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Abstract— Internet enabled wireless devices continue to prolif-
erate and are expected to surpass traditional Internet clients in
the near future. This has opened up exciting new opportunities in
the mobile e-commerce market. However, data security and pri-
vacy remain major concerns in the current generation of ”wireless
web” offerings. All such offerings today use a security architecture
that lacks end-to-end security. This unfortunate choice is driven
by perceived inadequacies of standard Internet security protocols
like SSL (Secure Sockets Layer) on less capable CPUs and low-
bandwidth wireless links.

This paper presents our experiences in implementing and us-
ing standard security mechanisms and protocols on small wireless
devices. Our results show that SSL is a practical solution for en-
suring end-to-end security of wireless Internet transactions even
within todays technological constraints.

Index Terms—Wireless Internet, Wireless security, SSL, end-to-
end security, J2METM.

I. INTRODUCTION

THE past few years have seen an explosive growth in the
popularity of small, handheld devices (mobile phones,

PDAs, pagers), that are wirelessly connected to the Internet.
These devices, which are predicted to soon outnumber tra-
ditional Internet hosts like PCs and workstations, hold the
promise of ubiquitous (“anytime, anywhere”) access to a wide
array of interesting services. However, limitations of these
battery-driven devices like small volatile and non-volatile mem-
ory, minimal computational capability, and small screen sizes,
make the task of creating secure, useful applications for these
devices especially challenging.

It is easy to imagine a world in which people rely on con-
nected handheld devices not only to store their personal data,
check news and weather reports, but also for more security sen-
sitive applications like on-line banking, stock trading and shop-
ping - all while being mobile. Such transactions invariably re-
quire the exchange of private information like passwords, PINs
and credit card numbers and ensuring the secure transport of
this information through the network becomes an important
concern.1

1While protecting data on the device is also important, mechanisms for doing
so are already available and not discussed further in this paper.
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Fig. 1. (a) Proxy-based architecture (top), (b) End-to-end architecture (bottom)

On the wired Internet, Secure Sockets Layer (SSL) [1] is
the most widely deployed and used security protocol2. It of-
ten takes years of widespread public review and multiple iter-
ations [2], [3] to discover and correct subtle but fatal errors in
the design and/or implementation of a security protocol. Over
the years, the SSL protocol and its implementations have been
subjected to careful scrutiny by security experts [4]. No won-
der then that today SSL is trusted to secure sensitive applica-
tions ranging from web banking to online trading to all of e-
commerce. The addition of SSL capabilities to mobile devices
would bring the same level of security to the wireless world.

Unfortunately, none of the popular wireless data services to-
day offer SSL on a handheld device. Driven by perceived in-
adequacies of SSL in a resource constrained environment, ar-
chitects of both WAP and Palm.net chose to use a proxy based
architecture, which is depicted in Fig. 1(a). In this approach,
a different security protocol (incompatible with SSL) is used
between the mobile client and the proxy/gateway(e.g., WAP
uses WTLS [5] and Palm.Net uses a proprietary protocol on
the wireless link). The proxy then decrypts encrypted data sent
by a WAP phone using WTLS and re-encrypts it using SSL be-
fore forwarding it to the eventual destination server. The reverse
process is used for traffic flowing in the opposite direction.

Such a proxy-based architecture has some serious draw-
backs. The proxy is not only a potential performance bottle-
neck, but also represents a “man-in-the-middle” which is privy
to all “secure” communications. Even though the data is en-

2Throughout this paper, we use SSL to refer to all versions of this protocol
including version 3.1 also known as Transport Layer Security (TLSv1.0).
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crypted on both the wireless and wired hops, anybody with ac-
cess to the the proxy itself could see the data in cleartext. Some-
times the situation is even worse and no encryption is used on
the wireless side. This lack of end-to-end security is a serious
deterrent for any organization thinking of extending a security-
sensitive Internet-based service to wireless users. Banks and
brokerage houses are uncomfortable with the notion that the se-
curity of their customers’ wireless transactions depends on the
integrity of the proxy under the control of an untrusted third
party. Moreover, the proxy is often pre-programmed into the
clients’ devices, which may raise legal issues [6]. For instance,
Palm.Net users have to go through the proxy owned and oper-
ated by Palm.

In contrast, the use of SSL between desktop
PCs/workstations and Internet servers offers true end-to-
end security (Fig. 1(b)). This holds true even when an HTTPS
proxy is used to traverse firewalls. Unlike the WAP or Palm.net
proxy, an HTTPS proxy only acts as a simple TCP relay
shuttling encrypted bytes from one side to the other without
decryption/re-encryption.

We felt that the claims about the unsuitability of SSL for mo-
bile devices had not been adequately substantiated [7]. This
prompted our experiments in evaluating SSL (considered too
“big” by some) for small devices. We sought answers to some
key questions: Is it possible to develop a usable implementa-
tion of SSL for a mobile device and thereby provide end-to-end
security? How would near-term technology trends impact the
conclusions of our investigation?

The rest of this paper describes our experiments in greater
detail. Section II provides a brief overview of the SSL proto-
col. Section III discusses our implementation of an SSL client,
called KSSL, on a Palm PDA and evaluates its performance.
Section IV describes an application we’ve developed for se-
cure, mobile access to enterprise resources based on KSSL.
Section V talks about mobile technology trends relevant to ap-
plication and protocol developers. Finally, we offer our conclu-
sions in Section VI.

II. SECURE SOCKETS LAYER (SSL)

A. Overview

SSL offers encryption, source authentication and integrity
protection of application data over insecure, public networks.
Fig. 2 shows the layered nature of this protocol. The Record
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Fig. 3. The SSL Handshake protocol

layer, which sits above a reliable transport service like TCP,
provides bulk encryption and authentication using symmetric-
key algorithms. The keys for these algorithms are derived from
a master secret established by the Handshake protocol between
the SSL client and server using public-key algorithms.

SSL is very flexible and can accommodate a variety of al-
gorithms for key agreement, encryption and hashing. To guard
against adverse interactions (from a security perspective) be-
tween arbitrary combinations of these algorithms, the standard
specification explicitly lists combinations of these algorithms,
called cipher-suites, with well-understood security properties.

The Handshake protocol is the most complex part of SSL
with many possible variations (Fig. 3). In the following sub-
section, we focus on its most popular form, which uses RSA
key exchange and does not involve client-side authentication.
While SSL allows both client- and server-side authentication,
only the server is typically authenticated due to the difficulty of
managing client-side certificates. Client authentication, in such
cases, happens at the application layer, e.g. through the use of
passwords sent over an SSL-protected channel.

1) Full SSL Handshake: When an SSL client encounters a
new server for the first time, it engages in the full handshake
shown in Fig. 3(a). The client and server exchange random
nonces (used for replay protection) and negotiate a mutually ac-
ceptable cipher suite in the first two messages. The server then
sends its RSA public-key inside an X.509 certificate. The client
verifies the public-key, generates a 48-byte random number
(the pre-master secret) and sends it encrypted with the server’s
public-key. The server uses its RSA private-key to decrypt the
pre-master secret. Both end-points use the pre-master secret to
create a master secret which, along with previously exchanged
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nonces, is used to derive the cipher keys, initialization vectors
and MAC (Message Authentication Code) keys for the Record
Layer.

2) Abbreviated SSL HandShake: A client can propose to
reuse the master key derived in a previous session by including
that session’s (non-zero) ID in the first message.3 The server in-
dicates its acceptance by echoing that ID in the second message.
This results in an abbreviated handshake without certificates
or public-key cryptographic operations so fewer (and shorter)
messages are exchanged (see Fig. 3(b)). An abbreviated hand-
shake is significantly faster than a full handshake.

B. SSL on Small Devices: Common Perception v/s Informed
Analysis

SSL is commonly perceived as being too heavyweight for
the comparatively weak CPUs in mobile devices and their low-
bandwidth, high latency wireless networks. The need for RSA
operations in the handshake, the verbosity of X.509 encoding,
the chattiness (multiple round trips) of the handshake and the
large size of existing SSL implementations are all sources of
concern.

However, we are not aware of any empirical studies evaluat-
ing SSL for small devices and careful analysis of the protocol’s
most common usage reveals some interesting insights:

� Some constraints ease others. If the network is slow, the
CPU doesn’t need to be very fast to perform bulk encryp-
tion and authentication at network speeds.

� A typical SSL client only needs to perform RSA public-
key, rather than private-key, operations for signature veri-
fication and encryption. Their small exponents (typically
no more than 65537, a 17-bit value) make public-key oper-
ations much faster than private-key operations. It is worth
pointing out that the performance of RSA public-key op-
erations is comparable to that of equivalent Elliptic Curve
Cryptography (ECC [8]) operations [9].

� There are several opportunities to amortize the cost of ex-
pensive operations across multiple user transactions. Most
often, a client communicates with the same server multi-
ple times over a short period of time, e.g. such interaction
is typical of a portal environment. In this scenario, SSL’s
session reuse feature greatly reduces the need for a full
handshake.
Although SSL can be used to secure any connection-
oriented application protocol (SMTP, NNTP, IMAP), it is
used most often for securing HTTP. The HTTP 1.1 speci-
fication encourages multiple HTTP transactions to reuse
the same TCP connection. Since an SSL handshake is
only needed immediately after TCP connection set up, this
“persistent HTTP” feature further decreases the frequency
of SSL handshakes.

a b
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Fig. 4. KSSL Implementation Architecture

III. KSSL AND KSECURITY

”KiloByte” SSL (KSSL), is a small footprint, SSL client for
the Mobile Information Device Profile (MIDP) of Java 2 Micro-
Edition (J2METM) [10]. Its overall architecture and relationship
to the base J2ME platform is depicted in Fig. 4.

The KSecurity package provides fundamental cryptographic
functions such as random number generation, encryption,
and hashing that are missing from base J2ME. It reuses the
Java CardTM API which opens up the possibility of using a Java
Card as a hardware crypto accelerator with minimal changes
to the KSSL code. Some of the compute intensive operations
(such as modular exponentiation) are implemented as native
methods in C.

An SSL client also needs to process X.509 certificates and
maintain a list of trusted certificate authorities. Since the Java
Card APIs do not deal with Certificates or KeyStores, we mod-
eled these classes as subsets of their Java 2 Standard Edition
(J2SETM) counterparts.

The SSL protocol (box labeled KSSL) is written purely
in JavaTM and implements the client-side of SSLv3.0, the
most popular version of SSL. It offers only two cipher suites
RSA RC4 128 MD5 and RSA RC4 40 MD5 since they are fast
and almost universally implemented by SSL servers. Client-
side authentication is not implemented. KSSL interoperates
successfully with SSL servers from iPlanetTM, Microsoft, SunTM

and Apache (using OpenSSL).

A. Performance

� Static Memory Requirements: For PalmOS, the addition
of KSSL and KSecurity classes increases the size of the
base J2ME implementation by about 90 KBytes. This ad-
ditional memory is reasonable compared to the size of base
J2ME which is typically a few hundred KBytes. It is pos-
sible to reduce the combined size of KSSL and KSecurity
packages to as little as 70 KByte if one is willing to sac-
rifice the clean interface between them (applications will
only be able to access security services through SSL).

� Bulk encryption and authentication Table I shows the tim-
ing results of some cryptographic operations on the Palm.

3The server can also force a full-handshake by returning a new session ID.
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TABLE I
PERFORMANCE OF KSSL CRYPTOGRAPHIC PRIMITIVES ON PDAS

PalmVx Visor
(20MHz) (33MHz)

RSA (1024-bit)
Verifyy 1433 ms 806 ms

Sign 80.91 sec 45.11 sec
RSA (768-bit)

Verifyy 886 ms 496 ms
Sign 36.22 sec 20.19 sec

MD5
1024 bytes 292 Kbits/s 512 Kbits/s
4096 bytes 364 Kbits/s 655 Kbits/s

SHA-1
1024 bytes 124 Kbits/s 227 Kbits/s
4096 bytes 140 Kbits/s 256 Kbits/s

RC4
1024 bytes 117 Kbits/s 215 Kbits/s
4096 bytes 190 Kbits/s 351 Kbits/s

yWith a public-key exponent of 65537

We found that the bulk encryption and authentication al-
gorithms are adequately fast even on the Palm’s CPU. On
a 20Mhz chip (found in Palm Vx, Palm IIIc etc), RC4,
MD5, and SHA all run at over 100Kbits/s, Since each SSL
record requires both a MAC computation and encryption,
the effective speed of bulk transfer protected by RC4/MD5
is well over 50Kbits/s, far more than the 9.6Kbits/s band-
width offered by our Omnisky CDPD network service.

� SSL Handshake Latency A typical handshake requires two
RSA public-key operations: one for certificate verification
and another for pre-master secret encryption. As shown
in Table I, our implementation of RSA takes 0.8-1.5 sec-
onds on a 20MHz Palm CPU, depending on the key size
(768 bits or 1024 bits). Other factors such as network
delays and the time to parse X.509 certificates also im-
pact the handshake latency. In our experiments with Palm
MIDP (Mobile Information Device Profile of J2ME [10]),
we found that a full handshake can take approximately 10
seconds. In most scenarios, a client communicates with
the same SSL server repeatedly over a small duration. In
such cases, the handshake overhead can be reduced dra-
matically. For example, simply caching the server certifi-
cate (indexed by an MD5 hash) eliminates the overhead
of certificate parsing and verification. This brings down
the latency of a subsequent full handshake to around 7-8
seconds. An abbreviated handshake only takes around 2
seconds. Finally, by using persistent HTTP, one make the
amortized cost of an SSL handshake arbitrarily close to
zero.
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Server
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Gateway

IMAP/
POP3

(uses JavaMail API)
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w/ MailServlet
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Fig. 5. Secure Email Client Architecture

IV. SECURE MOBILE ENTERPRISE ACCESS

To evaluate usability of the KSecurity and KSSL packages
for “real-world” applications, we have developed a J2ME mi-
dlet suite (a MIDP application is called a midlet) that enables
Sun employees to securely access enterprise services like cor-
porate email, calendar and directory from a PalmVx connected
to the Internet via Omnisky’s wireless CDPD modem. The ap-
plication size is about 55 KB and it runs in 64 KB of application
heap.

The overall architecture (shown in Fig. 5) reuses Sun’s ex-
isting SSL-based virtual private network (VPN) for remote em-
ployees, which is based on the iPlanet Portal Server. All com-
munication between the VPN gateway and the mobile device is
protected end-to-end by SSL. Remote users must authenticate
themselves through a challenge-response mechanism (using to-
ken cards) over an SSL-secured channel before they can access
the Intranet. Authenticated users are allowed to communicate
with specially designed servlets running on a web server behind
the firewall. These main purpose of these servlets is to format
data obtained from mail, calendar or LDAP servers for con-
sumption by the remote application. The servlets are capable of
maintaining session-specific state. This allows for features such
as “chunking” where a long email message is sent to the user in
smaller parts for bandwidth efficiency (this avoids sending any
long messages in which the user has no interest).

By making effective use of certificate caching and SSL ses-
sion reuse, we are able to reduce the response time of each user
transaction to about 8 seconds which is comparable to the re-
sponse time of accessing public web pages in the clear. For now,
the persistent HTTP feature has not been turned on at the VPN
gateway. Exploiting this feature would reduce the response time
to around 5 seconds.

V. TECHNOLOGY TRENDS

Since starting this project about an year ago, we’ve seen sev-
eral examples of technology’s relentless march towards smaller,
faster and more capable devices. Newer Palm PDAs like the
PalmVx and PalmIIIc use 20MHz processors and the Hand-
spring Visor Platinum (another PalmOS device) features a
33MHz processor, both considerable improvements over the
earlier 16MHz CPUs. All of them offer 8MB of memory. The
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Compaq iPaQ pocket PC, in comparison, carries a 200MHz
StrongARM processor and 16-32MB of memory. The CPU en-
hancements have a direct impact on the speed of SSL’s cryp-
tographic operations. Significant performance gains are also
obtainable by using hardware accelerators in the form of tiny
smart cards (and related devices like the iButton). The Schlum-
berger Cyberflex smart card, for instance, can perform 1024-bit
RSA operations (both public- and private-key) in under one sec-
ond!

Similarly, improvements can also be seen in the speed of
wireless networks. Metricom’s Ricochet service now offers
wireless data speeds of 128Kbits/s in several U.S. cities and
3G networks hold the promise of even faster communication
in the next year or two. These improvements help reduce the
network-related latency of an SSL handshake.

Even smart compilation techniques, which had so far been
available only on more capable PCs and workstations, are now
available on small devices and can boost the performance of
J2ME applications by as much as a factor of five.

These developments should alleviate any remaining concerns
about SSL’s suitability for wireless devices. They also highlight
an interesting phenomenon - In the time it takes to develop and
deploy new (incompatible) protocols, technology constraints
can change enough to raise serious questions about their long-
term relevance. The following quote captures this sentiment
rather well:

“Don’t skate to the puck; skate to where it’s going.”
— Wayne Gretzsky (Ice Hockey Legend)

In light of this view, it is reassuring to see the WAP Forum
embracing standard IETF and W3C protocols for its next (WAP
2.0) specification.

VI. CONCLUSIONS AND FUTURE WORK

Our experiments show that SSL is a viable technology even
for today’s mobile devices and wireless networks. By carefully
selecting and implementing a subset of the protocol’s many fea-
tures, it is possible to ensure acceptable performance and com-
patibility with a large installed base of secure web servers while
maintaining a small memory footprint.

Our implementation brings mainstream security mecha-
nisms, trusted on the wired Internet, to wireless devices for
the first time. The use of standard SSL ensures end-to-end se-
curity, an important feature missing from current wireless ar-
chitectures. An early access version of Sun’s MIDP reference
implementation incorporating KSSL can be downloaded from
[10].

In our ongoing effort to further enhance cryptographic per-
formance on small devices, we plan to explore the use of smart
cards as hardware accelerators and Elliptic Curve Cryptography
in our implementations.
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