rank value for each service pattern. The
10 best service patterns are listed in Table IV along with their
rank values and their distance from the respective mean rank
values averaged over all agents (see Equations 1 and 2). Note
that the three agents have equal weight in this case.

TABLE IV
MERGED AND RANKED SERVICE PATTERNS

Pattern Rank total Distance from Mean
1 a1b1c1d1e1 101 0
2 a1b1c1d1e2 168 57.74
3 a1b1c1d2e1 202 172.63
4 a1b1c1d1e3 268 207.61
5 a1b1c2d1e2 301 99.50
6 a1b1c2d1e3 335 57.45
7 a1b1c2d1e1 335 207.60
8 a1b1c1d2e3 368 207.60
9 a1b1c2d2e2 402 100.00
10 a1b2c1d1e1 435 304.96

From Table IV, we can see that service pattern a1b1c1d1e1 is
indeed ranked the best by our algorithms. The service patters
a1b1c2d1e3 and a1b1c2d1e1 have the same rank 335. They
are then ranked by their distance to their respective mean
rank values. In this case, a1b1c2d1e3 is closer to its mean
and ranked higher than a1b1c2d1e1.

We also show the results of ranking when agents’ decisions
are weighted differently. In this example, X’s weight is 0.6,
Y’s weight is 0.2, and Z’s weight is also 0.2. We list the 10 best
service patterns in Table V. Because no two patterns have the
same total rank values, the distance of service patterns from
their respective means is not shown in the table.

TABLE V
AGENTS WITH DIFFERENT WEIGHTS

Pattern Rank total # Pattern Rank total
1 a1b1c1d1e1 101 6 a1b2c1d2e1 232.7
2 a1b1c1d2e1 131.9 7 a1b1c1d1e3 291
3 a1b1c1d1e2 191 8 a1b2c1d1e2 301.8
4 a1b2c1d1e1 201.8 9 a1b1c1d2e3 321.9
5 a1b1c1d2e2 221.9 10 a1b2c1d2e2 332.7

Comparing Tables IV and V, we can see that a1b1c1d1e1

still has the best rank. This service pattern is a dominant
one and is not affected by the importance of agents’ pref-
erences. However, many other service patterns’ positions are
changed. For example, a1b1c1d2e1 was less preferred than
a1b1c1d1e2 in Table IV, but it now becomes more preferred
in Table V when agents have different weights. The service
pattern a1b1c1d2e2 is ranked the fifth in Table V but was not
even in the top 10 list of Table IV. Different weights of agents’
decisions do affect the final ranking of service patterns. Our
algorithms are able to capture this effect.

VI. EXPERIMENTAL RESULTS

In this section, we begin with a set of experiments to
verify the accuracy of our approach and compare with a
quantitative approach. The first experiment involves six service

attributes (B, C and D mentioned in Section IV-A, and
Integrity, Throughout and Availability) where agents have the
consistent preferences over the values of these attributes. For
example, every agent prefers a lower price (D) and higher
security (B). This setting allows us to objectively identify a
set of services, some of which are strictly more preferred than
the others by all agents. The domain of these attributes is
normalized to be [0, 100]. 5 services are manually generated
so that S1 � S2 � S3 � S4 � S5 by all agents as shown
in Table VI. Another 25 services are randomly generated. 4
agents with randomly generated preferences are also involved
in the experiment. We run the experiment for 5 times and
report the ranking of the five services in Table VII. We can see
that our approach correctly ranks these services and remains
their relative positions no matter what other services are.

TABLE VI
FIVE MANUALLY GENERATED SERVICES

Service C D B Integrity Throughout Availability
S1 1 0 98 98 98 98
S2 12 10 86 85 86 86
S3 34 31 66 65 66 66
S4 65 62 36 35 36 36
S5 96 95 6 8 8 8

TABLE VII
RANKING OF THE FIVE MANUALLY GENERATED SERVICES

Service Test 1 Test 2 Test 3 Test 4 Test 5
S1 1 1 1 1 1
S2 2 3 3 3 3
S3 8 9 8 10 8
S4 19 22 20 21 21
S5 23 30 29 30 30

In the second experiment, we evaluate the accuracy of our
approach in a more general case. In this experiment and all
the later experiments in this section, six QoS attributes are
involved, including the five ones mentioned in Section IV-A
and the extra one, Availability (F: 0 - 100%). Agents may not
have consistent preferences for these attributes. Each attribute
has 2 values. We generate 500 candidate services. 4 agents
are involved in this experiment with randomly generated
preferences, some of which are incomplete. This experiment
includes two cases. In the first case (Case 1), each agent has
the equal weight, while in the second case (Case 2), we assign
each agent with a different weight. For each case, our approach
generates the best 5 service pattern Sub aSets. We measure
the satisfaction ratio of services in each pattern, and check
whether our approach generates ranked service patterns that
correctly match their satisfaction ratio. The satisfaction ratio

of one service S can be calculated by
∑4

i=1
P ′

i

Pi
Weight(i),

where Pi is the total number of preference statements for agent
i and P ′

i is the number of satisfied preference statements by
service S for this agent. The average satisfaction ratios of the
services in the best 5 service pattern Sub aSets after running
the experiment for 5 times are listed in Table VIII. We can
see that the ranking of the 5 best Sub aSets generated by our
approach correctly matches their average satisfaction ratios,

570

 0

 50

 100

 150

 200

 250

T1 T2 T3 T4 T5

S
el

ec
te

d
S

er
vi

ce
s

Service Pattern Sub_aSets

7 1 1

40

6 1

119

15
3

213

46

11

209

119

31

2 Values
4 Values
8 Values

 0

 200

 400

 600

 800

 1000

 1200

 1400

T1 T2 T3 T4 T5

S
el

ec
te

d
S

er
vi

ce
s

Service Pattern Sub_aSets

393 2

194

142

497

396

1316

176

49

967

497

136

2 Values
4 Values
8 Values

 0

 500

 1000

 1500

 2000

T1 T2 T3 T4 T5

S
el

ec
te

d
S

er
vi

ce
s

Service Pattern Sub_aSets

525 2

278

375

799

102
25

2237

298
87

2099

889

208

2 Values
4 Values
8 Values

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1000 5000 8000

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Available Services

2 Values
4 Values
8 Values

(a) (b) (c) (d)
Fig. 5. (a) Service Selection from 1000 Services; (b) Service Selection from 5000 Services; (c) Service Selection from 8000 Services; (d) Runtime for
Different Numbers of Candidate Services;

which confirms that our approach accurately ranks services.
The third experiment is carried out to demonstrate that a

classic quantitative approach (i.e. of [7]) may have problems
when agents cannot accurately identify their quantitative pref-
erences. In this experiment, each agent assigns a score in
[1, 10] to each attribute value of a service. However, an agent
may incorrectly represent its preference by ±1, i.e. a score of
9 may be assigned to a attribute value with the correct score
of 10. 30 services are randomly generated for the experiment
involving 8 agents. Applying the quantitative approach to both
correct and incorrect scores of attribute values respectively, we
can see from some examples in Table IX that the quantitative
approach incorrectly assigns scores to some services, and thus
generates wrong ranks for them because of the incorrect scores
of service attribute values assigned by agents.

TABLE VIII
AVERAGE SATISFACTION RATIO OF THE BEST 5 SUB ASETS

Cases T1 T2 T3 T4 T5

Case 1 0.95 0.88 0.83 0.72 0.65
Case 2 0.97 0.88 0.82 0.74 0.66

TABLE IX
INACCURACY OF A QUANTITATIVE APPROACH

Service Correct Score Incorrect Score Incorrect Rank
S13 352 376 3
S4 368 368 4
S16 400 352 7
S5 320 296 13
S19 368 280 16

In the second set of experiments, we further test our
algorithms based on a wide set of randomly generated QoS
attribute values of a large number of candidate services. In
some of these experiments, attributes may have a larger num-
ber of possible values, which are artificially generated. 1000,
5000, and 8000 candidate services are randomly generated
respectively. We also compare the results of service selection
for different cases where each attribute has 2, 4, and 8 values
respectively. We can see from Figures 5(a), 5(b) and 5(c) that
the best Sub aSet T1 in each case (i.e. where 1000 services
are generated and each attribute has 4 values) has at least one
service. These services satisfy the agents the most. As can
be seen from these figures, the number of services in each

Sub aSet decreases when attributes have more possible values.
This is simply because more possible values for attributes will
increase the number of attribute constraints. It becomes more
difficult for candidate services to match service patterns in
aSets. Comparing the three figures, we can see that the number
of services in each Sub aSet increases when a larger number
of candidate services are generated.

In the third set of experiments, we analyze the execution
time of our algorithms for different numbers of generated
candidate services, QoS attributes, agents and possible values
for each attribute, respectively. In the first three cases, each
variable has 2, 4, and 8 values respectively. Our analysis
has been performed on a 2.13GHz Intel Core2 Workstation
with 2GB of RAM. We first look at how the execution time
will change when different numbers of candidate services are
generated. There are two agents in this experiment. From Fig-
ure 5(d), we can see that the execution time of our algorithms
will increase exponentially when a larger number of candidate
services are generated. We then fix the number of candidate
services to 1000. We vary the number of attributes from 6 to
15. The results are shown in Figure 6(a). The execution time of
our algorithms also increases exponentially with the increase
of the number of attributes. These results comply with our
analysis of algorithm complexity in Section IV-C4. However,
we can see that the execution time is only 36.8ms for the case
where there are 15 attributes in total and each attribute has 8
possible values. This is acceptable for such a large number of
generated candidate services.

We then vary the number of agents from 2 up to 16 to
compare the execution time. In this case, there are 8000
candidate services. We can see from Figure 6(b) that the
execution time increases linearly with the number of agents.
Our algorithms scale well with the increase of the number
of agents involved in the service selection process. We also
fix the number of candidate services to 8000 and the number
of attributes to 15, but vary the number of possible values
for each attribute. The results in Figure 6(c) show that our
algorithms increase exponentially when each attribute has a
larger number of possible values. Finally, we test the execution
time of our algorithms for the extreme case where there are
8000 candidate services, 15 attributes, and 16 agents, and each
attribute has 8 possible values. We run our experiment for 30
times. The results plotted in Figure 6(d) show that the average

571

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 9 12 15

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Attributes

2 Values
4 Values
8 Values

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 8 16

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Agents

2 Values
4 Values
8 Values

 0

 100

 200

 300

 400

 500

 600

 700

 800

2 4 6 8

E
xe

cu
tio

n
T

im
e

(m
s)

Number of Possible Values

2 Agents
4 Agents
8 Agents

16 Agents

702

1500

 0 5 10 15 20 25 30

E
xe

cu
tio

n
T

im
e

(m
s)

Execution Number

(a) (b) (c) (d)
Fig. 6. (a) Runtime for Different Numbers of Attributes; (b) Runtime for Different Numbers of Agents; (c) Runtime for Different Numbers of Possible
Values; (d) Average Execution Time

execution time of our algorithms for this extreme case is less
than 1 second, which is still acceptable for users of web service
selection. Furthermore, the time of each execution is close to
the average execution time, indicating that our experimental
results in this section are statistically significant.

VII. RELATED WORK

Different quantitative approaches have been proposed for
QoS-oriented web service selection [2], [1]. Ardagna and
Pernici [2] introduce a mixed integer linear programming
modeling approach to the web service selection problem.
Lamparter et al. [1] uses utility function policies which draws
from multi-attribute decisions theory methods to develop algo-
rithms for optimal service selection. However, these methods
require users to provide the exact weight of each attribute.
In many situations, users possibly do not know how they
should assign weights to attributes in order to maximally meet
their preferences. Qualitative methods, on another hand, are
more general. Garcia et al. [8] presents a service selection
framework that transforms qualitative preferences into an
optimization problem. However, they address only a single
agent’s complete preferences.

Herrera-Viedma et al. [9] present a selection process to deal
with group decision making problems with incomplete fuzzy
preference relations. They use consistency measures to esti-
mate the incomplete fuzzy preference relations, and propose
an iterative procedure to estimate the missing information in
incomplete fuzzy preference relations. Xu and Chen [10] de-
velop linear-programming models for dealing with MAGDM
(multiple-attribute group decision making) problems, where
the information about attribute weights is incomplete and the
decision makers have their preferences on alternatives. Zhang
et al. [11] propose an integration approach to combine multiple
attribute decision making with users’ preference information
on alternatives. These approaches are also quantitative. Our
approach is qualitative. We apply the compact representation
of agents’ preferences using CP-nets and propose a list of
algorithms by implementing the Rank semantic, to select
services for multiple agents with incomplete preferences.

VIII. CONTRIBUTIONS

Our work allows for service selection based on agent prefer-
ences in a qualitative rather than quantitative way. We use CP-
nets for representing agents’ incomplete preference statements.

We also implement the Rank and ceteris paribus semantics for
aggregating multiple agents’ preferences. We then apply this
approach in the design of the algorithms to QoS-based service
selection for multiple agents with incomplete preferences. Our
experimental results show that our approach is effective in
selecting the best services for multiple agents even when
they have incomplete preferences, and the execution time of
our algorithms is generally acceptable for a large number of
agents when many services are available for selection. Our
approach may also be extended to cope with more general
group decision making problems with incomplete preference
relations, as we will consider more complex preferences for
web service selection in the future.

ACKNOWLEDGMENTS

This work is partially supported by the NSFC project No.
60673175.

REFERENCES

[1] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm, “Preference based
selection of highly configurable web services,” in Proceedings of the
16th ACM International Conference on World Wide Web, 2007.

[2] D. Ardagna and B. Pernici, “Adaptive service composition in flexible
processes,” IEEE Transactions on Software Engineering, vol. 33, no. 6,
pp. 369–384, 2007.

[3] P. Xiong and Y. Fan, “Qos-aware web service selection by a synthetic
weight,” in Proceedings of the 4th IEEE International Conference on
Fuzzy Systems and Knowledge Discovery, 2007.

[4] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole, “Preference-
based constrained optimization with cp-nets,” Computational Intelli-
gence, vol. 20, no. 2, pp. 137–157, 2004.

[5] ——, “Cp-nets: A tool for representing and reasoning with conditional
ceteris paribus preference statements,” Journal of Artificial Intelligence
Research, vol. 21, pp. 137–191, 2004.

[6] F. Rossi, B. Venable, and T. Walsh, “mcp nets: Representing and
reasoning with preferences of multiple agents,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2004.

[7] R. L. Keeney and H. Raiffa, Decision with Mutiple Objectives: Prefer-
ences and Value Tradeoffs. Wiley, 1976.

[8] J. M. Garcia, D. Ruiz, A. Ruiz-Cortes, and J. A. Parejo, “Qos-aware
semantic service selection: An optimization problem,” in Proceedings
of the 2008 IEEE Congress on Services, 2008.

[9] E. Herrera-Viedma, F. Chiclana, F. Herrera, and S. Alonso, “Group
decision-making model with incomplete fuzzy preference relations based
on additive consistency,” IEEE Transactions on Systems Man and
Cybernetics Part B (Cybernetics), vol. 37, no. 1, pp. 176–189, 2007.

[10] Z. S. Xu and J. Chen, “MAGDM linear-programming models with
distinct uncertain preference structures,” IEEE Transactions on Systems
Man and Cybernetics Part B, vol. 38, no. 5, pp. 1356–1370, 2008.

[11] Q. Zhang, W.-J. Feng, and D. Shao, “An integration approach to multiple
attribute decision making with preference information on alternatives,”
in Proceedings of the Conference on Control and Decision, 2008.

572

