
Niche Product Retrieval in Top-N Recommendation

Mi Zhang

School of Computer Science and Informatics,
University College Dublin, Ireland.

& School of Computer Science, Fudan University, China.
Email: mi.zhang@ucd.ie

Neil Hurley

School of Computer Science and Informatics,
University College Dublin, Ireland.

Email: neil.hurley@ucd.ie

Abstract—A challenge for personalised recommender sys-
tems is to target products in the long tail. That is, to recommend
products that the end-user likes, but that are not generally
popular. To achieve this goal, in this paper we propose two
strategies to identify relevant but niche products. The first
strategy computes an inverse item popularity and applies it
during the steps of top-N recommendation. Given a prior
probability distribution of relevance based on item popularity,
and a user-specific relevance probability, the other strategy
uses a number of scores based on distance measures between
these two distributions. We emphasize that the problem is to
recommend relevant items from the user’s broader range of
tastes. Hence, in evaluation a concentration index is calculated
to measure the extent to which the recommendation is spread
to the user’s niche tastes in conjunction with the standard
precision metric which measures the overall relevance of the
recommended set. The methods are evaluated empirically using
the Movielens dataset and show a strong performance in niche
item retrieval at the cost of a small reduction in precision.

Keywords-top-N recommendation; long-tail; popularity dis-
count; probability distribution;

I. INTRODUCTION

Many online retail markets are examples of a “block-

buster” industry. While a sales demand curve shows that

there are a relatively small number of highly popular prod-

ucts, it also exhibits a tail consisting of a much larger

number of products, each of which is liked or bought by

much fewer users. This characteristic has been dubbed by

Chris Anderson as “The Long Tail” phenomenon [1]. In

particular, Anderson finds that specialty items that are not

available in traditional brick-and-mortar stores can form a

substantial fraction of sales, and argues that the future of

business is selling “less of more” [2]. The economics of

long tail markets have been further analyzed in [4]. The

work provides a theoretical framework and analyzes the

motivations that increase the share of niche products both

on the supply-side and on the demand-side. Targeting sales

of long-tail products is particularly attractive to retailers

of digital products since in this case, the cost of storage

and delivery of such rarely bought products is not signif-

icantly more than that of popular products. Recommender

systems have long been considered as one means to help

people find and evaluate the many alternatives from the

largely expanded offerings in the online world. While it

is to be hoped that recommender systems can support the

sales of niche products, work such as [11] suggests that

recommenders actually “reinforce the blockbuster nature of

media”, by increasing the concentration of sales among a

small sub-set of the product space. One reason for this

failing may be that research in recommendation algorithms

has largely focused on improving overall system accuracy,

while less attention has been paid to developing algorithms

that can spread recommendations over a wider set of relevant

products. In this paper, we focus on strategies to support the

recommendation of niche and relevant products.

As such, we address top-N recommendation rather than

rating prediction, i.e. the focus is to recommend N products

that the systems predicts are likely to be relevant to the

end-user, rather than to predict the rating that an end-user

might give to any particular product. In the context of top-N
recommendation, classification accuracy [13] is more perti-

nent than predictive accuracy, and classification metrics such

as precision and recall should be used to measure system

performance. In contrast, much work on recommendation al-

gorithms has been focused on the rating prediction problem

in recent years, motivated by the Netflix prize. However, note

that highly accurate prediction algorithms do not necessarily

result in algorithms that perform well from a classification

perspective, if the items with the highest predicted ratings

are selected to form the recommendation set (predict-and-
select). Our study shows, algorithms that focus specifically

on generating a top-N list, such as the item-based kNN

algorithm proposed in [8], give a much better performance

from the point-of-view of precision, than the predict-and-

select strategy. For instance, on the Movielens dataset, using

the model-based prediction algorithm proposed in [12], and

the experimental methodology described later, we obtain a

precision of 0.0125 for predict-and-select in comparison to

0.12 for the kNN algorithm. Hence, in order to support niche

recommendation, the strategies proposed in this paper focus

on making enhancements to this baseline item-based kNN

algorithm and it is referred to as SR algorithm in this work.

II. DATASET ANALYSIS

To have a more intuitive sense of the niche item re-

trieval problem, we perform some analysis on the Movielens

2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-4191-4/10 $26.00 © 2010 IEEE

DOI 10.1109/WI-IAT.2010.79

74

0 500 1000 1500 2000 2500
200

250

300

350

400

450

500

550
580

d
u

p u

Figure 1. p̄u against engagement, du.

dataset1. The dataset consists of 1, 000, 000 ratings that

6, 040 users gave for 3, 900 movies.

We adopt the following notation: Let m be the number

of users and n the number of items in the system. For each

user u, let Pu denote the user’s profile, i.e. the set of items

rated by the user and for each item i, let Ui denote the set

of users that rated item i. Let li = |Ui| be the popularity of

item i and pi = li/m be its relative popularity. Let p̄u be the

mean popularity of items in Pu. Let du be the number of

items rated or consumed by a user u, indicating that user’s

engagement with the system.

A. Customers’ Consumption Behaviour

One might reasonably suspect that heavy users will have a

smaller p̄u than light users (McPhee’s “theory of exposure”

says that popular products “naturally monopolize” light

consumers.). Indeed p̄u and du are negatively correlated

(−0.35, with p < 0.05 significance t-test) but this correlation

is not very strong. Figure 1 depicts the relationship between

engagement and mean popularity of consumed items. Users

are grouped into 16 bins, according to their engagement

levels and each point on the plot corresponds to the mean

p̄u over all users in each bin. We can conclude that heavy

users do not have a much stronger intention of consuming

niche items than light users.

Furthermore, following a similar approach in [6], we sort

the movies according to their popularity and divide them into

three parts. Head movies make up the 447 most popular

movies that together account for 50% of the transactions

in the database; the following 1, 175 movies cover 30% of

the total transactions and are placed in the mid part; and

the remainder are placed in the tail part. To observe the

user preference distribution, we obtain the percentage of

items in Pu that fall in the head, mid and tail respectively.

Then the distribution of the percentages for the three parts

over all users in the system is depicted in Figure 2, e.g.,

the solid curve indicates the distribution of the percentage

1http://www.movielens.org

0% 20% 40% 60% 80% 100%
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Percentage of items in the user profile

Head
Mid
Tail

Figure 2. The long-tail distribution of items in Pu.

of head items contained in a user profile. It shows that a

big proportion of users do consume popular items much

more often than niche items. On average, 57% of a user

profile consists of head items, 28% of mid items and 15%
of tail items. However, it also indicates that if we only

focus on recommending head items we are missing more

than 40% of the total consumptions in the system. Many

users still consume a much bigger proportion of niche items

than average, e.g, for 28% of users, more than 20% of their

profile is made up of tail items and there are even some

users whose profiles contain a majority of tail items.

Another conventional perception is that customers com-

monly appreciate niche items much less than popular items,

i.e. such items receive very low ratings. We examined the

mean ratings that each part received. They are 3.82, 3.43 and

3.14 for the head, mid and tail, respectively, which indicates

that in general users appreciated niche items only a bit less.

In fact, our study shows that 71% of the ratings received by

tail items are ≥ 3 and 43% of the ratings received by tail

items are ≥ 4. That is, customers may rate the niche items

less but not always lower.

Table I
CATEGORY LOCATIONS OF SIMILAR MOVIES (MOVIELENS DATASET).

Head Mid Tail

Head 91.09% 8.91% 0
Mid 41.22% 52.79% 5.99%
Tail 2.78% 25.59% 71.63%

B. Concentration Reinforcement

To investigate how a recommendation algorithm can re-

inforce the concentration in the dataset, for each movie, we

identify the top 20 most similar movies, using the cosine

similarity metric. In Table I, the extent to which similarity

correlates with movie categories is shown. For instance, Row

1 indicates the case for a “head” movie. Thus, 91% of

the time, a movie in the top 20 most similar movies to a

head movie is also a head movie. The implication is, in the

75

similarity space the closest movies to popular movies are

also popular movies and hence a similarity-based algorithm

is likely to be biased towards recommending popular movies.

On the other hand, given a tail movie, its similar movies

are mostly located in the tail, too. The conclusion is that it

is inevitable that with a similarity-based recommender the

already popular items are very likely to be reinforced.

III. EVALUATION METRIC

It is not enough for a recommendation algorithm to spread

recommendations over a wide range of different product

types. Rather, it is necessary to find those less generally

popular products, which are highly likely to be relevant
to the active user of the system. This motivates us to

evaluate success in niche product recommendation using the

concentration of hits – that is, the extent to which relevant
recommendations are concentrated among a sub-set of the

product-space. The smaller the concentration, the better the

system is at making niche recommendations. This ability

is encapsulated in the concentration index (CI) and the

associated concentration curve. Precision is used to measure

the overall quality of the recommendation, as the percentage

of the recommended set that contains relevant items.

To compute a concentration curve [15] of the hits distribu-

tion against popularity, the products are ordered in terms of

increasing popularity and the cumulative proportion of hits
is plotted on the y-axis against the cumulative proportion

of products on the x-axis, where a hit is defined as the

recommendation of a product that is known to be liked by

the user. A point (x, y) on the curve should be interpreted as

x% of the least popular products account for y% of all hits.

Associated with the concentration curve is the concentration

index CI . It may be computed as twice the difference

between the area below the diagonal and the area below

the concentration curve c(x): CI � 1 − 2
∫ 1

0
c(x)dx , CI

lies in the range [−1, 1]. If it is zero, then the hit probability

is not correlated with popularity. Negative values imply a

bias towards unpopular items, positive values imply a bias

towards popular items.

Absolute Concentration and the Gini Index: While the

primary focus of the techniques discussed in this paper is

to remove the recommendation bias towards popular items,

one danger is that the new algorithms will concentrate over

a different set of items and that the system will still be

limited to recommendations of only a small number of the

relevant items, albeit not just popular ones. The absolute

hits concentration can be measured using the Lorenz curve.

Different from the concentration curve, to plot a Lorenz

curve the products are ordered in terms of increasing number
of hits on the x-axis, a point (x, y) on the curve indicates that

x% of the products with smallest number of hits, account

for y% of all hits. The Lorenz curve corresponds to the

diagonal only when all relevant products have an equal

chance of being recommended. The index corresponding to

the Lorenz curve is called the Gini index and lies in the

range [0, 1]. The closer the Gini index is to 0, the more the

hits are dispersed among a wider range of relevant products.

We will see that, as the tendency to recommend popular

products is a major cause of the concentrations observed

in recommender systems, the algorithms that we propose

to remove this bias also succeed in reducing the overall

concentration, as measured by the Gini index.

IV. RELATED WORK

There are two opposite opinions towards the problem of

whether we should invest in the long tail from the profit

driven point-of-view. The representatives of the two sides

are Chris Anderson [1] and Anita Elberse [9], respectively.

For example, Anderson [2] describes consumers’ demand for

niche products in an age of infinite-inventory retailers. On

the other hand, Elberse [10] has suggested that tail inventory

is overrated. Regardless of the importance of tail sales, we

believe that niche product recommendation is important to

increase consumer satisfaction. Strategies that increase the

probability of recommending relevant products in the long

tail are necessary to support true personalisation in the sense

that the system targets each users’ special needs. That is,

in order to provide more personalized recommendations,

systems need to be able to make recommendations of

products that the current user likes, but which are liked by

relatively few others. In terms of addressing this issue, the

previous work which most closely follows our research is

[11]. In this work, the impact of a recommender system

on sales diversity is analysed. The somewhat discouraging

result from the perspective of the long tail problem is that, in

most cases, the authors show that a recommender that bases

recommendations on previous sales history tends to increase
sales concentration. The evaluation of sales diversity is

based on an analytical model rather than empirical analysis

using real-world data. The model assumes that the effect of a

recommender system is to change the probability that a user

will purchase a particular product. We take the view that

the role of a recommender is not to increase users’ intrinsic

probability of purchasing any particular product, but rather

to make users aware of certain products that they have a high

probability of purchasing, once they are known to them.

V. POPULARITY DISCOUNT

In this section we present two strategies based on popu-

larity discount. The first applies popularity discount before

making the final recommendation. The second takes account

of popularity discount in computing the similarity matrix.

Both strategies use a notion of inverse popularity which is

defined for an item i as

InvPop(i) = (1 − pi)
b

(1)

where pi is the relative popularity of item i and b is used to

amplify the effect of popularity discount, b = 1 by default.

The inverse popularity of the items is plotted in Figure 3.

76

0 1000 2000 3000 4000
0

0.2

0.4

0.6

0.8

1

Items sorted by popularity

P
op

ul
ar

ity
 &

 In
ve

rs
e

P
op

ul
ar

ity

Item Popularity
Inverse Popularity

Figure 3. Inverse popularity of the items.

These two strategies perform the popularity discount by

modifying the SR algorithm. In this algorithm, firstly a

candidate sub-set, C, of items from which the final rec-

ommendation is drawn is identified by selecting the K most

similar items to each item in Pu (removing duplicates). The

recommended set is then identified from these, through a

more refined measure of similarity that is typically calcu-

lated as the aggregate similarity between a candidate item

and all items in Pu.

A. Inverse Item Popularity Discount (IIP)

For the IIP strategy, after the SR algorithm has been

applied to calculate a similarity value for each candidate item

to Pu, these similarity values are multiplied by InvPop(i)
and the items are ranked according to the modified value.

B. Utility of User Profile (UUP)

The UUP discounting strategy is inspired by the profile
utility measure proposed in [14]. Originally this was applied

in the context of a user-based recommender system where

each user profile is assigned a global weight that models

the profile’s usefulness as a potential neighbour. The profile

utility of user u is defined as:

U(u) =
1

|Pu|
∑
i∈Pu

InvPop(i) . (2)

We use (2) to discount the cosine similarity metric. Writing

s(i, j) as the similarity between two items i and j, we define

a popularity discounted cosine similarity as:

s(i, j) =
∑

u∈Ui∩Uj

U(u)ru,i√∑
v∈Ui

(U(v)rv,i)2
U(u)ru,j√∑

v∈Uj
(U(v)rv,j)2

,

where ru,i is the rating given by a user u to an item i.

VI. PROBABILISTIC SCORES

The above popularity discount algorithms can be regarded

as a simple modification that finds obvious recommenda-

tions, and reduce the chance of the obvious ones appearing

in each recommendation list before presenting it to users. A

possible disadvantage of it is that since each user has had

different consumption history in the past the obvious items

might be different for them. An alternative would combine

what is known about the user’s tastes with what is known

about the average tastes from all the users.

A. Motivation

A key component of SR is the similarity measure that

provides a heuristic measurement of how suitable an item i
is for recommendation to a user u. From the classification

perspective, the recommendation problem may be viewed

as a decision problem in which the issue is to decide

whether an item is relevant to a user, given the similarity. A

statistical approach to this problem will base this decision

on a statistical model of item relevance. Thus we may try

to model the probability of relevance, given the similarity,

which we write as pL(s), where L is the event that an

item is liked by the user. On the other hand, a simple prior
probability of item relevance, independent of any particular

user, can be estimated as the relative popularity of each item,

pi. Note that in general high similarity tends to be correlated

with high popularity, so simply selecting those items that are

most likely according to pL(s) leads to the observed problem

of recommending the most popular items.

Instead, we identify possible niche items as those items

for which pL(s) differs from pi. Our strategy for niche

recommendation can be summarised as firstly, building the

above statistical models and then using measures of distance

between the distributions to identify niche items. Intuitively,

the distance represents the amount that the given user will

like the product more than most other users. Unpopular

items will often be recommended if the current user is

particularly interested in them, while very popular items will

be recommended only if the current user is exceptionally

interested in them. This approach will discover surprising

items that are liked by the users.

We incorporate this approach into the SR algorithm after
selection of the candidate set C and use it as a means of

selecting the recommended set R from C. Specifically, when

making recommendations to a user, each of the items in the

candidate set C is assigned a score D∗ with ∗ being one of

the criteria described below. They are sorted in descending

order according to D∗ and the top N items are selected to

form the recommendation list.

B. Measuring the Distance between Distributions

The Kullback-Liebler divergence (KLD) [7] or informa-

tion gain is defined for discrete distributions by

KL(p, q) =
∑
x∈J

p(x) log
p(x)
q(x)

.

where p and q are two probability distributions, x is one

possible outcome in the space of all possible outcomes, J .

In this work, J = {0, 1}, where 1 represents the outcome

of relevance, i.e. the item is liked by the user, and 0

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

s

p L(s
)

pL(s)

fitting curve

Figure 4. pL(s) - Probability to be liked against s.

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

items sorted from least popular to most popular

pL(s)

pi

Figure 5. Distributions of pL(s) and pi.

represents the outcome of irrelevance. Then, we can compute

the difference between posterior and prior distributions as a

score, DKL obtained by an item i for the current user u:

DKL = pL(s) log
pL(s)

pi
+ (1 − pL(s)) log

(1 − pL(s))
(1 − pi)

.

A user-item pair with a high KLD score corresponds to

an item for which the predicted suitability of this item to

this specific user is different to their overall likelihood of

relevance due to its popularity.
Additionally, we apply another distance metric between

two distributions – L1-norm distance [5]:

DL1 =
1
2

∑
x∈J

|(p(x) − q(x))|

The L1-norm score in our context is :

DL1 =
1
2
(|pL(s) − pi| + |pi − pL(s)|)

= |pL(s) − pi|.
However, since it always holds that DKL ≥ 0 and

DL1 ≥ 0 these scores do not distinguish the case that the

difference is due to pL(s) being high when pi is low, from

pL(s) being low when pi is high. We therefore propose some

other heuristic scores.

C. Other Scores
We assign a score to each candidate item with the fol-

lowing criteria based on the idea that the value of an item

being recommended is low when it is generally popular:

• Ratio: DR = pL(s)
pL(s)+pi

. The ratio score lies in the range

[0, 1] and is maximised when pL(s) = 1 and pi = 0.

• Product: DP = (1− pi)pL(s), where 1− pi represents

the probability that the item is not commonly liked. The

idea for this criteria is, if an item is not liked by the

majority (high 1−pi) but liked by the current user (high

pL(s)), it can be regarded as the user’s niche taste.

• Difference: Dd = pL(s) − pi. The difference between

the two relevance probabilities. This removes the abso-

lute values from the L1 norm, since we are interested

only in the case of high pL(s) and low pi.

Moreover, we construct a weighted sum of the above three

scores. That is:

• Weighted Arithmetic Mean (WAM):

DWAM = α1DR + α2DP + α3Dd

where
∑3

j=1 αj = 1 and αj ≥ 0. The parameters αj are

chosen for each user to maximise the score over known

relevant items in the user’s profile. Given a set of scores

DWAM(i) for each item i ∈ Pu, we choose αj to minimize
∑
i∈Pu

(1 − DWAM(i))2

using a constrained least squares fit.

D. Probability Distributions
We estimate the probability distributions pL(s) and pi

empirically from a training dataset of ratings provided by

a set of 3, 000 randomly chosen users. We calculate the

similarity values for all the relevant items in each user profile

to obtain s(u, i) as the average similarity of item i to the

other items in the profile Pu. We also calculate the similarity

for all remaining pairs (u, i).
The entire range of similarity values s is divided

into k bins B = {B(1), ..., B(k)}. Let cB =
max(pL(s))−min(pL(s))

k , the range for the jth bin is [(j −
1)cB , jcB). For all users in the dataset, we count the number

of times that similarity values for relevant items fall in each

bin B(j), and hence the fraction of observed relevant user-
item pairs that fall in each bin, which is written as nL(j).
In the same manner, we obtain nr(j), the fraction of all
observed user-item pairs that fall in each bin. The ratio of

these two numbers gives an estimate for pL(s). Specifically,

for the jth bin, the probability that the items with similarity s
falling in this bin are actually liked by the user, is calculated

by pj
L(s) = nL(j)

nr(j) . The resulting values of pj
L(s) can be

represented as a vector pL(s) of length k. A quadratic curve

is fitted to the raw pL(s) values obtained from the above

process, see Figure 4. Note that only the highly rated (with

ratings of 4 or 5) items in the users’ past transactions are

regarded to be relevant.

78

Note that as defined earlier, pi is fixed for each item, i.e.

it is not user-sensitive. On the other hand, pL(s) is user-

sensitive since it depends on the s value for each user-item

pair. To have a more intuitive sense, we display the two

probability distributions for one user in Figure 5. It can be

seen that the trends of these two probability distributions

are similar, but there is a certain distance between them for

individual items and for some items that distance can be big.

In the experiments, the probability of pL(s) is trained for

each user independently, i.e. the probability of items being

liked by a user depends on the similarity distribution from

the current user, rather than the similarity distribution drawn

from all the users.

VII. EXPERIMENTS

A few baseline algorithms we applied for recommendation

from the candidate set C are listed as follows:

• SR: the N most similar items to Pu are recommended.

• Random recommender (RR): Select N items from C
uniformly at random.

• Popular list recommender (PR): recommend the N
most popular items in C.

We compare these algorithms against our niche product

recommendation strategies.

Moreover, our strategies are dependent on the choice

of the item-item similarity metric. We use standard cosine

similarity and additionally, we use a reduced dimension

similarity metric. Since latent semantic indexing [3] was

first proposed, it has long been recoganised that dimension

reduction can help to uncover similarities that are otherwise

difficult to recognise in the original high-dimensional space.

For example, [16] pointed out that we can take the advantage

of reduced dimensionality to form better neighborhoods of

customers. We carry out an SVD factorisation of A, the

m × n dimensional matrix of ratings for the n items in the

dataset. Given A = UΣVT , we take the first l columns

of V to form an l-dimensional representation of the items

s.t. m � l. This representation is used to compute item

similarities using the cosine metric on the reduced dimension

item vectors. Clearly, the choice of dimension l is critical to

the success of this method, among all the values between 20
to 200 with interval of 10, l = 50 provides the best average

performance and is applied in the experimental section. We

apply this dimension reduction method (SVD) to both the

SR and IIP algorithms.

We evaluate the algorithms on the Movielens dataset,

selecting YT as the set of users with non-empty profiles. For

each user u, a test set Tu of size 10%×|Pu| is selected with

equal probability from Pu∗ and removed from YT , where

Pu∗ consists of items with ratings of 4 or 5 in Pu. In all

experiments the size of the recommendation set R is fixed

as N = 20. A hit occurs whenever R intersects Tu. The

transactions left in YT are used for the training of probability

distributions. All the experiments are repeated 10 times and

the average values are taken. The differences of the results

between different algorithms are all statistically significant

(p < 0.05 with t-test).

A. Results

The concentration curves of popularity discount strategies

are depicted in Figure 6. Results are presented for the

standard similarity measure and also the reduced dimension

measure (SVD). The corresponding concentration indices

are given in Table II. Note that the closer the curve is to

the diagonal, the more balanced is the distribution (small

concentration). Firstly, it is interesting to observe the be-

havior of the baseline algorithms. The curve of SR shows a

very big concentration bias towards the popular items, with

the typical 20 : 80 inequality that only about 20% of the

most popular products in the user profile get nearly 80%
of the total hits in the system. This illustrates how standard

performance measures can hide important detail about the

quality of the recommendation. The standard methodology

for evaluating performance only reports the total precision,

but the recommendation quality falls off quickly once the

popularity of items decreases.

IIP shows a big advantage over the SR method. UUP(b=8)
achieves a similar performance to IIP. After applying dimen-

sion reduction, both SR(SVD) and IIP(SVD) are biased to

retrieve unpopular items, where SR(SVD) achieves a better

total precision. Among the methods in this figure, IIP has

the best precision with a small drop in comparison to the

SR algorithm. However, from Table II it may be observed

that IIP(SVD) has a big drop in total precision (comparing

to SR) and thus the reduction in popularity bias has come at

a severe cost in overall performance. In terms of precision

the UUP(b=8) strategy does not show a competitive result.

Figure 7 depicts the concentration curves of L1 and

KLD algorithms proposed in Section VI, along with the

baseline algorithms. For the PR algorithm, as expected its

concentration is more extreme than the SR algorithm as it

always recommends the most popular items. However, such

a simple algorithm gives a quite good total system precision,

as depicted in Table II, only a small drop from SR and

indeed the concentration of the SR algorithm is not much

smaller. It indicates the extent to which the performance of

SR is achieved through recommending popular items. Given

this evidence, it is not surprising when we reach out for

the niche items, in general there will be a certain drop in

total system precision. The RR algorithm presents a nearly

perfect concentration curve, i.e. very close to the diagonal,

but a very low precision. The L1 and KLD methods produce

two curves between RR and SR algorithms. It’s noteworthy

that no drop in precision is observed for L1. The KLD
method shows an advantage over the L1 method in terms

of alleviating concentration and retrieving niche items, at

the cost of a small drop in precision.

79

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cumulative % of items sorted by popularity

C
um

ul
at

iv
e

%
 o

f h
its

Diagonal
SR
SR(SVD)
IIP
IIP(SVD)
UUP(b=8)

Figure 6. Concentration curves for popularity
discount strategies.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cumulative % of items ordered by popularity

C
um

ul
at

iv
e

%
 o

f h
its

Diagonal
RR
SR
PR
L1
KLD

Figure 7. Concentration curves of baseline and
L1, KLD algorithms.

0% 20% 40% 60% 80% 100%
0%

20%

40%

60%

80%

100%

Cumulative % of items ordered by popularity

C
um

ul
at

iv
e

%
 o

f h
its

Diagonal
Ratio
Product
Difference
WAM

Figure 8. Concentration curves of algorithms
applying other scores.

Table II
CONCENTRATION INDEX CI , GINI INDEX GI AND TOTAL PRECISION P .

SR SR(SVD) PR IIP UUP(8) IIP(SVD) L1 KLD Ratio Product Difference WAM

CI 0.75 -0.14 0.87 0.3 0.3 -0.35 0.57 0.43 0.25 0.58 0.52 0.21
GI 0.84 0.62 0.87 0.8 0.83 0.71 0.72 0.69 0.7 0.71 0.68 0.69
P 0.12 0.073 0.093 0.086 0.044 0.051 0.114 0.107 0.067 0.129 0.126 0.071

Looking at Figure 8, the Product and Difference methods

give similar results to the L1 method, i.e. only a modest

improvement in CI . Nevertheless, they even produce a

certain improvement in the overall system precision over

SR (14.5% improvement for Product and 13.3% for Differ-
ence). The Ratio and Ratio methods have a quite different

behaviour. For them a remarkable improvement in CI is

obtained with a bigger cost of precision (however, still a

great advantage over RR). The Ratio method outperforms

the Ratio method in both metrics, i.e. better precision and

less concentration.
The Gini index (GI) for each algorithm is also presented

in Table II. SR(SVD) provides the best performance here

with a 25.5% improvement over SR, while the Difference
algorithm achieves 18% improvement. Although the im-

provement seems modest in comparison to CI , it still can be

regarded as a big improvement since this indicates a more

even hits across all items in the entire catalogue. To sum

up, Ratio is the best in removing the popularity bias, while

SR(SVD) is the best in removing the overall concentrations.
In terms of system efficiency, the computational complex-

ity for the IIP strategy is linear to the total number of items,

O(n). For the UUP strategy, as reported in [14] it takes

O(nm) to obtain the profile utility for each user over all

the items they rated. For the strategy applying probabilistic

scores, with s prepared the extra step for training pL(s)
is to go over the users and see for which ranges of s the

relevant items fall in, which takes O(m). It can be computed

off-line and is easily updated when new items are rated or

new users are introduced. No exponential or high power of

computational complexity is observed.

B. Discussion
Table III provides an example of two top-10 recom-

mendation lists generated by the SR and Ratio methods

respectively, for a randomly selected user. The popularity of

the items is presented. Firstly, the problem of concentration

among popular items is well observed for the list generated

by the SR algorithm. Very popular movies such as the Star
Wars series generate a huge amount of hits (i.e. relevant

recommendations) for the system but have a very little value,

since they are already well known. All the items in the list

recommended by the SR method are such kind of movies

(with popularity bigger than 1, 000). If it is accepted that the

role of a recommender system should be more in discovering

relevant items that the user is not aware of, rather than

advertising well-known items over and over again, the Ratio
method can be seen to out-perform SR. Niche and relevant

items have been brought in to the recommendation. It is very

possible that the user is not aware of them before because

they are not generally popular. Nevertheless, their relevance

is assured by the maintenance of the total system precision.

The second list actually provides a mix of popular and niche

items, which can be regarded as a reasonable strategy, in

the sense of providing the customers some familiar items as

well as some surprises. The duplicates of the very popular

movies are removed in the new list, which is also a cause of

the precision loss. For example, only Episode V of the Star
Wars is kept and being aware of its presence in the system,

the user can easily search for the other episodes.

Moreover, a side-effect we found is, bringing in the

niche items actually increases the set diversity of the rec-

ommendation list. It is defined as the average of pairwise

dissimilarity of all the items in the recommendation set [17],

[18]. Some work such as [19] has followed up to maximise

the set diversity. The diversity of the recommendation set has

improved by 47% (0.48 for SR and 0.71 for Ratio), averaging

over all users. Thus, while the approach of this paper has

focused on extending the recommendation to less popular

80

Table III
COMPARISON OF THE RECOMMENDATION LISTS FROM SR AND RATIO.

List1 (SR) Popularity List2 (Ratio) Popularity
Star Wars: Episode V...(1980) 1516 Rocky II (1979) 247
Star Wars: Episode IV...(1977) 1518 Philadelphia (1993) 305

Pulp Fiction (1994) 1088 The Sixth Sense (1999) 1240
Raiders of the Lost Ark (1981) 1295 Pulp Fiction (1994) 1088

The Matrix (1999) 1322 Short Cuts (1993) 152
The Shawshank Redemption(1994) 1091 Blood Simple (1984) 315

The Terminator (1984) 1092 Star Wars: Episode IV...(1977) 1518
Back to the Future (1985) 1321 Blade Runner (1982) 920

Terminator 2: Judgment Day (1991) 1368 Mulholland Falls (1996) 142
Star Wars: Episode VI...(1983) 1446 The Usual Suspects (1995) 897

items, an effect is that the items in the recommendation set

tend to be less alike.

VIII. CONCLUSIONS

In this work we investigate the problem of retrieving

niche items with an aim of improving end-users’ satisfaction.

Initially, an analysis is performed on real consumption data

to present users’ preference curves and demonstrate the

importance of niche items to a majority of users, rather

than just a few users. We emphasise that to provide a good

quality niche recommendation it is not enough to provide a

range of different recommendations. Rather, we must ensure

that these recommendations are relevant to the end user.

Thus, we measure any improvements in recommendation

of niche products in conjunction with the overall number

of successful recommendations, as given by the system

precision. In summary, an evaluation on the Movielens

dataset demonstrates that the methods proposed in this

paper succeed in retrieving niche and relevant items. Some

algorithms with a modest improvement in concentration even

obtain a better precision as well, while some others that

achieve a great improvement in concentration have a certain

loss in precision.

REFERENCES

[1] C. Anderson. The long tail. Wired Magazine, 12(10):170–
177, 2004.

[2] C. Anderson. The long tail: Why the future of business is
selling less of more. Hyperion, 2006.

[3] M. Berry, S. Dumais, and T. Letsche. Computational methods
for intelligent information access. In Proceedings of Super-
computing’95, 1995.

[4] E. Brynjolfsson and Y. J. Hu. Goodbye pareto principle,
hello long tail: The effect of search costs on the concentration
of product sales. MIT Center for Digital Business Working
Paper, 2007.

[5] R. J. Budzynski, W. Kondracki, and A. Krolak. Applications
of distance between probability distributions to gravitational
wave data analysis. Classical and Quantum Gravity, 25, 2008.

[6] O. Celma and P. Herrera. A new approach to evaluating novel
recommendations. In Proceedings of RecSys’08, pages 179–
186, 2008.

[7] T. M. Cover and J. A. Thomas. Elements of information
theory. John Wiley, 1991.

[8] M. Deshpande and G. Karypis. Item-based top-n recommen-
dation algorithms. ACM Transactions on Information Systems,
22(1):143–177, 2004.

[9] A. Elberse. Should you invest in the long tail? Harvard
Business Review, 86(7/8):88–96, 2008.

[10] A. Elberse and F. Oberholzer-Gee. Superstars and underdogs:
An examination of the long tail phenomenon in video sales.
Harvard Business School Working Paper, 7(15), 2006.

[11] D. Fleder and K. Hosanagar. Recommender systems and their
impact on sales diversity. In Proceedings of the 8th ACM
conference on Electronic commerce, pages 192–199, 2007.

[12] Y. Koren. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In Proceedings of the
14th ACM SIGKDD Conference, 2008.

[13] J. L.Herlocker, J. A.Konstan, L. G.Terveen, and J. T.Riedl.
Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., 22(1):5–53, 2004.

[14] M.O’Mahony, N. Hurley, and G.Silvestre. Utility-based
neighbourhood formation for efficient and robust collabora-
tive filtering. In Proceedings of ACM Conf. on Electronic
Commerce, pages 17–20, 2004.

[15] C. S. Moskowitz, V. E. Seshan, and E. R. Riedel. Estimating
the empirical lorenz curve and gini coefficient in the presence
of error with nested data. Statistics in Medicine, 27:3191–
3208, 2008.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application
of dimensionality reduction in recommender systems. In ACM
WebKDD Workshop, 2000.

[17] B. Smyth and P. McClave. Similarity vs. diversity. In
Proceedings of the 4th International Conference on Case-
Based Reasoning, pages 347–361, 2001.

[18] M. Zhang and N. Hurley. Avoiding monotony: Improving
the diversity of recommendation lists. In Proceedings of 2nd
ACM Recsys, 2008.

[19] M. Zhang and N. Hurley. Novel item recommendation
by user profile partitioning. In Proceedings of the 2009
IEEE/WIC/ACM International Conferences on Web Intelli-
gence, pages 508–515, 2009.

81

