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ABSTRACT
We study the equilibria of non-atomic congestion games in
which there are two types of players: rational players, who
seek to minimize their own delay, and malicious players, who
seek to maximize the average delay experienced by the ra-
tional players. We study the existence of pure and mixed
Nash equilibria for these games, and we seek to quantify
the impact of the malicious players on the equilibrium. One
counterintuitive phenomenon which we demonstrate is the
“windfall of malice”: paradoxically, when a myopically ma-
licious player gains control of a fraction of the flow, the new
equilibrium may be more favorable for the remaining ratio-
nal players than the previous equilibrium.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Economics, Theory

Keywords
Selfish Routing, Malicious Behavior, Equilibrium, Conges-
tion Games

1. INTRODUCTION
Game Theory is the study of strategic behavior of rational

agents. Described this way, Game Theory sounds a little un-
realistic, because much of what is going on in the real world
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is, intuitively, irrational. The standard game-theoretic re-
sponse to this line of criticism is that what we intuitively
call “irrational agents” are just rational players with very
strange utility functions. This is a reasonable retort when
it refers to generic games. However, much work in Game
Theory, and especially in the interface between Game The-
ory, Networking, and Computation, is about standard types
of games — such as auctions, congestion games, facility lo-
cation games, network creation games, etc. Many of these
are studied with the explicit ambition to apply the results
to the real world. Since the utilities of these games cannot
be arbitrarily “strange,” the original criticism stands.

In this paper we model one type of what is usually meant
by “irrationality” in the above argument, namely malicious
players. We define malicious players in the context of a
particular symmetric game; suppose that, in an n-player
symmetric game, the utilities of m < n players, henceforth
called malicious, change from the common utility shared by
all players to the negative sum of the utilities of the n − m
non-malicious players. We are interested in the effect such
change has on the quality as well as nature (pure versus
mixed) of the game’s Nash equilibria. We define the price
of malice to be the relative deterioration of the sum of the
utilities of the non-malicious players when the remaining
players turn malicious.

That malice has a price is not very surprising; what is
somewhat unexpected is that this price can be negative, and
malicious players may improve system performance, intu-
itively because their presence may incentivize the other play-
ers to forego antisocial selfish behavior. For example, con-
sider a version of the prisoner’s dilemma with three players
and three strategies: collaborate, defect, and inspect. When
a player inspects, her own utility is negative, but that of any
defecting player deteriorates as well. It is easy to see that
the numbers can be set in such a way that, if any of the
three players turns malicious (and therefore inspects, sacri-
ficing her own well-being in order to hurt the others), then
the other players end up collaborating at equilibrium, for
a net increase in their sum of utilities — in fact, a relative
increase that can be arbitrarily high.

We study the effects of malicious agents on non-atomic
congestion games [13]. In such games a continuum of play-
ers, comprising a flow of some specified value v, choose
routes in a network with a single source and sink whose
edges have load-dependent delays. It is known that such a
game has a pure Nash equilibrium with equal delays for all;
the quality of this equilibrium (compared to the “social op-
timum” minimum delay flow) has been studied extensively
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[13, 12]. But suppose instead that some fraction of the flow
becomes controlled by a malicious player whose utility is
the total delay by each of the other players. Does this new
game have a pure Nash equilibrium? And, if it does, how
does it compare with the equilibrium with μ = 0 (no mali-
cious player)? We define the price of malice to be the limit
of this deterioration per unit of malicious flow, as μ goes to
zero.

If flows are allowed to contain cycles (and therefore a mali-
cious player can make loads arbitrarily high by going around
in circles indefinitely), then it is easy to construct situations
in which a malicious player can wreak havoc on a network
(strictly speaking, such situations do not have a Nash equi-
librium, and so we cannot speak of a price of malice). We
show (Theorem 2) that even in acyclic networks the price of
malice can be significant; upper bounding the price of mal-
ice by the network parameters (such as the number of edges
and the “relative slope” of the delays) is an important open
problem.

Perhaps the heaviest price of malice may be the fact that
the presence of a malicious player upsets the Nash equilib-
rium regime of congestion games. Ordinarily, congestion
games are known to always have a pure Nash equilibrium.
In contrast, in Section 4 we notice that, in the presence
of a malicious player, pure Nash equilibria may not exist.
However, we prove two compensating results: First, there is
always a “semi-pure” Nash equilibrium, in which only the
malicious player mixes strategies. Second, if the delays are
weakly concave (and in particular if they are linear) then
pure Nash equilibria exist. The existence proofs rely on
Kakutani’s Fixed Point Theorem and Prokhorov’s Theorem,
two powerful results that we have not seen before applied in
the context of congestion games.

1.1 Related work
Several recent papers have considered agents that are not

acting rationally, and while the general philosophical direc-
tion of our work is somewhat similar to these works, there
are still significant differences between our work and the pa-
pers we describe below.

Two papers [7, 2] consider auctions with agents that de-
rive utility from the disutility of others, and present similar
results. Both papers derive symmetric Bayes Nash equi-
libria for spiteful agents in 1st-price and 2nd-price sealed
bid auctions. A spiteful agent’s value for an outcome is a
convex combination of his own original profit and the total
loss of the other agents (taken with coefficient α, the spite
coefficient). The papers consider the equilibrium when all
agents are spiteful with the same coefficient (unlike in our
model in which only a small fraction of the flow is controlled
by a malicious player, and this player is purely malicious,
i.e. spiteful with coefficient 1). Interestingly they show that
the revenue equivalence between second-price and first-price
auctions breaks down with spiteful agents, with second-price
outperforming first-price.

Eliaz [3] considers the problem of implementation when
some agents are faulty, playing an arbitrary strategy, pos-
sibly in a malicious way. The paper presents a solution
concept to allow implementation in case that up to k agents
are faulty, but neither their identity nor their exact num-
ber are known. Unlike our model (which assumes that a
malicious player will choose a strategy that maximizes the
combined discontent of the non-malicious players, given the

strategic choices of all other players) the non-rational agents
in their model can play arbitrarily and the paper focuses on
implementation issues, while we focus on quantifying the
implications of malice on given systems.

Closest to our work is the paper by Karakostas and Vi-
glas [6] (henceforth KV) which studies equilibria for network
congestion games with malicious users. The KV model of
malicious behavior corresponds to a continuum of infinitesi-
mal malicious players, collectively controlling the malicious
flow. We allow for a more powerful malicious behavior by
allowing coordination (modeled as a single myopic malicious
agent controlling all the malicious flow). We show that co-
ordination indeed leads to a different equilibrium concept
for some networks, but not when latency functions are con-
cave. The difference between the two equilibrium concepts,
for general networks, arises from the fact that a single ma-
licious player can use mixed strategies that are unavailable
to a continuum of uncoordinated malicious players. The fo-
cus of the KV paper is on generalizing the notion of Price of
Anarchy to the case that there is also a malicious flow in the
system, by comparing the case that the good users are con-
trolled by a single entity, to the case that they are behaving
selfishly. One of the main open problems in this paper is the
connection between the social cost at an equilibrium point
with and without malicious users. Our work addresses this
issue by defining the notion of Price of Malice and studying
it.

Closest in spirit to our study of the Price of Malice is the
paper by Moscibroda et al. [8] which aims to study the impli-
cations of malicious behavior on systems consisting of selfish
agents. The paper presents a concept of Price of Malice and
says “The Price of Malice is a ratio that expresses how much
the presence of malicious players deteriorates the social wel-
fare of a system consisting of selfish players.”. Yet, there
are many differences between this paper and ours. Impor-
tant differences exist in the definition of equilibrium in the
presence of malice and the definition of the Price of Malice.
First, selfish players in their game are extremely risk averse
and basically each one perceives the malicious agents as if
they are all attacking him or her. Second, the definition of
the Price of Malice is very different, as they look at the ratio
between two different worst-case ratios (the price of anarchy
with b malicious agents and with 0 malicious agents) even
though those worst-case ratios may arise on different prob-
lem instances. Instead of this type of indirect comparison,
we directly compare the outcome of games with a mixture
of rational and malicious agents to the outcome with only
rational agents.

2. THE PRICE OF MALICE

2.1 Definitions

2.1.1 Non-atomic congestion games
The following definitions are standard from the theory of

congestion games, e.g. [11], and readers familiar with this
material are encouraged to proceed to Section 2.1.2. We use
R+ to denote the set of non-negative real numbers.

Definition 1 (congestion game). A symmetric non-
atomic congestion game (henceforth, simply called a “con-
gestion game”) is specified by an ordered quadruple G =

(E, ��, Π, v), whose components are called:
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• the edge set E, a finite set;

• the vector of latency functions ��, a function from R+

to the vector space R
E : for e ∈ E, the e-th component

of �� is denoted by �e, and is a non-decreasing function
from R+ to R+;

• the path set Π, a subset of 2E ; and

• the flow value v, a non-negative real number which we
will sometimes denote by v(G ).

If E is the edge set of a (directed or undirected) graph G,
and Π is a set of paths in G, then we call G a network
congestion game. We will use the terminology “edge” and
“path” in describing abstract congestion games, though in
the general case we do not expect E to be interpreted as a
set of edges of a graph nor P as a set of paths in a graph.

Definition 2 (flow). A flow in a congestion game G
is a function f from Π to R+. (One interprets f(P ) as the
amount of flow using path P .) The flow value is v(f) =P

P∈Π f(P ). The set of all flows in G is denoted by F (G ).
The set of all flows whose flow value is equal to some num-
ber w is denoted by F (G , w). The set F (G , w) is a compact,
convex set (in fact, a convex polytope) in R

Π. We will abbre-
viate F (G , w) to F when G , w are understood from context.

Definition 3 (cost). If f is a flow, the load on an
edge e ∈ E is

xe(f) =
X

P∈Π|e∈P

f(P ).

The delay on a path P ∈ Π is

L(P ) =
X
e∈P

�e(xe(f)).

The cost of f is

C(f) =
X
P∈Π

f(P )L(P ) =
X
e∈E

xe(f)�e(xe(f)).

Definition 4 (Nash flow). If f is a flow, the set of
best responses to f is the set arg minP∈Π L(P ). A flow f
in a congestion game G is a Nash flow if v(f) = v(G ) and
every path P ∈ Π which satisfies f(P ) > 0 is a best response
to f . The Nash cost and Nash delay of G , denoted by C(G )
and D(G ), are the quantities C(f) and D(f) = C(f)/v(f),
respectively, where f is any Nash flow of G . We will see in
Proposition 1 below that C(G ) and D(G ) do not depend on
the choice of the Nash flow f .

Definition 5 (potential function). For a congestion
game G , the potential function ΦG (denoted simply by Φ
when the game G is understood from context) is a real-valued
function on F (G ) defined by

ΦG (f) =
X
e∈E

Z xe(f)

0

�e(y) dy.

The following standard facts about the potential function
will be useful to us.

Proposition 1 ([13]). The potential function Φ = ΦG

is a convex function on F (G ). It is strictly convex if all of
the latency functions �e are strictly increasing. For a flow f
of value v(G ), the following are equivalent:

1. f is a local minimum of Φ.

2. f is a global minimum of Φ.

3. f is a Nash flow.

Moreover, for any two Nash flows f, f̃ we have C(f) = C(f̃),
and furthermore the Nash delay D(f) is equal to the delay
L(P ) on any path P ∈ Π satisfying f(P ) > 0.

2.1.2 Congestion games with malicious players

Definition 6 (malicious player). A congestion game
with a malicious player is specified by a congestion game G
together with a real number w(G ) satisfying 0 ≤ w(G ) ≤
v(G ). We interpret w(G ) as the amount of flow controlled
by the malicious player.

When the malicious player routes its flow using a partic-
ular (possibly randomized) flow g, the remaining flow (con-
trolled by the rational players) is, in effect, participating in
a modified congestion game whose latency functions have
been changed to reflect the load imposed by the malicious
player. We now define this notion precisely.

Definition 7 (induced game). Let G = (E, ��, Π, v)
be a congestion game with a malicious player, w = w(G ),
and γ a probability measure on F (G , w). The induced la-
tency function �γ

e on an edge e is defined by

�γ
e (x) = E(�e(x + xe(g))),

where g is a random sample from the distribution γ. The

induced game G γ is the congestion game (E, ��γ , Π, v − w).
If f is a flow in G , the induced cost Cγ(f) is the cost of f in
the induced game G γ . When γ is a point mass concentrated
on a single flow g ∈ F (G , w), we will use the notation G g

(resp. Cg, �g
e) to mean the same thing as G γ (resp. Cγ , �γ

e ).

Definition 8 (malicious best response). If f is a
flow in G , the set of malicious best responses to f is the
set

MBR(f) = arg maxg∈F (G ,w)C
g(f).

A probability measure on F (G , w) is a malicious best re-
sponse to f if it is supported on the set MBR(f).

We are now in a position to define the equilibria of a con-
gestion game with a malicious player. Intuitively, a pair of
flows (f, g) — with f representing the rational players and
g representing the malicious player — is an equilibrium if
none of the rational players can unilaterally improve their
delay by switching to a different path, and if the malicious
player can not inflict greater damage on the rational players
by shifting from g to some other flow. In order to guarantee
the existence of equilibria, it is necessary to allow the mali-
cious player to use a mixed strategy, i.e. to sample a random
flow from F (G , w). Thus an equilibrium is actually a pair
(f, γ) where f is a flow of value v−w and γ is a distribution
on the set of flows of value w.

Definition 9 (equilibrium). If G is a congestion game
with a malicious player and w = w(G ) is the amount of mali-
cious flow, then an equilibrium of G is an ordered pair (f, γ)
such that f is a Nash flow in the induced game G γ , and γ is
a malicious best response to f . An equilibrium is pure if γ
is a point mass concentrated on a single flow g ∈ F (G , w).
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Definition 10 (Nash delay). Let G be a congestion
game with a malicious player, w = w(G ), and E the set of
equilibria of G . The Nash delay D(G , w) is defined to be the
supremum of the set {Cγ(f)/v(f) | (f, γ) ∈ E}.

Note that, in order for D(G , w) to be well-defined, it must
be the case that the set of equilibria of G (with w units of
malicious flow) is nonempty. We will see in Section 4 that
this is indeed the case.

For a congestion game G with flow value v = v(G ), the
price of malice measures the rate at which the Nash delay
deteriorates as a small fraction of the flow comes under the
control of a malicious player.

Definition 11 (price of malice). The price of mal-
ice, POM(G ), is defined by

POM(G ) = lim
ε→0

D(G , εv) − D(G )

εD(G )
(1)

when the limit exists.

Note that the price of malice quantifies the first order ef-
fect of a small fraction of malicious flow. Clearly one can
change the definition to capture lower order effects (for ex-
ample an O(ε2) increase in relative delay).

A counterintuitive phenomenon which we will explore later
in this paper is the windfall of malice, whereby the presence
of a malicious player in the game actually improves the de-
lay experienced by the rational players. We say that a game
exhibits windfall of malice if it has a negative price of malice.

2.2 A differential criterion for equilibrium
It is useful to relate the definition of a malicious best re-

sponse given above (Definition 8) to a criterion which is
based on the derivatives of the latency functions, and which
says that the malicious player’s flow should be distributed
on paths which maximize the marginal cost (to the ratio-
nal players) per unit of flow. Throughout this section we
assume that G is a congestion game with differentiable la-
tency functions.

Definition 12 (differential MBR). Let G be a con-
gestion game with differentiable latency functions. Consider
any two flows f, g ∈ F (G ). We say that g is a differential
malicious best response (DMBR) to f if for every two paths
P, P ′ ∈ Π such that g(P ) > 0, we haveX

e∈P

xe(f)�′e(xe(f) + xe(g)) ≥
X
e∈P ′

xe(f)�′e(xe(f) + xe(g)).

This definition is closely related to the definition of malicious
best response implied by equation (9) in [6]. Indeed, we will
see that being a DMBR to f is always a necessary condition
for being a malicious best response to f , and that when the
latency functions are concave it is also a sufficient condition.
Thus our definition of malicious best response (hence also
our definition of equilibrium) is equivalent to the definition
given by Karakostas and Viglas [6] in the special case when
latency functions are concave.

Lemma 1. Every malicious best response to f is a DMBR
to f .

Proof. Let g be a malicious best response to f , and let
P, P ′ ∈ Π be two paths such that g(P ) > 0. For t ≥ 0,

consider the flow g(t) defined by

g(t)(Q) =

8<
:

g(Q) if Q �= P, P ′

g(Q) − t if Q = P
g(Q) + t if Q = P ′

If w = v(g) then g(t) ∈ F (G , w) for t ∈ [0, g(P )]. Since
g ∈ arg maxh∈F (G ,w)C

h(f) we have

d

dt

“
Cg(t)

(f)
”

t=0
≤ 0.

The left side is equal to
P

e∈P ′ xe(f)�′e(xe(f) + xe(g)) −P
e∈P xe(f)�′e(xe(f) + xe(g)).

Lemma 2. If g is a DMBR to f , then for every flow h of
value v(g),X

e∈E

xe(f)�′e(xe(f) + xe(g)) [xe(g) − xe(h)] ≥ 0. (2)

Proof. For any path P , define B(P ) to be the sum

B(P ) =
X
e∈P

xe(f)�′e(xe(f) + xe(g)).

The left side of (2) is equal to
P

P∈Π [g(P )− h(P )] B(P ).
Hence (2) is equivalent toX

P∈Π

g(P )B(P ) ≥
X
P∈Π

h(P )B(P ). (3)

If M = maxP∈Π B(P ) then by the definition of a DMBR,
we have B(P ) = M for every path P such that g(P ) > 0;
hence the left side of (3) is equal to v(g) · M . Similarly the
right side is bounded above by v(g) · M.

Theorem 1. Assume that G is a congestion game with
malicious players and for every edge e, �e is a differentiable,
weakly concave function. Then a flow g is a DMBR to f if
and only if g is a malicious best response to f .

Proof. By Lemma 1 every malicious best response to f
is a DMBR to f , so we are left to show that every DMBR
to f is a malicious best response to f .

For an edge e, let λe be the function

λe(x) = �e(xe(f)+xe(g))+�′e(xe(f)+xe(g))(x−xe(f)−xe(g)).

This is a linear function of x which satisfies

λe(xe(f) + xe(g)) = �e(xe(f) + xe(g))

λ′e(xe(f) + xe(g)) = �′e(xe(f) + xe(g)).

Since �e is concave and λe is a linear function whose value
and first derivative agree with those of �e at xe(f) + xe(g),
we may conclude that λe(x) ≥ �e(x) for all x. Now suppose
that g is a DMBR to f , and h is any flow of value v(g). By
Lemma 2 we haveX

e∈E

xe(f)�′e(xe(f) + xe(g)) [xe(h) − xe(g)] ≤ 0

X
e∈E

xe(f) [λe(xe(f) + xe(h)) − λe(xe(f) + xe(g))] ≤ 0

X
e∈E

xe(f)λe(xe(f) + xe(h)) ≤
X
e∈E

xe(f)λe(xe(f) + xe(g)).
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Now using the fact that λe(x) ≥ �e(x) for all x, with equality
when x = xe(f) + xe(g), we obtainX

e∈E

xe(f)�e(xe(f) + xe(h)) ≤
X
e∈E

xe(f)�e(xe(f) + xe(g)).

As h was an arbitrary flow of value v(g), this confirms that
g is a malicious best response to f .

Our definition of malicious best response may be regarded
as the appropriate definition for modeling a single (my-
opically) malicious player controlling w units flow, while
the definition of differential malicious best response models
a continuum of infinitesimal malicious players, collectively
controlling w units of flow. (Definition 12 is tantamount to
asserting that one cannot increase Cg(f) by rerouting an
infinitesimal amount of flow.) Since all malicious players
experience the same payoff, it is plausible that w units of
flow controlled by a continuum of such players will behave
identically to the same amount of flow controlled by a single
malicious player. Indeed, Lemma 1 shows that this is ex-
actly what happens when the latency functions are concave.
Interestingly, this is not what happens in general when la-
tency functions can be non-concave (see Example 1). The
reason is that a single malicious player has the power to
play a mixed strategy, while this can never happen with a
continuum of malicious players unless we allow them to cor-
relate their random choices. (Even if each of the infinites-
imal players uses a mixed strategy, if their random choices
are independent then the law of large numbers ensures that
their combined flow is equal to a single element of F (G , w)
with probability 1.)

We next show that in any equilibrium with small enough
malicious flow, the malicious flow uses only paths that max-
imize the per-unit cost at the Nash equilibrium.

Definition 13 (differentially malicious flow). Let
G be a congestion game with differentiable latency functions.
Consider a Nash flow fN ∈ F (G ). A path P ∗ ∈ Π is a dif-
ferentially malicious path w.r.t. fN if for every P ∈ ΠX

e∈P∗
xe(fN )�′e(xe(fN )) ≥

X
e∈P

xe(fN )�′e(xe(fN))

A flow g is differentially malicious w.r.t. fN if for any P ∈ Π
such that g(P ) > 0, P is a differentially malicious path w.r.t.
fN .

Proposition 2. Let G be a congestion game with a ma-
licious player, with continuously differentiable latency func-
tions. For any Nash flow fN ∈ F (G ) there is an open set
U ⊆ F (G ) containing fN , such that for any f ∈ U , it holds
that every g ∈ MBR(f) (of value v(fN ) − v(f)) is also dif-
ferentially malicious w.r.t. fN .

Proof. For any path P ∈ Π, define a two-variable func-
tion hP : F (G ) × F (G ) → R as follows:

hP (f, g) =
X
e∈P

xe(f)�′e(xe(f) + xe(g)).

Observe that hP is a continuous function because �e is con-
tinuously differentiable for every edge e. Observe also that
g is a DMBR to f if and only if {P : g(P ) > 0} ⊆
arg maxP∈Π hP (f, g).

Now let Πmal denote the set of all paths which are differen-
tially malicious w.r.t. fN , i.e. Πmal = arg maxP∈Π hP (fN , 0).

If Πmal = Π then every path is differentially malicious and
the proposition follows trivially. Otherwise, the two-variable
function h(f, g) defined by

h(f, g) = min{hP∗(f, g) − hP (f, g) |P ∗ ∈ Πmal, P �∈ Πmal}
is continuous and satisfies h(fN , 0) > 0, by the definition of
Πmal. Therefore the set W = {(f, g) : h(f, g) > 0} is an
open neighborhood of (fN , 0) in F (G ) × F (G ). Let W1 ×
W2 be an open subset of W such that fN ∈ W1, 0 ∈ W2.
Without loss of generality (replacing W1, W2 with smaller
open neighborhoods of fN , 0 if necessary) we may assume
that for some real number δ > 0,

W1 ⊆ {f ∈ F (G ) | v(f) > v(G ) − δ}
W2 = {g ∈ F (G ) | v(g) < δ}

We claim that U = W1 satisfies the conclusion of the propo-
sition. For any f ∈ W1, if g is a malicious best response to
f of value v(G ) − v(f), then v(g) < δ hence g ∈ W2. Thus
(f, g) ∈ W1 × W2 ⊆ W , which implies h(f, g) > 0. By the
definition of h(f, g), this implies that arg maxP∈Π hP (f, g) ⊆
Πmal. Recalling that g is a malicious best response (and
hence, by Lemma 1, a DMBR) to f , we see that every path
P with g(P ) > 0 is an element of arg maxP∈Π hP (f, g), hence
every such P belongs to Πmal.

2.3 Lower bound on the price of malice
In this section we construct network congestion games

with a large price of malice. Intuitively, the price of malice
can be large for at least two reasons:

1. The network contains some edges whose latency func-
tions grow very rapidly, so that a small amount of ad-
ditional flow can have a very large impact on the delay.

2. The network contains a very long path, so that the
malicious player can send its flow on this path and
thereby influence many of the paths being used by the
rational players.

We capture the first property using the notion of relative
slope of the latency functions, which has also been used else-
where in the literature on selfish routing, e.g. [4]. We capture
the second property by building a congestion game with a
unique equilibrium, namely a pure equilibrium in which the
rational players use many disjoint short paths and the mali-
cious player uses a single long path that intersects all of the
short paths.

Definition 14. Let � : [0, 1] → R+ be a continuous non-
decreasing function that is continuously differentiable. The
relative slope of � is defined to be the number

d = sup
x∈[0,1]

x�′(x)

�(x)
.

Theorem 2. Let � : [0, 1] → R+ be a continuous non-
decreasing function that is continuously differentiable, and
let d be the relative slope of �. For any m there exists a
network congestion game with O(m) edges, such that the
latency function of each edge is either � or 0, and such that
the price of malice is d(m − 1).

Proof. The continuous function x�′(x)
�(x)

achieves its supre-

mum, d, at some point of the interval [0, 1] because [0, 1]

107



Figure 1: A network congestion game with a large price of malice. (a) The congestion game. (b) The
malicious player’s equilibrium strategy. (c) The rational players’ equilibrium strategy.

is compact. Let X0 be a point where the supremum is
achieved. The network is illustrated in Figure 1(a) for m =
5. In this network congestion game the flow value is mX0.
The network has m parallel paths of length 3, all have the
same latency function �(x) on the middle edge. All other
edges have a constant latency 0. Backward edges enable the
malicious flow to travel all the edges with non-zero latency
functions (a path of length 2m + 1).

Figure 1(b) illustrates the path that the malicious flow of
size εmX0 takes. As the latency functions are the same on
every one of the m paths, in equilibrium the rational flow of
size (1 − ε)mX0 will be split equally on the m paths, thus
in equilibrium on each path there is a rational flow of size
(1 − ε)X0 (in case that ε = 0 this means a flow of X0).
This is illustrated in Figure 1(c). The total flow on each
of the middle edges of the m paths is (1 − ε)X0 + εmX0 =
X0 + εX0(m − 1).

The latency with ε units of malicious flow is �(X0+εX0(m−
1)), and the latency with no malicious flow is �(X0). Us-

ing the fact that limε→0
�(x+aε)−�(x)

ε
= a · �′(x), for a =

X0(m − 1) we obtain that the price of malice is

POM(G ) = lim
ε→0

�(X0 + εX0(m − 1)) − �(X0)

ε�(X0)

=
X0(m − 1)�′(X0)

�(X0)
= (m − 1) · d

3. THE WINDFALL OF MALICE
The following claims show that there exists a network with

“windfall of malice”, that is, replacing some of the rational
flow with malicious flow causes the delay of the rational
flow to decrease. At first look it seems surprising that there
can be a decrease in the latency experienced by the rational
agents, as the malicious agent is trying to maximize the
latency of the rational agents. But this phenomenon is not
too different from the well-known Braess’ paradox, which
gives an example of a network for which an increase in the
latency function on an edge improves the Nash delay. While
in the Braess’ paradox network there is no windfall of malice,
we are able to construct a network that is based on that
network that does have a windfall. In the network that we
construct, the malicious agent, by trying to do as much harm
as possible, increases the latency on every possible edge, and
by doing so it causes the rational agents to take alternative
routes that are less harmful to the other rational agents.

Claim 1. There exists a network congestion game for which
the price of malice is negative.

Proof. We construct a network congestion game G with
flow value 1 and network with source s and target t as pre-
sented in Figure 2(a). The latency function on each edge is
presented in the graph. (Some of the edges have a constant
latency of either 0 or 1, and we just write the constant near
the appropriate edge). δ is a parameter such that 1 > δ > 0.

Figure 2(b) presents the path that the malicious flow of
value ε takes. As for this path the malicious flow goes on
every edge with non-constant latency, it is clear that this
flow is always a malicious best response, independent of the
rational flow. This implies that there is a unique Nash delay
in the induced game.

Figure 2(c) presents the rational flow. Near each edge we
denote the value of flow on the edge. It is easy to verify that
the Nash flow is defined by the following flows on the edges:
f1 = 1 − ε 1+2δ

1+δ
, f2 = ε δ

1+δ
, f3 = 1

2
− ε 1+3δ

2(1+δ)
.

These flow values correspond to a flow of value f2 on the
paths (s, u, t) and (s, d, t), and flow of value f3 on the paths
(s, u, n1, m1, d, t) and (s, u, n2, m2, d, t).

For ε = 0 (no malicious flow) the rational delay is 2 − δ.

For ε > 0 the rational delay is 2 − δ − ε δ(1−δ)
1+δ

. Thus, the
price of malice for this network is

POM(G ) = lim
ε→0

D(G , ε) − D(G )

εD(G )
= − δ(1 − δ)

1 + δ

which is a negative constant for any δ such that 1 > δ >
0.

Next we show that the above example can be generalized,
and the windfall of malice grows at least linearly with the
size of the graph.

Claim 2. For any m ≥ 1 there exists a network conges-
tion game with O(m) edges for which the price of malice is

− m2

2(m+2)
(i.e., a windfall of malice of order m).

Proof. For a given m we construct a network congestion
game based on the m-th Braess graph [12] which generalizes
Braess’s paradox, as defined below. The network for m = 4
is illustrated in Figure 3(a). The m-th network has 4m + 4
nodes and a flow value of m. The set of nodes is
{s, t, v1, . . . , vm+1, w1, . . . , wm+1, p1, . . . , pm, q1, . . . , qm}. For
i ∈ {0, . . . , m} the graph has the following edges. Edges
(s, vm+1−i) and (wi+1, t) both have latency function Di(X) =
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Figure 2: A network congestion game with a negative price of malice. (a) The congestion game. (b) The
malicious player’s equilibrium strategy. (c) The rational players’ equilibrium strategy.

X · i/2. Edges (vi+1, wi+1) and (wi+1, vi+1) both have con-
stant latency of 1.1

For i ∈ {1, . . . , m} node vi is connected to wi+1 by a “Z
gadget”: (vi, qi), (pi, qi) and (pi, wi+1) have constant latency
0, and edges (vi, pi) and (qi, wi+1) have a linear latency func-
tion X.

The equilibrium flow is as follows. The malicious flow is
of size mε and it travels the path
(s, v1, p1, q1, w2, . . . , vi, pi, qi, wi+1, . . . , vm, pm, qm, wm+1, t),
see Figure 3(b) for illustration. The rational equilibrium
flow is illustrated in Figure 3(c). There is a flow of f2

on (s, v1) and on (wm+1, t). There is a flow of f2 − f3

on (v1, w1), (w1, t), (s, vm+1) and on (vm+1, wm+1). For
i ∈ {2, . . . , m} there is a flow of f1 on (s, vi) and on (wi, t),
and a flow of f1 − f3 on (vi, wi). Finally, there is a flow of
f3 on each of the Z gadgets; this flow equally splits on two
paths as follows. For i ∈ {1, . . . , m} there is a flow of f3/2
on (vi, qi), (qi, wi+1), (vi, pi) and (pi, wi+1).

Let f1 = 1 − ε m
m+2

, f2 = f1 − mε = 1 − εm( 1
m+2

+ 1) and

f3 = 1 − εm(2 − 1
m+2

). Observe that the flow value (out of

s and into t) is (m − 1) · f1 + f2 + (f2 − f3) + εm = m.
We next prove that this is indeed an equilibrium flow. We

first observe that rational flow has two types of paths, both
with the same delay. The first is a path (s, vi, wi, t) for some
i ∈ {1, . . . , m + 1}, the second is a path (s, vi, pi, wi+1, t)
(or (s, vi, qi, wi+1, t) ), for some i ∈ {1, . . . , m}. For i ∈
{2, . . . , m}, the delay on the first type is Dm+1−i(f1) + 1 +

Di−1(f1) = Dm(f1)+1 = f1 · m
2

+1 = m
2

+1−ε m2

2(m+2)
. Note

that there is a malicious flow of εm on (s, v1) and (wm+1, t)
thus the paths (s, v1, w1, t) and (s, vm+1, wm+1, t) have delay
Dm(f2 + εm)+ 1+ 0 = Dm(f1) + 1 which is the same delay.

Next we consider paths of the second type, of the form
(s, vi, pi, wi+1, t) (or (s, vi, qi, wi+1, t) ), for some i ∈ {1, . . . , m}.
The total flow on (wi+1, t) is always f1, even for i = m as
f2 = f1−εm and there is εm malicious flow on the edge. The
delay on such a path is Dm+1−i(f1) + ( f3

2
+ εm)+ Di(f1) =

Dm+1(f1) + f3
2

+ εm = f1 · m+1
2

+ f3
2

+ εm = f1 · m
2

+
f3+f1+2εm

2
= f1 · m

2
+ 1.

Finally we prove that the malicious flow is indeed playing
a best response to the rational flow. We look at the Nash
flow with f1 = f2 = f3 = 1 and 0 malicious flow. By
Proposition 2 it is sufficient to show that the path taken

1This creates a graph with cycles, but the cycles play no
role in the construction. One can easily modify the graph
to create an acyclic graph with the same properties, see
Appendix A.

by the malicious flow (as presented in Figure 3(b)) is the
unique acyclic2 path P which maximizes the expresion
q(P ) =

P
e∈P xe(fN )�′e(xe(fN)).

Let P1 = (s, v1, p1, q1, w2, t), P
′
1 = (s, v1, w1, t),

P2 = (s, vm, pm, qm, wm+1, t) and P ′2 = (s, vm+1, wm+1, t).
As q(P1) > q(P ′1) and q(P2) > q(P ′2) we do not need to con-
sider the paths P ′1 and P ′2. As on each of the Z gadgets the
malicious flow can travel all edges with non constant delay,
it is clear that the malicious flow best response must be a
path of the form Pj,r =
(s, vj , pj , qj , wj+1, vj+1, pj+1, qj+1, wj+2, . . . , vr, pr, qr, wr+1, t)
for some j ≥ 1 and some r with m ≥ r ≥ j. It holds that
q(Pj,r) = (m+1−j)/2+(r−j+1)+r/2 = 3(r−j+1)/2 and
this is an increasing function of r and decreasing function of
j thus it is maximized at r = m and j = 1.

4. THE EXISTENCE OF EQUILIBRIA
Congestion games without malicious players have pure

Nash equilibria because they are potential games: the po-
tential function Φ defined in Definition 5 decreases when-
ever a player shifts from one path to another one with lower
delay, hence any flow which minimizes Φ must be a pure
Nash equilibrium of the congestion game. But congestion
games with malicious players are not potential games, and
as such there is no guarantee that they will have pure Nash
equilibria. In fact, a simple example illustrates that a pure
Nash equilibrium may not exist even for network congestion
games played on a pair of parallel links.

Example 1. Consider a network congestion game in a
graph consisting of a source and sink joined by two parallel
edges e, e′ whose latency functions are �e(x) = �e′(x) = x2.
Let v = 2 and w = 1, so that the rational players control 1
unit of flow and the malicious player also controls 1 unit of
flow. We claim that this game has no pure Nash equilibrium.
To prove it, assume by contradiction that (f, g) is a pair of
flows constituting a Nash equilibrium. Let a = f({e}), b =
g({e}). Then f({e′}) = 1 − a and g({e′}) = 1 − b, and

Cg(f) = a(a + b)2 + (1 − a)(2− a − b)2. (4)

One consequence of (4) is that Cg(f) is a strictly convex
function of the parameter b, so its maximum is achieved

2Although there are directed cycles in the graph (from vi to
wi and back to vi), the latency function on any such cycle
is constant, thus there is a best response in which flow does
not travel in cycles.
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(a.1) The network (b.1) Malicious flow on the network (c.1) Rational flow on the network

(a.2) The Z gadget (b.2) Malcious flow on the Z gadget (c.2) Rational flow on the Z gadget

Figure 3: A network congestion game whose price of malice is negative and scales linearly with the network
size, demonstrated for m = 4. (a) The congestion game. (b) The malicious player’s equilibrium strategy. (c)
The rational players’ equilibrium strategy.

when b = 0 or b = 1 (or both) but not when 0 < b < 1.
Since we are assuming g is a malicious best response to f ,
it must be the case that b = 0 or b = 1. Assume without
loss of generality that b = 0. Then the induced game G g has
latency functions �g

e(x) = x2, �g
e′(x) = (1+x)2. Since we are

assuming f is a Nash flow for G g, we find that a = 1. But
then the malicious best response to f is b = 1, contradicting
our earlier assumption that b = 0.

At an intuitive level, the reason why the game constructed
in this example has no pure Nash equilibrium is similar to
the reason why there is no pure Nash equilibrium in the
game “matching pennies”. The strict convexity of the la-
tency functions gives the malicious player an incentive to
make the load on e, e′ as unbalanced as possible, while the
rational players have an incentive to make the load on e, e′

as balanced as possible; no distribution of flow can simulta-
neously satisfies the objectives of both types of players.

In light of Example 1, we devote the rest of this section
to proving two theorems: first, congestion games with mali-
cious players have pure Nash equilibria as long as the latency
functions are continuous and weakly concave3; second, con-
gestion games with malicious players always have equilibria
in the sense of Definition 9.

Theorem 3. If G is a congestion game with a malicious
player, and for every edge e, �e is a continuous, weakly con-
cave function, then there exists a pure equilibrium of G .

Given Theorem 1, which ensures that our definition of
equilibrium is equivalent to the Karakostas-Viglas definition

3In particular, as a special case, pure Nash equilibria always
exist when the latency functions are linear.

in the case of concave latency functions, it is possible to de-
duce this theorem from Theorem 1 of [6]. (Actually, our
Theorem 3 makes slightly weaker hypotheses about the la-
tency functions, but the proof technique used in [6] implies
our theorem without much difficulty.) In the interest of mak-
ing this paper self-contained, we present a simple alternative
proof below.

Proof. Let w = w(G ). For a flow g ∈ F (G , w), let
Φg denote the potential function of the game G g . Recall
from Proposition 1 that a flow f is a Nash flow of G g if
and only if f is a minimizer of Φg. Thus a pair (f, g) ∈
F (G , v−w)×F (G , w) is a pure equilibrium of G if and only
if f is a minimizer of Φg(f) and g is a maximizer of Cg(f).
In other words, a pure equilibrium of G is equivalent to a
pure equilibrium of the two-player normal form in which
the strategy sets of the two players are F (G , v − w) and
F (G , w), respectively, and their payoff functions are −Φg(f)
and Cg(f), respectively.

Now let us recall the following easy consequence of Kaku-
tani’s Fixed Point Theorem. (See, for example, Proposition
20.3 of [9].)

Proposition 3. A normal form game with finitely many
players has a pure Nash equilibrium provided that

• Each player’s strategy set is a nonempty compact con-
vex subset of a Euclidean space.

• For each i, the payoff function of player i is continuous
and is a weakly concave function of player i’s strategy.

The first condition is satisfied because the sets F (G , v −
w), F (G , w) are nonempty convex polytopes. To verify the
second condition, first recall that Φg is a continuous and
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weakly convex function, so −Φg is continuous and weakly
concave. Finally, recall that

Cg(f) =
X
e∈E

xe(f)�e(xe(f) + xe(g)).

The function xe(g) is a linear function of g, and �e is continu-
ous and weakly concave, so �e(xe(f)+xe(g)) is a continuous,
weakly concave function of g. For fixed f , Cg(f) is a non-
negative linear combination of such functions, so it is also
continuous and weakly concave, as desired.

Proposition 4. If G is a congestion game with a ma-
licious player, and all the latency functions �e are strictly
increasing, then G has an equilibrium.

Proof. We use the same two-player game eG introduced
in the proof of Theorem 3. The strategy sets F (G , v − w)
and F (G , w) are compact Hausdorff topological spaces, and
the payoff functions −Φg(f) and Cg(f) are continuous, so
the existence theorem for mixed Nash equilibria of games
with compact Hausdorff strategy sets [5] ensures that there
exist Borel probability measures β0, γ0 on F (G , v − w) and
F (w), respectively, such that

β0 ∈ arg min
β

Φγ0(β) (5)

γ0 ∈ arg max
γ

Cγ(β0). (6)

(Here Φγ(β) and Cγ(β) denote the expected values of Φg(f)
and Cg(f) when f, g are sampled independently at random
from distributions β, γ, respectively.) The only reason that
(β0, γ0) may not constitute an equilibrium of G is that our
definition of equilibrium requires the rational players to use
a pure strategy, not a mixed strategy. In other words, we
require the distribution β0 to be a point mass concentrated
at a single flow f0 ∈ F (G , v − w).

Let f0 denote the flow f0(P ) = Ef←β0 [f(P )] . Our as-
sumption that the latency functions are strictly increas-
ing implies that the function Φγ0 is strictly convex, so by
Jensen’s inequality,

Φγ0(f0) ≤ Φγ0 (β0), (7)

with equality if and only if the distribution β0 is a point
mass concentrated at f0. The left and right sides of (7)
are in fact equal, by (5). Consequently β0 is a point mass
concentrated at f0. By (5) and (6), we may now conclude
that (f0, γ0) is an equilibrium of G .

Theorem 4. Every congestion game with a malicious player
has an equilibrium.

Proof. We have seen that the theorem holds when the
latency functions are strictly increasing, so the idea of the
proof is to approximate an arbitrary congestion game G =

(E, ��, Π, v) by games with strictly increasing latency func-

tions. For every positive integer n, let �
(n)
e denote the la-

tency function �
(n)
e (x) = �e(x) + x/n, and let G (n) denote

the congestion game (E, ��(n), Π, v). Proposition 4 ensures

the existence of an equilibrium (fn, γn) for G (n). We next
argue that this sequence of equilibria has a convergent sub-
sequence, under a suitable definition of convergence.

For a separable compact metric space X, we may topolo-
gize the set Δ(X) of Borel probability measures on X using
the weak topology, in which a sequence μ1, μ2, . . . converges

to a probability measure μ if and only if
R

f dμn → R
f dμ

for every bounded continuous function f on X. The space
Δ(X) is compact in the weak topology by Prokhorov’s The-
orem [1]. Since both F (G , v − w) and F (G , w) are sepa-
rable compact metric spaces, we conclude that the space
F (G , v − w) × Δ(F (G , w)) is compact and therefore the
sequence (fn, γn) has a convergent subsequence. Replac-

ing the sequence G (1), G (2), . . . with a proper subsequence
if necessary, we may assume from now on that we have

a sequence of games G (n) = (E, ��(n), Π, v) with equilib-

ria (fn, γn) such that �
(n)
e (x) = �e(x) + αnx for some se-

quence of constants α1, α2, . . . converging to zero, and such
that the sequence (f1, γ1), (f2, γ2), . . . converges to a point
(f, γ) ∈ F (G , v−w)×Δ(F (G , w)). We must now prove that
(f, γ) is an equilibrium of G .

It turns out that

Φγn (fn) → Φγ(f) (8)

Cγn(fn) → Cγ(f). (9)

The proofs of these two facts are omitted for space reasons.
Assuming them for now, consider any f ′ ∈ F (G , v −w) and
γ′ ∈ Δ(F (G , w)). The function g �→ Φg(f ′) is a bounded
continuous function of g ∈ F (G , w); by the definition of weak
convergence this implies Φγn (f ′) → Φγ(f ′). Combining this
with (8) we obtain

Φγ(f) − Φγ(f ′) = lim
n→∞

`
Φγn (fn) − Φγn (f ′)

´ ≤ 0,

hence f is a best response to γ. The functions g �→ Cg(fn),
for n = 1, 2, . . ., are uniformly bounded measurable func-
tions of g ∈ F (G , w), and limn→∞ Cg(fn) = Cg(f) for all g.

By Lebesgue’s dominated convergence theorem, Cγ′
(fn) →

Cγ′
(f). Combining this with (9) we obtain

Cγ(f) − Cγ′
(f) = lim

n→∞

“
Cγn(fn) − Cγ′

(fn)
”
≥ 0,

hence γ is a best response to f . Thus (f, γ) is an equilibrium
as claimed.

5. CONCLUSIONS AND OPEN PROBLEMS
This paper raises many more questions than it answers.

We believe that our definition of malice can be productive in
many other contexts; but even if one focuses on congestion
games, as we did, there are many open problems to consider.

• We have only derived lower bounds on the price of
malice, as well as on its windfall. We conjecture an
O(�d) upper bound for both, where � is the length
of the longest path in the network, and d is an upper
bound on the relative slope of the delay functions. (See
Definition 14.)

• Given that the presence of malicious players can af-
fect networks in totally different ways, ranging, as we
have seen, from disastrous to beneficial, it becomes im-
perative to understand the circumstances under which
these conditions prevail. That is, we are interested
in the characterization problem of networks for which,
say, there is a positive windfall of malice; similarly for
a positive price of malice.

This seems a tall order; even the following simple prob-
lem of this sort is currently open: Is there a windfall
of malice (of any order of magnitude, not necessarily
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first order) in the case of a network consisting of paral-
lel edges (with arbitrary delays)? We conjecture that
there isn’t, but we have been unable to prove it yet.
More generally, we conjecture that there is no windfall
of malice in abstract congestion networks in which the
set of paths is a matroid. Another possible relevant
condition for the absence of a windfall might be the
absence of some sort of generalized Braess’ paradox.
It would be interesting to explore the extent to which
these important properties of networks imply one an-
other.

• In the same spirit as the characterization problem, it
would be equally interesting to be able to determine
algorithmically the price of malice for individual net-
works. This brings up the following suite of prob-
lems: Given a network with a fraction of malicious
flow, find a semi-pure Nash equilibrium, as guaran-
teed by Theorem 4. Or, given such a network with
weakly concave (or even linear) delays, find a pure
Nash equilibrium (Theorem 3). Are these problems
PPAD-complete (our proof establishes that they are
in the class PPAD [10]), or is there an alternative al-
gorithmic way of establishing existence? Since unique-
ness of equilibria is no longer guaranteed, perhaps the
most useful problem is to find an equlibrium with the
largest (or smallest) possible price of malice; this prob-
lem may even be NP-complete.
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APPENDIX

A. ACYCLIC CONSTRUCTION FOR
WINDFALL OF MALICE

Figure 4: The modification to the network conges-
tion game of Figure 3 which creates an acyclic graph.

In Claim 2 we have presented a construction of a graph
that contains directed cycles and has linear windfall of mal-
ice. Next we explain how one can modify the graph to create
an acyclic graph with the same properties.

The modification is presented in Figure 4. Each node vi is
split to two nodes, vd

i and vu
i with a 0 latency edge (vd

i , vu
i ).

Similarly, each node wi is split to two nodes, wd
i and wu

i with
a 0 latency edge (wd

i , wu
i ). The cycle is replaced by edges

(vd
i+1, w

u
i+1) and (wd

i+1, v
u
i+1) both has constant latency of

1. The incoming and outgoing edges of each of the original
nodes are split between the two nodes.

The rational and malicious flows in this modified graph are
derived from the corresponding flows in the original graph in
the obvious manner. The rational flow in the modified graph
is uniquely determined by the property that the flow value
on each edge (vd

i , wu
i ) is equal to the flow value on the orig-

inal edge (vi, wi). The malicious flow in the modified graph
is uniquely determined by the property that the flow value
on each edge (wd

i , vu
i ) is equal to the flow value on the orig-

inal edge (wi, vi). The proof that these flows still constitute
an equilibrium in the modified graph is a straightforward
modification of the proof of Claim 2.
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