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Abstract

Propagating trust/distrust from a set of seed (good/bad) pages
to the entire Web has been widely used to combat Web spam.
It has been mentioned that a combined use of good and bad
seeds can lead to better results. However, little work has been
known to realize this insight successfully. A serious issue
of existing algorithms is that trust/distrust is propagated in
non-differential ways. However, it seems to be impossible to
implement differential propagation if only trust or distrust is
propagated. In this paper, we view that each Web page has
both a trustworthy side and an untrustworthy side, and assign
two scores to each Web page: T-Rank, scoring the trustwor-
thiness, and D-Rank, scoring the untrustworthiness. We then
propose an integrated framework which propagates both trust
and distrust. In the framework, the propagation of T-Rank/D-
Rank is penalized by the target’s current D-Rank/T-Rank.
In this way, propagating both trust and distrust with target
differentiation is implemented. The proposed Trust-Distrust
Rank (TDR) algorithm not only makes full use of both good
seeds and bad seeds, but also overcomes the disadvantages
of both existing trust propagation and distrust propagation al-
gorithms. Experimental results show that TDR outperforms
other typical anti-spam algorithms under various criteria.

Introduction

Web spam pages use various techniques to achieve higher-
than-deserved rankings in search engines’ results (Gyöngyi,
Garcia-Molina, and Pedersen 2004). Spam has been identi-
fied as one of the most important challenge faced by search
engines (Henzinger, Motwani, and Silverstein 2002). Many
techniques for combating Web spam have been proposed
so far, and among them link-based semi-automatic tech-
niques that propagate the judgments of human experts from
a set of seed pages are the most promising. These tech-
niques can be classified into two categories: trust propa-
gation and distrust propagation. Trust propagation tech-
niques (e.g. TrustRank(Gyöngyi, Garcia-Molina, and Ped-
ersen 2004)) propagate trust from a seed set of good pages
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recursively through links to the entire Web. Trust propa-
gation techniques are usually used to complete the task of
spam demotion (to demote spam pages in the search rank-
ing results). Distrust propagation techniques such as Anti-
Trust Rank (Krishnan and Raj 2006) propagate distrust from
a seed set of bad (spam) pages recursively through inverse-
links to the entire Web. Distrust propagation techniques fo-
cus on the task of spam detection (identifying pages with
high distrust values as spam pages).

The above two kinds of propagation techniques use either
a good seed set or a bad seed set judged by human experts.
Both the good seed set and the bad seed set are of small
sizes, thus the information encoded by them is invaluable on
identifying Web spam. Using only one side of them loses
useful information of the other side, which is a regrettable
waste. It has been mentioned a combined use of both good
and bad seeds can lead to better results (Zhao, Jiang, and
Zhang 2008), however, little work has been known to real-
ize this insight successfully. Wu et al. (Wu, Goel, and Davi-
son 2006a) simply made a linear combination of TrustRank
score and Anti-Trust score for each page. This kind of linear
combination is hard to interpret and it only performs a lit-
tle better than TrustRank or Anti-Trust Rank on one or two
criteria. An anti-spam technique should be evaluated by its
synthetical performance on several criteria, thus linear com-
bination achieves limited improvements over TrustRank and
Anti-Trust Rank.

The principle of trust propagation algorithms is to propa-
gate trust to trustworthy Web pages through links since hy-
perlinks are regarded as conveying trust between Web pages.
However, existing trust propagation algorithms propagate
trust in non-differential ways, i.e., a page propagates its trust
uniformly to its neighbors, without considering whether
each neighbor should be trusted or distrusted. This kind of
blindfold trust propagation is inconsistent with the original
intention of trust propagation, thus can not be expected to
gain very good effects. This issue is more serious in today’s
Web graph since there are more and more good-to-spam
links with the development of Web 2.0. Non-differential
propagation of distrust presents the same problem. However,
it seems impossible to implement differential propagation if
only trust or distrust is propagated.

The above two kinds of issues call for an integrated frame-
work of propagating both trust and distrust. Trust propaga-
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tion algorithms assign a trust score and distrust propagation
algorithms assign a distrust score to each Web page. The co-
existence of this two kinds of algorithms suggests that each
Web page has both a trustworthy side and an untrustworthy
side. In this paper, we assign two scores to each Web page:
T-Rank, scoring the trustworthiness, and D-Rank, scoring
the untrustworthiness of the page. We then propose an in-
tegrated framework which propagates both trust and dis-
trust. In each iteration of the framework, the propagation
of T-Rank/D-Rank is penalized by the target’s D-Rank/T-
Rank in the previous iteration, thus a page propagates more
trust/distust to a trustworthy/untrustworthy neighbor than to
an untrustworthy/trustworthy neighbor. In this way, prop-
agating both trust and distrust with target differentiation is
implemented. The proposed Trust-Distrust Rank (TDR) al-
gorithm not only makes full use of both good seeds and bad
seeds, but also overcomes the disadvantages of both existing
trust propagation and distrust propagation algorithms. Ex-
perimental results show that TDR outperforms other typical
anti-spam algorithms under various criteria.

The remainder of this paper is organized as follows. In
Section 2, related work is provided. Section 3 describes
some preliminaries and motivation of the algorithm. The
TDR algorithm is illustrated in Section 4. Sections 5 pro-
vides experimental results. Finally we conclude our discus-
sion in Section 6.

Related Work

Link-based semi-automatic anti-spam algorithms propagate
either trust through links from a set of good seed pages
or distrust through inverse-links from a set of bad seed
pages to the entire Web. Gyöngyi et al. firstly pro-
posed the TrustRank algorithm (Gyöngyi, Garcia-Molina,
and Pedersen 2004), which first selects a certain number
of seeds by experts’ manual evaluation and then propagates
trust through links from them. Later improvements over
TrustRank add topical information (Wu, Goel, and Davison
2006b) into the algorithm or use variable links (Chen, Yu,
and Cheng 2008). The Anti-Trust Rank algorithm (Krish-
nan and Raj 2006) propagates distrust via inverse-links from
a seed set of spam pages to identify spam pages. Wu et al.
(Wu and Chellapilla 2007) proposed the Parent Penalty al-
gorithm to identify link farm spam pages by negative value
propagation. Some similar distrust propagation algorithms
were presented in (Metaxas 2009).

Zhang et al. (Zhang et al. 2009) mentioned that us-
ing bidirectional link information is helpful and proposed
a HITS-style trust propagation algorithm named CPV. CPV
also assigns each Web page two scores, AVRank and
HVrank, to measure the page’s authority and hubness. How-
ever, it only propagates trust, which is different from ours.
Wu et al. (Wu, Goel, and Davison 2006a) simply made a
linear combination of the TrustRank and Anti-Trust Rank
scores for ranking. In this framework both good and bad
seeds are used. However, trust and distrust are propagated
separately, thus its effect is limited.

Some link based anti-spam algorithms adopt unsuper-
vised methods without seeds. There are also some anti-spam
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Figure 1: An small Web graph with of good and bad pages

algorithms that involve content information, language mod-
els and user’ feedback. However, all of these are more time
consuming and beyond the scope of this paper since we only
talk about link based trust/distrust propagation algorithms,
thus they are not listed here due to space limitation.

Preliminaries and Motivation

The Web can be modeled as a directed graph. PageRank
is the most popular ranking algorithm on the Web graph
which simulates user’s surfing with a random walk model.
TrustRank is a biased version of PageRank, it propagates
trust from a human judged seed set recursively to the en-
tire Web. After convergence, good pages are expected to get
higher trust scores, while spam pages get lower trust scores.
The formula of TrustRank is:

t = α ·MT · t+ (1− α) · s, (1)
where M is the line-normalized Web graph matrix; t is the
TrustRank score vector; α is a decay factor; s is the normal-
ized trust score vector for the good seed set S+, i.e. s(p) =
0 if p /∈ S+ and s(p) = 1/|S+| if p ∈ S+.

Anti-Trust Rank, broadly based on the same principle as
TrustRank, propagates distrust via inverse-links from a seed
set of bad (spam) pages. After convergence, spam pages are
expected to get higher distrust scores, while good pages get
lower distrust scores. The formula of Anti-Trust Rank is:

a = α′ ·NT · a+ (1− α′) · s′, (2)
where N is the line-normalized inverse Web graph matrix;
a denotes the Anti-Trust Rank score vector; α′ denotes a
backward decay factor; s′ is the normalized distrust score
vector for the bad seed set S−, i.e. s′(p) = 0 if p /∈ S− and
s′(p) = 1/|S−| if p ∈ S−.

TrustRank, Anti-Trust and their variations have two main
issues: (1) only good seeds or bad seeds are used; (2)
trust/distrust is propagated without target differentiation.
The first issue causes lose of valuable information for bet-
ter result. The second blindfold trust/distrust propagation
issue causes hardness to distinguish bad from good, e.g., a
page having one good neighbor and one bad(spam) neighbor
propagates half of its trust/distrust score to both of the neigh-
bors, thus the two neighbors have the same trust/distrust
scores and no one knows which is bad based on these scores.

These issues often cause dissatisfying results. We use
an example to illuminate such results. Fig. 1 represents a
small eight-page Web graph where good pages are shown as
white, and bad(spam) pages as black. Bad page 5, 6, 7 and
8 make up a link farm (the most popular way of link-based
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spam). Using {1, 2} as good seeds, setting α = 0.85, iterat-
ing TrustRank to convergence, we get the following vector
of the pages’ TrustRank scores:

t = [0.08, 0.23, 0.14, 0.10, 0.04, 0.17, 0.13, 0.11].
The result is frustrating, since bad pages 6, 7 and 8 get very
high TrustRank scores.

For the same example in Fig. 1, using {5, 7} as bad seeds,
setting α′ = 0.85, iterating Anti-Trust Rank algorithm until
it converges, we get the following Anti-Trust Rank scores:

a = [0.03, 0.10, 0.07, 0.08, 0.16, 0.28, 0.19, 0.09].
The result is also disappointing, since good page 2 gets
higher Anti-Trust Rank score than bad page 8.

The TDR Algorithm
We aim to design an integrated framework that (1) takes ad-
vantages from both good and bad seeds, (2) implements tar-
get differential propagation such that in each iteration each
page propagates less trust and more distrust to a spam neigh-
bor than to a good neighbor. Note that till now there has been
two kinds of semi-automatic spam combating algorithms:
trust propagation algorithms assign a trustworthy score to
each Web page, while distrust propagation algorithms as-
sign an untrustworthy score to each Web page. Thus we can
say all Web pages have trustworthy sides and untrustwor-
thy sides but with different extents. This is realistic since
each page contains some valuable contents, and at the same
time, has a possibility of playing some spam tricks or be-
ing manipulated by some spam pages. This phenomenon is
just like human beings: an honest man is not expected to al-
ways tell the truth, while a dishonest man does not always
tell lies. Therefore, we assign each page a T-Rank to repre-
sent the page’s trustworthiness, and a D-Rank to represent
the page’s spamicity or possibility of being manipulated by
spam pages.

Intuitively, a page pointed by many reputable pages ( with
high T-Rank scores but low D-Rank scores) is reputable and
should be assigned with a high T-Rank and a low D-Rank.
Similarly, a page pointing to many spam pages (with low
T-Rank scores but high D-Rank scores) should be assigned
with a low T-Rank but a high D-Rank. Both TrustRank and
Anti-Trust Rank have partially realized this intuition and the
only exception is that these algorithms use only one side of
trust or distrust information. However, we need to imple-
ment a differential propagation in which (1) a page propa-
gates more trust to a trustworthy neighbor but less trust to an
untrustworthy neighbor, (2) a page propagates more distrust
to an untrustworthy neighbor but less distrust to an trust-
worthy neighbor. We design a penalty mechanism to realize
differential trust/distrust propagation.

Differential Trust/Distrust Propagation: Like TrustRank
and Anti-Trust Rank, the T-Rank/D-Rank score of a
page is split equally by the number of the page’s out-
links/inlinks, and then is propagated to the page’s outlink-
neighbors/inlink-neighbors. Unlike TrustRank and Anti-
Trust Rank, the propagation of T-Rank/D-Rank is penalized
by the receiver’s current D-Rank/T-Rank.

There are many ways to implement penalty, our mecha-
nism is designed to be consistent with TrustRank and Anti-
Trust Rank such that the successes of previous algorithms

are inherited. In our framework, the two scores t(p) (T-
Rank) and d(p) (D-Rank) of a page p are formalized as fol-
lows:

t(p) =α
∑

q:q→p

βt(p)

βt(p) + (1− β)d(p)
· t(q)

outdegree(q)

+ (1− α)s(p),

(3)

d(p) =α′
∑

q:p→q

(1− β)d(p)

(1− β)d(p) + βt(p)
· d(q)

indegree(q)

+ (1− α′)s′(p),

(4)

where s(p) and s′(p) are the same vectors of the good seed
set and bad seed set as those of TrustRank and Anti-Trust
Rank, respectively; (1 − β)d(p) in Eq. (3) and βt(p) in
Eq. (4) are used to penalize the propagation of trust and the
propagation of distrust to p, respectively; β(0 ≤ β ≤ 1) is
the penalty factor which represents the impacts of T-Rank
and D-Rank on each other’s propagation. We can set a high
β value is we want to penalize more on distrust propagation
and a low β value want to penalize more on trust propaga-
tion. For a page p, if t(p) = d(p) = 0, we let:

βt(p)

βt(p) + (1− β)d(p)
=

(1− β)d(p)

βt(p) + (1− β)d(p)
= 1.

We call the proposed algorithm Trust-Distrust Rank
(TDR), which is described in Alg. 1.

Algorithm 1: The TDR algorithm
Input: Web graph G; good seeds trust vector s; bad

seeds distrust vector s′; decay factor α; penalty
factor β

Output: T-Rank scores t; D-Rank scores d
begin

t0 ← s
d0 ← s′
repeat

Iteratively compute t and d according to
Formula (3) and (4)

until Convergence;
return t,d

Theorem 1 The TDR algorithm is convergent.

The proof of the convergence of the algorithm is omitted
due to space limitation.

TDR algorithm outputs two kinds of scores: T-Rank and
D-Rank. T-Rank scores measure the trustworthiness of the
pages and can be used for spam demotion like TrustRank
scores. D-Rank scores measure the spammicities of the
pages and can be used for spam detection like Anti-Trust
Rank scores. Someone may wonder why we do not com-
bine these scores into a single trust score. Firstly, these two
scores have different usages. Secondly, a page with high
T-Rank score is always with low D-Rank score at the same
time and vice verse. Thus it is make no sense to combine
these two scores.

The TDR algorithm regresses to the TrustRank algorithm
when the penalty factor β is tuned to 1 and regresses to
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the Anti-Trust Rank algorithm when β is tuned to 0, thus
TDR can be seen as a combinatorial generalization of both
TrustRank and Anti-TrusRank. It inherits the advantages of
TrustRank and Anti-TrusRank but overcomes the disadvan-
tages of them. We use the same example in Fig. 1 to illu-
minate the superiority of TDR. By setting α = α′ = 0.85,
β = 0.5, using {1, 2} as good seeds, {5, 7} as bad seeds,
iterating TDR till convergence, we get the following results:
t = [0.166, 0.366, 0.152, 0.148, 0.004, 0.088, 0.021, 0.055]

d = [0.000, 0.019, 0.028, 0.065, 0.231, 0.297, 0.259, 0.102]
The results are excellent: all the good pages’ T-Rank scores
are higher than those of the bad pages, while all the bad
pages’ D-Rank scores are higher than those of the good
pages. This indicates that TDR can overcome difficulties
faced by both TrustRank and Anti-Trust Rank.

Experiments

Dataset, Baseline Algorithm and Parameter Setting

We conducted experiments on WEBSPAM-UK2007 dataset
(Yahoo! 2007) and TREC Category B of ClueWeb09 dataset
(Callan et al. 2009). The first dataset contains 105,896,555
pages from 114,529 hosts crawled from the .UK domain in
May, 2007 and a portion of seeds manually labeled by ex-
perts. 3169 good hosts and 134 bad hosts in the strongly
connected component of the host graph were used as good
seeds and bad seeds, respectively. The second dataset con-
tains 428,136,613 English Web pages. Gordon V. Cormack
(Cormack, Smucker, and Clarke 2010) provides the spam la-
bels of this dataset by content based methods with high pre-
cision. According to the guideline of the spam scores, we
labeled those with percentile-score less than 70 to be spam,
and the rest as non-spam. So we had 86,823,693 spam pages
together with 61,323,911 non-spam pages (the remaining
pages were not assigned percentile-scores). We randomly
selected 5% pages from each class as seeds.

We chose PageRank (Brin and Page 1998), TrustRank
(Gyöngyi, Garcia-Molina, and Pedersen 2004), CPV (Zhang
et al. 2009), LCRank (linear combination of TrustRank and
Anti-Trust Rank) (Wu, Goel, and Davison 2006a) as the
baseline algorithms for comparison with TDR (using T-
Rank) for the task of spam demotion, and chose Anti-Trust
Rank (Krishnan and Raj 2006), Inverse PageRank as the
baseline algorithms for comparison with TDR (using D-
Rank) for the task of spam detection.

The decay factors in these algorithms were all assigned
to 0.85 and the penalty factor β in TDR was assigned to 0.5.
As suggested in (Wu, Goel, and Davison 2006a), LCRank =
0.1× TrustRank − 0.9× Anti-Trust Rank.

Effectiveness of TDR for spam demotion

Spam demotion aims to demote the ranking positions of
spam pages as much as possible on condition that reputable
pages keep their relative ranking (PageRank) positions. Two
evaluate the performances of spam demotion algorithms, the
set of sites (pages) is split into a number (we use 20 here) of
buckets according to PageRank values, then usually three
evaluation criteria are used (Gyöngyi, Garcia-Molina, and
Pedersen 2004; Zhang et al. 2009).

Spam Sites (Pages) in Each Bucket: A good spam de-
motion algorithm should put fewer spam sites (pages) in
small-indexed buckets and more in large-indexed buckets,
i.e., the more spam sites (page) are demoted from small-
indexed buckets to large-indexed buckets, the better.

Spam Sites (Pages) in Top-k Buckets: This criterion counts
the overall spam sites (pages) from bucket 1 to bucket k. It
is like the spam sites (pages) in each bucket criterion but
easier to compare among different algorithms. The fewer
spam sites (pages) in top-k buckets, the better.

Average Spam Sites (Pages) Demotion Distances: This
criterion indicates the average demotion distance (how many
buckets) of spam sites in the ranking results. The longer the
distance is, the more effective the algorithm is.

Spam Sites (Pages) in Each Bucket The number of spam
sites in each bucket on WEBSPAM-UK2007 dataset of the
algorithms are shown in Fig. 2. It can be seen that TDR (us-
ing T-Rank) puts the fewest spam sites in nearly all buckets
from 1 to 13. The only two exceptions are bucket 2 and
bucket 6. TDR puts a bit more spam sites than CPV in
bucket 2, which is because TDR demotes more spam sites
from bucket 1 to bucket 2 than CPV. TDR puts a bit more
spam sites than LCRank in bucket 6, which is because TDR
demotes more spam sites from buckets 1 to 5 to bucket 6
than LCRank. It can also be seen that TDR puts far more
spam sites in bucket 19 and bucket 20 than the other algo-
rithms, this indicates that TDR has the strongest effect of
demoting spam sites. Thus overall it can be concluded that
TDR performs the best on WEBSPAM-UK2007 dataset in
term of Spam Sites (Pages) in Each Bucket.

For ClueWeb09 dataset, the number of spam pages in each
bucket are shown in Fig. 3. It can be seen that TDR puts
the fewest spam pages in nearly all buckets from 1 to 16.
The only exception is bucket 6, which is because that TDR
demotes more spam pages from buckets 1 to 5 to bucket
6. It can also be seen that TDR puts far more spam sites
in buckets from 17 to 20 than the other algorithms. Thus
TDR performs the best on ClueWeb09 dataset on Spam Sites
(Pages) in Each Bucket criterion.

Spam Sites (Pages) in Top-k Buckets The Spam Sites
(Pages) in Top-k Buckets (k ranges from 1 to 20) of the al-
gorithms on WEBSPAM-UK2007 dataset and ClueWeb09
dataset are shown in Fig. 4 and 5, respectively. The Spam
Sites (Pages) in Top-20 Buckets contains all the spam sites
(pages) in the data sets, thus in the end all the curves reach
to the same point. It can be clearly seen that when k ranges
from 1 to 19, TDR puts fewer spam sites (pages) than all the
other algorithms in the Top-k buckets on both data sets. Thus
TDR is the best algorithm under the Spam Sites (Pages) in
Top-k Buckets criterion, and its superiority is more obvious
on large scale data set.

Average Spam sites (Pages) Demotion Distances Fig. 6
shows the average bucket level demotion distances of spam
site on WEBSPAM-UK2007, and the results on ClueWeb09
are shown in Fig. 7. Only the first 12 buckets are shown
because it is meaningless to discuss the demotion distances
of sites (pages) in the last 8 (13 to 20) buckets.
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Figure 2: Spam sites in each bucket on
WEBSPAM-UK2007
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Figure 3: Spam pages in each bucket
on ClueWeb09
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Figure 4: Spam sites in Top-k buckets
on WEBSPAM-UK2007
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Figure 5: Spam pages in Top-k buck-
ets on ClueWeb09
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Figure 6: Average demotion distances
of spam sites on WEBSPAM-UK2007

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12

Av
er

ag
e 

de
m

ot
io

n 
(b

uc
ke

ts
) 

Bucket Index 

TrustRank

CPV

LCRank

T-Rank

Figure 7: Average demotion distances
of spam pages on ClueWeb2009
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Figure 8: Spam sites in top k buck-
ets of spam detection algorithms on
WEBSPAM-UK2007
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Figure 9: Spam pages in top k buck-
ets of spam detection algorithms on
ClueWeb09
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Figure 10: Precisions of differ-
ent spam detection algorithms on
WEBSPAM-UK2007

From Fig. 6, it can be seen that LCRank and TDR ev-
idently outperform TrustRank and CPV on WEBSPAM-
UK2007. In 1 to 4 buckets, LCRank demotes bad sites
to longer distances than TDR, while in 10 to 12 buckets,
TDR demotes bad sites to longer distances than LCRank. In
the other buckets, TDR and LCRank alternatively perform
better. Overall, the performance of LCRank is a bit better
than that of TDR on this criterion. This is because LCRank
weights Anti-Trust Rank 8 times higher than TrustRank.
Nevertheless, using LCRank, if a good site has a large Trust
score and a small Anti-Trust score, it might be mistakenly
demoted to a long distance. Only those reputable sites that
have nearly zero Anti-Trust scores remain on their original
ranking positions, which is a drawback of LCRank since
reputable sites (pages) are expected to relatively remain on
their original ranking positions.

On ClueWeb09 dataset, TDR demotes spam sites to
longer distances than all the other three algorithms. LCRank
performs better than CPV and TrustRank in buckets 1 to
8, but it performs worse and even promotes spam pages in
buckets 9 to12. As the ratio of spam in ClueWeb09 is ex-

tremely higher than that in WEBSPAM-UK2007, we can
conclude that TDR performs better than LCRank on demot-
ing spam sites if more spam pages exist. Thus TDR is more
suitable for today’s Web where spam pages are reported to
increase much faster than ever before. Note that in bucket
8 of ClueWeb09, both TDR and LCRank make extraordi-
narily long demotion distances. It is easy to explain thor-
ough investigation. In bucket 8 of PageRank on this dataset,
there are a large amount of forum and blog Web sites. This
sites are easily manipulated by spam sites thus they have
many links to spam sites, so they have high TrustRank val-
ues (relative to the sites in larger index buckets) and high
Anti-Trust Rank values at the same time. Therefore, both
LCRank and T-Rank scores of such sites will be definitely
low. Thus LCRank and T-Rank demote these kind of mixed
(good and bad) sites to long distances.

Summarizing the synthetical performances under the
above criteria on the two datasets, we can draw a conclu-
sion that TDR (using T-Rank) is the best algorithm for the
task of spam demotion.
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Effectiveness of TDR for spam detection

Rank-based spam detection algorithms, e.g. Inverse Page
Rank, Anti-Trust Rank and TDR (using D-Rank) try to make
sites (pages) which are likely to be spam with high rank val-
ues such that search engines can take further actions to filter
real spam pages (sites) out (usually other features are in-
volved). Thus spam pages (sites) in a good spam detection
algorithm should be relatively highly ranked (compared with
their PageRank). Spam pages (sites) in top ranked results
can be used as one criterion to evaluate this kind of rank-
based spam detection algorithms. The more spam pages
(sites) are put in the top-k buckets, the more effective the
algorithm is. The sum of the number of spam sites in the top-
k (k ranges from 1 to 20) buckets on WEBSPAM-UK2007
dataset are shown in Fig. 8 and those on ClueWeb09 dataset
are shown in Fig. 9. From these two figures, it can be clearly
seen that TDR outperforms the other two algorithms on both
datasets.

Rank-based spam detection algorithms are usually used
by setting a threshold τ and regarding the top-τ% ranked
pages (sites) as suspected spam pages (sites). This is actu-
ally a classification process, thus we use the precision met-
ric of classification to further investigate the performances
of the algorithms. The precisions of the algorithms when
the threshold τ ranges from 1 to 30 on known labeled sites
of WEBSPAM-UK2007 dataset and ClueWeb09 dataset are
shown in Fig. 10 and Fig. 11, respectively. From the two fig-
ures, it can be clearly seen that TDR outperforms the other
two rank-based spam detection algorithms on both datasets.

Consequently, TDR is the best rank-based spam detection
algorithm among the three.
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Figure 11: Precisions of different spam detection algorithms
on ClueWeb09

Conclusions

In this paper we have proposed a novel anti-spam algorithm
TDR which not only takes advantages of both good and bad
seeds, but also implements differential trust/distrust propa-
gation. TDR assigns each page a T-Rank score and a D-
Rank score and propagates them simultaneously from the
seed sets through bidirectional links to the entire Web. The
propagation of T-Rank/D-Rank is penalized by the target’s
current D-Rank/T-Rank, thus an untrustworthy/trustworthy
page receives less trust/distrust propagation than a trustwor-
thy/untrustworthy page from the same source page. TDR is
a combinatorial generalization of TrustRank and Anti-Trust
Rank, but overcomes the disadvantages of both of them.
Experimental results show that TDR outperforms previous

anti-spam algorithms for both spam demotion and spam de-
tection tasks. Our work can be further improved by incor-
porating with other improvements of TrustRank and Anti-
Trust Rank such as link-variable propagation. Besides, we
believe that the incorporation of content features could be
more helpful than only utilizing link structure.
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