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ABSTRACT
In this paper, we examine the behavior of bidding agents
that are in direct competition with the other participants in
an auction setting. Thus the agents are not simply trying
to maximize their own utility, rather they wish to maximize
a weighted difference of their own gain to that of their com-
petitors. By so doing, this work significantly extends the
existing state-of-the-art results on single unit auctions, by
generalizing to the multi-unit case. Specifically, our main
result is the derivation of symmetric Bayes-Nash equilibria
for these agents in both m

th and (m + 1)th price sealed bid
auctions. Subsequently, we use these equilibria to examine
the profits of different agents and show that aiming to beat
the competition is more effective than pure self interest in
any competitive setting. Finally, we examine how the auc-
tioneer’s revenue is affected and find that the weight that
agents place in minimizing the opponents’ profit determines
whether the m

th or the (m + 1)th price auction yields a
higher revenue.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Multiagent sys-
tems; I.2.11 [ARTIFICIAL INTELLIGENCE]: Intelli-
gent Agents

General Terms
Theory, Economics, Experimentation

Keywords
game theory, bidding strategies, equilibrium analysis, rev-
enue, simulation

1. INTRODUCTION
Game theory is widely used in multi-agent systems, as a
way to model and predict the interactions between rational
agents. Auctions have also become quite popular, especially
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in the last decade, particularly with eBay and other simi-
lar companies bringing auctions to the Internet and millions
of online bidders. Now, in most of the cases examined, ei-
ther by game theory or by experimental analyses on auction
participant behaviour, a key assumption is that bidders are
rational and self-interested (i.e. they care only about maxi-
mizing their profit in the auction, and not about the profit
of other bidders). However, there are observations and sce-
narios that cannot convincingly be explained by these as-
sumptions alone. These usually involve direct competition
between companies or individual agents, where fewer par-
ticipants mean higher profits for those involved, or cases in
which ranking and/or relative profit is important. In such
cases, the agents will try to maximize the difference of their
utility to that of any other competitor.

In more detail, game theorists have studied a number of
examples where self-interest, at least in the short term, is not
as important as retaining a hold on the market, especially
in scenarios that involve monopolies or oligopolies [6]. In
addition, there are examples of real-world scenarios, where
myopic self-interest alone cannot explain the observed be-
haviour. On eBay auctions, for example, bidders sometimes
get into bidding wars, which cause those auctions to close
much higher than other auctions selling the exact same com-
modity; this could be attributed partially to a “love for win-
ning” and a total utility that takes into account the fact
itself that the bidder lost. In addition, in many European
countries, where mobile phone spectrum licenses were sold
in various auction settings, it was observed that many tele-
com companies bid higher than the estimated value of the
corresponding licenses, in order to deny them from their
competition and to discourage smaller competitors from en-
etring the market. Furthermore, in a competition setting,
like the Trading Agent Competition (TAC), it has been ob-
served that participants tend to bid quite high for commodi-
ties that are in short demand and which are needed in order
to make profit; while part of this bidding behaviour can be
attributed to the valuation they have of these items, part
of this is also due to the desire to outperform the opposi-
tion. In fact, in [10], the authors suggest this competition
factor as the main reason why the most successful strategies
bid more aggressively than the assumption of self-interested
agents alone would predict.

Against this background, this work considers that agents
not only wish to maximize their own profit, but at the same
time they also wish to minimize the profits of their oppo-
nents. Specifically, our assumption for the model used by
agents in such settings is that they wish to maximize a
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weighted sum of their profit relatively to the profit of their
competitors. The weight of this sum, α, is the spite (or
competition) coefficient, that denotes the degree of compe-
tition in the setting under examination. It can vary from
self-interested agents, when α = 0, to completely malicious
ones, which only care about minimizing the gain of their op-
ponents, when α = 1. Now, there is also a small, but grow-
ing, literature of papers that consider cases either equivalent
or very similar to this one. For some of the most relevant
work see [1, 2, 4, 5, 7, 9]. This paper significantly extends
the work presented in these papers and, in particular, in [2].
To be more precise, while these papers examine the strate-
gies and the equilibria for single unit auctions, i.e. second
price (in most cases) and/or first price auctions, we examine
the case of multi-unit auctions. This is an important exten-
sion, because in theoretical analyses, as well as in real-world
scenarios, it is usually the case that more than one instance
of a particular commodity is available.

This paper is organized as follows. In section 2, we for-
mally present the auction setting we examine. Then we pro-
vide, for the first time, symmetric Bayes-Nash equilibria for
both mth and (m+1)th price sealed bid auctions in sections 3
and 4. We further prove that allowing the bidders to bid for
multiple items, which they don’t need, in order to deprive
them from the competition, does not change the equilibrium
strategies.1 These equilibria, along with the corresponding
proofs, are the primary contributions of this paper. From
this analysis, we observe a number of differences with the
single item case that was examined in related work. For ex-
ample, for large α, the equilibrium strategy for the mth price
auction is to bid more than the true valuation, and we also
demonstrate that the equilibrium strategy for the (m +1)th

price auction is independent of the number of items sold.
In section 5, we examine how the auctioneer’s revenue is
affected. In particular, we show that revenue equivalence
does not hold, and, in fact, the revenue of the (m + 1)th

price auction is only higher than that for the equivalent mth

price auction when α is small; which is not observed in sin-
gle unit auctions. In section 6, we examine the profit that
various strategies yield when pitted against various other
strategies, like itself or strategies that do not take the com-
petition into account (as if α = 0). From this, we deduce
that the most successful strategies in a competition setting
are those derived for a coefficient α that is just right to beat
the opposition.

2. PROBLEM STATEMENT
In this section we formally describe the auction setting to be
analyzed and define the objective function that the agents
wish to maximize. We also give the notation that we use.

In particular, we will compute and analyze the symmetric2

Bayes-Nash equilibria for sealed bid auctions where m ≥
1 identical items are being sold. The two most common
auction settings in this context are the mth and (m + 1)th

price auctions, in which the top m bidders win one item

1This means that the computed equilibria are “false-name-
proof ”, i.e. that no agent may profit by submitting bids
under an assumed identity.
2This means that all agents use the same bidding strategy.
This is a common assumption made in game theory, in order
to restrict the space of strategies that we examine. It is likely
that in addition to the symmetric equilibria we compute
there are also asymmetric ones.

each at a price equal to the mth and (m + 1)th highest bid
respectively. Specifically, we assume that N bidders (where
N ≥ m) participate in the auction and these agents have
a private valuation (utility) ui for acquiring any one of the
traded items; these valuations are assumed to be i.i.d. from
a distribution with cumulative distribution function (cdf)
F (u), which is the same for all bidders. Furthermore, let
ul and uh be the bounds for the possible values of random
variables ui as defined by F (u):3

ul = max{u|F (u) = 0}

uh = min{u|F (u) = 1}

Finally, we will consider bidding strategies g(u) that are
strictly increasing and differentiable over [ul, uh], that is the
area where F (u) is defined. These are the assumptions com-
monly made when computing equilibria in the auction the-
ory literature [3].

In this work, we define the objective function (i.e. the
total utility) that each agent tries to maximize in the same
way as in [2]:

Definition 1. The objective function that each agent wishes
to maximize is given by:

Ui = (1 − α) · ũi − α ·
∑
j �=i

ũj

where α ∈ [0, 1] is a parameter called the spite coefficient4,
ũi is the gain of agent i (i.e. ũi = 0, if it does not win
any items, and ũi = ui − pi, if it does) and pi is the total
payment the agent must make to the auctioneer.

We would like to point out that from the point of view of
an agent competing against other agents, the following def-
inition of the objective function might look more natural:5

Ui = ũi − γ ·
∑
j �=i

ũj

This is because the agent cares about maximizing its own
profit minus the weighted profit of its opponents, where the
weight γ ≥ 0. For example, if we have a competition (like
TAC), then the agent wishes to maximize the difference of
its profit to the expected profit of any opponent, and hence
we would use this objective function with γ = 1

N−1
. Another

parameter that is also interesting in a competition setting,
is when γ = 1, because then the agent maximizes his gain
against the sum of the gains of every opponent. However,
this objective function is equivalent to the objective function
presented in definition 1, when γ = α

1−α
, so definition 1 is

more general, and this is the reason why we use it. Moreover,
maximizing the difference of the agent’s profit to that of any
opponent, and to that of all opponents, respectively, can
easily be represented using coefficient α = 1

N
, and α = 1

2
,

in the objective fuction.

3For example, if F (u) is the uniform distribution U [0, 1],
then ul = 0 and uh = 1. If F (u) is such that ui can take
values in [0, +∞), then ul = 0 and uh = +∞. We use
these tight bounds to define the boundary conditions for
the equilibria we compute.
4We also call this the “competition coefficient”, since it de-
termines how much the agents take their competitors into
account in the total utility.
5In fact this is the total utility function used in [7].
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Now that we have defined the general form of the function
that each agent tries to maximize, each agent i will do so by
submitting a particular bid vi for the item it needs. Here
the “optimal” bids for the agent are those given from the
equilibrium strategy gα(u), assuming that other agents use
the same strategy. Thus the bid maximizing the objective
function should be vi = gα(ui). To compute the proba-
bility distributions of the order statistics of the opponents’
bids and valuations, we use the information provided by the
following lemma:

Lemma 1. The cdf of the kth order statistic, denoted U (k),
of the (N − 1) valuations (utilities) ui of the opponents of
any given agent, is given by:

Prob[U (k)
� x] = Φk(x)

while the cdf of the kth order statistic, denoted B(k), of the
(N − 1) bids of these opponents, when each of them bids
vi = gα(ui) according to the equilibrium stategy gα(u), is
given by:

Prob[B(k)
� x] = Φk(g−1

α (x))

where C(N − 1, i) is the total number of possible combina-
tions of i items chosen from (N − 1), and

Φk(x) =

k−1∑
i=0

C(N − 1, i) ·
(
F (x)

)N−1−i
·
(
1 − F (x)

)i
(1)

Proof. The probability distribution from which each util-
ity ui is drawn has cdf F (u); the probability distribution
from which the bids vi are drawn has cdf G(x) = F (g−1

α (x)).
We also know that the kth order statistic of a set of (N − 1)
i.i.d. random variables drawn from a distribution with cdf
H(x) is

∑k−1
i=0 C(N−1, i)·(H(x))N−1−i ·(1−H(x))i (see [8]).

Using this equation for G = F and G = H, respectively, we
get the two equations of this lemma.

We will use these formulae extensively in the computa-
tions of the Bayes-Nash equilibria in the next sections.

3. M-TH PRICE AUCTIONS
In this section we examine the symmetric Bayes-Nash equi-
librium that exists in the case of an mth price auction.
Specifically, each agent bids vi for a unit of the item on
sale, and we initially assume that it is only allowed to bid
for one item and no more.

Theorem 1. In the case of an mth price sealed bid auc-
tion with N participating bidders, in which each agent i is
interested in purchasing one unit of the good for sale with
inherent utility (valuation) for that item equal to ui, ui is
i.i.d. drawn from F (u), and an α-coefficient for outperform-
ing its competition, the following bidding strategy constitutes
a symmentric Bayes-Nash equilibrium:

gα(u) = u − (F (u))−
N−m
1−α·m ·

∫ u

ul

(F (z))
N−m
1−α·m · dz (2)

if α · m < 1,

gα(u) = u (3)

if α · m = 1, and

gα(u) = u + (F (u))−
N−m
1−α·m ·

∫ uh

u

(F (z))
N−m
1−α·m · dz (4)

if α · m > 1.

Proof. See the appendix, section A.1.

It is interesting to notice that for small values of the spite
coefficient α (namely α < 1

m
) the equilibrium strategy is to

bid less than the agent’s true valuation, for α = 1
m

to bid

truthfully, and for higher values of α (α > 1
m

) to bid more
than the true valuation. This is quite different from the
first price auction result examined in [2], because in that
case, we do not observe the behavior of bidding more than
the true valuation. However, in an auction where multiple
items are sold, the price paid by all winners is the same
and equal to the lowest winning bid. This means that quite
often the price paid is significantly lower than one’s bid,
especially as m gets bigger, and this leads to agents bidding
higher than they would in an identical auction where fewer
items are sold. In addition, using small values of α means
that the agents primarily care about maximizing their own
profit, so they will bid a lot less aggressively, than in the case
where they care mostly about minimizing the profit of their
opponents (large α). These two facts when taken together
explain why in multi-unit auctions there are cases (for large
α) when agents should bid more than their true valuation
for an item.

Corollary 1. In the case that F (u) is the cdf of a uni-
form distribution U [0, 1], the equilibrium strategy is:

gα(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β

1+β
· u β > 0

u β = 0
β

1+β
· u + u−β

1+β
β < 0 ∧ β �= −1

(1 − ln(u)) · u β = −1

(5)

where β = N−m

1−α·m
.

We use this equilibrium strategy derived for F (u) being
the uniform distribution U [0, 1], in our analysis of the auc-
tioneer’s revenue in section 5 and the simulations we present
in section 6.

Naturally when there are m > 1 items for sale, it might
be beneficial to attempt to purchase multiple items, which
the agent does not use6, in order to deny them from its op-
ponents. Now, even if the rules prohibit agents from bidding
for multiple items, they can always submit bids under a false
identity. Moreover, there are cases when this makes sense,
so we will assume that it will happen. As an example con-
sider the following. Assume that α = 1 and the opponents
bid (erroneously) according to g0(u) instead of g1(u). The
opponents who win an item make a profit, since g0(u) < u,
so the payment is less than their valuations. By bidding for
a second item (and winning it), the agent denies its competi-

tors a gain equal to U (m−1) − p (p is the payment), which is
a positive value, and forces them to pay a higher new pay-
ment p′ > p for the rest of the (m− 2) items that they win.
However this case arises due to the fact that the opponents
do not bid according to the correct equilibrium strategy. In
the case that they do bid as per the equilibrium strategy, a
bidder i does not gain by bidding for a second item, because
the profit from its opponents losing an item and increasing
their payments is offset (on expectation) from the fact that
the opponents make a payment for one less item, while bid-
der i pays for one more itself. We examine this case in the
next theorem.
6We are assuming free disposal, meaning that an agent is
allowed to throw away items that it does not wish to use
without gain or loss of utility.
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Theorem 2. In the case of the mth price sealed bid auc-
tion described by theorem 1, when each bidder is allowed to
place an unrestricted number of bids for multiple items, bid-
ding for exactly one item according to the function gα(u)
given in theorem 1, constitutes a symmetric Bayes-Nash
equilibrium.

Proof. See the appendix, section A.2.

The two theorems presented in this section prove that the
strategy gα(u) that we computed is indeed a Bayes-Nash
equilibrium in an mth price auction, even when the agents
are allowed to place multiple bids, for items that they don’t
need.

4. (M+1)-TH PRICE AUCTIONS
In this section we examine the symmetric Bayes-Nash equi-
librium that exists in the case of an (m+1)th price auction.
Again we initally assume that each agent bids vi for a unit
of the item on sale, and that each agent is allowed to bid for
only one item and no more.

Theorem 3. In the case of an (m + 1)th price sealed bid
auction with N participating bidders, each agent i interested
in purchasing one unit of the good for sale with inherent util-
ity (valuation) for that item equal to ui, ui is i.i.d. drawn
from F (u), and an α-coefficient for outperforming its compe-
tition, the following bidding strategy constitutes a symmetric
Bayes-Nash equilibrium:

gα(u) = u + (1 − F (u))−
1

α ·

∫
uh

u

(1 − F (z))
1

α · dz (6)

Proof. See the appendix, section A.3.

From this, it is interesting to notice that the agent al-
ways bids more than its true valuation when α > 0 and also
that the equilibrium strategy does not depend on the number
of agents N or the number of items m for sale, but only
on the competition coefficient α. While these observations
are consistent with those for the second price auction result
examined in [2] (in that case the authors showed that the
strategy did not depend on the number of bidders N), we
further show that the number of items sold m, also does not
matter for the equilibrium strategy.

Corollary 2. In the case that F (u) is the cdf of a uni-
form distribution U [0, 1], the equilibrium strategy is:

gα(u) =
u + α

1 + α
(7)

We use this equilibrium strategy derived for F (u) being
the uniform distribution U [0, 1], in our analysis of the auc-
tioneer’s revenue in section 5 and the simulations we present
in section 6.

As before, since there are m > 1 items for sale, one might
think that it would be beneficial to attempt to purchase
multiple items, which the agent does not use, in order to
deny them from its opponents. We examine this case in the
next theorem.

Theorem 4. In the case of the (m + 1)th price sealed
bid auction described by theorem 3, when each bidder is al-
lowed to place an unrestricted number of bids for multiple
items, bidding for exactly one item according to the function
gα(u) given in theorem 3, constitutes a symmetric Bayes-
Nash equilibrium.
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Figure 1: Examination of the expected revenue
(ERI

α and ERII

α ) for N = 6, . . . , 20 participating bid-
ders. Graphed for α = 0 (the revenue is the same
for both auctions) and α = 0.4.
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Figure 2: Examination, for various values of α, of the
expected revenue ERI

α for mth price auctions (solid
lines) and ERII

α for (m + 1)th price auctions (dotted
lines). From bottom to top the pairs of lines are for
m = 2, m = 3 and m = 4 items sold respectively. The
number of agents participating is N = 2 · m.

Proof. (SKETCH) Due to space limitations, we only
present a brief sketch of the proof for this case. In a similar
way to the proof of theorem 2, we can show that the total
utility, when bidder i bids for two items (placing bids vi and
ṽi), is a sum of two parts. The first depending on vi, which
is maximized when vi = gα(ui), meaning that the top bid
should follow the equilibrium strategy derived in theorem 3.
The second depending on ṽi, which is maximized when the
bidder does not really bid any amount that will allow it to
win, i.e. ṽi ≤

ul+α

1+α
.

Of course, given that, in the (m + 1)th price auction, the
equilibrium strategy does not depend on the number of op-
ponents, nor the items sold, it only really makes sense to bid
for worthless items if the opponents make a serious mistake
in the strategy that they use. For example, if α = 1, and
all the opponents bid less than their true valuation, then, in
that case, it does make sense to bid for a second item.
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Figure 3: Examination of the expected profit in an mth price auction (m = 2) with N participating bidders.
For various α coefficients the performance of agents using the gα(u) strategy is compared against agents using
the g0(u) and g1/N (u) strategies.

5. REVENUE ANALYSIS
In this section we examine the auctioneer’s revenue for both
the mth and (m + 1)th price auctions. In particular, the
expected revenue ERI

α in an mth price auction with N bid-
ders, whose valuations are drawn from F (u), when they all
bid according to function gI

α(u) is:

ER
I
α = m ·

∫ uh

ul

g
I
α(ω) · Ψ′

m(ω) · dω (8)

while the expected revenue ERII
α for the equivalent (m+1)th

price auction, when the bidders bid according to function
gII

α (u) is:

ER
II
α = m ·

∫ uh

ul

g
II
α (ω) · Ψ′

m+1(ω) · dω (9)

where Ψk(x) =
∑k−1

i=0
C(N, i) ·

(
F (x)

)N−i
·
(
1 − F (x)

)i
.

Using these equations we examine the expected revenue,
when the number N of participating bidders changes (fig-
ure 1)7, and when the competition coefficient a is varied
(figure 2). For α = 0 both expected revenues are equal, as
we expected given that the Revenue Equivalence Theorem
applies in that case. In [2], it is shown that the presence
of the coefficient α, when α �= 0 and α �= 1, leads to the
second price auction yielding more profit for the auctioneer
than the equivalent first price auction (∀α, ERI

α ≤ ERII
α ),

and also that as α increases, so does the expected revenue.
From our experiments, we concur that as α increases, so
does the expected revenue. However, it is no longer the case
that ERI

α ≤ ERII
α . Based on our observations, we know

that for α close to 0, it is ERI
α ≤ ERII

α , and for α close
to 1, it is ERI

α ≥ ERII
α . Given this, we believe that the

following holds:

7It should be noted that the different cases in figure 1 (and
this is also the case for the different experiments in figures 3
and 4) are denoted by different symbols (×,·,+,*) in order
to make it easy to distinguish them. The expected gain
in figures 1 and 2 is computed accurately using numerical
integration.

Claim 1. For the same coefficient α, when the bidders
use the symmetric Bayes-Nash equilibria strategies, the mth

and (m+1)th price auctions yield the same expected revenue,

when α = 0 or α = 1

m
, while, for 0 < α < 1

m
, the (m + 1)th

price auction yields more revenue, and for α > 1

m
, the mth

price auction yields more revenue.

In fact, we expect the proof for the case when α ∈ [0, 1

m
] to

be very similar to the proof of the theorem for the single unit
case (when the expected revenue of the first price auction is
no more than that of the second price auction), presented
in [2]. To prove the claim when α > 1

m
, will require using

the fact that the two revenues are equal for α = 1

m
and

the equilibrium strategies that we computed, and is left for
future work.

6. SIMULATIONS
In this section we present the results of simulations that
were conducted to empirically verify the validity of the com-
puted equilibria and to analyze the profits derived by var-
ious agents when pitted against other agents. In figure 3
we present the expected gain8 for a simulation of an mth

price auction with m = 2 items being sold, for N participat-
ing bidders (N = 3, 6) for varying values of the coefficient
α. In each case we performed five simulations: (i) strat-
egy gα(u) against itself, (ii) strategy gα(u) against strategy
g0(u) (which is a self-interested agent), and (iii) strategy
gα(u) against strategy g1/N (u) (which is an agent maximiz-
ing the relative difference between its own profit to that of
any competitor). For the latter two cases, we conducted two
simulations, one in which (N − 1) of the agents used strat-
egy gα(u) and one in which only one agent used strategy
gα(u). We also did the same simulations for the case of an

8In figures 3 and 4, the expected gain is computed by dis-
cretizing the space of possible valuations for all agents (some
billions of cases to examine) and then computing a near ac-
curate (estimated error is well under 0.01%) estimate of the
expected gain as the average gain from all these cases.
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Figure 4: Examination of the expected profit in an
(m + 1)th price auction (m = 2) with N = 4 partici-
pating bidders. For various α coefficients the perfor-
mance of agents using the gα(u) strategy is compared
against agents using the g0(u) and g1/N (u) strategies.

(m + 1)th price auction, with N = 4 participating bidders
and the results are presented in figure 4.

There are a number of observations that can be made from
these simulations. When more aggressive agents9 partici-
pate in the auction, the profits for all agents are decreased.
Furthermore, we verify that each strategy gα(u) does con-
stitute a best response to itself, when the objective function
is equal to the weighted difference of the profits with weight
equal to α. Even for α = 1, when the profit is lowest,
the agent does what is best, because the opponents’ profit is
also lowest. However, we further observe that in cases where
(N − 1) of these aggressive agents using strategy gα(u) par-
ticipate, their profit is almost the same as when all of them
use gα(u), while the opponent which is using a less aggressive
strategy gα′(u) (α′ < α), obtains a much higher profit. Our
observations are different in the case that there is only one
aggressive agent. In this case, the aggressive agents beat
the agents using g0(u) quite often, although this depends
on the relative number of bidders N to the number m of
items sold, with higher N or lower m reducing this benefit.
Moreover, they even manage to achieve a score which is rea-
sonably close to that of the agents using strategy g1/N (u).
These latter agents (using strategy g1/N (u)) always obtain
a higher profit than their opponents, which is not entirely
surprising given that they try to maximize the profit differ-
ence between themselves and any opponent. They also tend
to get relatively good profit, no matter what agents they
compete against, which indicates that their performance is
relatively robust under most (if not all) possible opposition.
This observation and the fact that, in direct competition,
which is the most common case in real world scenarios, they

9These are agents using strategy gα(u), where the coefficient
α takes high values (i.e. close to 1), and thus they place bids
at higher prices.

always outperform their opponents, suggest that we should
consider using this strategy unless there is a strong reason
to believe that the coefficient α has some different value.

7. CONCLUSIONS
We examined the behavior of bidding agents that wish to
maximize a weighted difference of their own gain to that
of their competitors. We provided, for the first time, the
symmetric Bayes-Nash equilibria that exist for the standard
multi-unit auctions, namely both the mth and (m+1)th price
sealed bid auctions, thus extending the existing state-of-the-
art results, which were analyzing only single unit auctions.
We also observed a number of differences between the single
and multi-unit cases; the most notable of which is that for
α > 1

m
, the equilibrium strategy for the mth price auction

becomes to bid more than the true valuation. We further
proved that allowing the bidders to bid for multiple items,
that they don’t need, in order to deprive them from the com-
petition, does not change the equilibrium strategies. Then
we examined how the auctioneer’s revenue is affected. We
showed that revenue equivalence does not hold, and in fact
the expected revenue of the (m+1)th price auction is higher
than that of the equivalent mth price auction for certain val-
ues of α, while for others the opposite is true. Finally, we
conducted simulations to empirically verify the validity of
our computed strategies. Indeed we observed that the agent
using a = 1

N
(i.e. trying to maximize the profit difference

between itself and any opponent) outperforms its competi-
tors, when conducting a comparison of the relative profits.

There are a number of unresolved issues in this paper.
In particular we plan to examine the revenue analysis and
prove the claim that we made in section 5. We are also
currently working towards generating equilibria for multi-
demand auctions when α = 0 and then will plan to extend
these results to any value of α.
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APPENDIX

A. PROOFS OF MAIN THEOREMS
We use the following lemma to simplify the differential equa-
tions in the proofs:

Lemma 2. For all N , m, such that N ≥ m the following
equations hold:

Φ′

m(ui)(
Φm(ui) − Φm−1(ui)

) = (N − m) ·
F ′(ui)

F (ui)

Φ′

m(ui)(
Φm+1(ui) − Φm(ui)

) = m ·
F ′(ui)

1 − F (ui)

Proof. Computing the derivative of Φm(ui) using equa-
tion 1 leaves only one term at the end and then it’s easy
to prove the first equation. Then to prove the second one,

observe that
Φm(ui)−Φm−1(ui)

Φm+1(ui)−Φm(ui)
= m

N−m
·

F (ui)
1−F (ui)

.

A.1 Proof of Theorem 1
We assume that all bidders except i follow the strategy
gα(u). Bidder i bids vi, the bid that maximizes his objective
function on expectation. Let C be the sum (on expectation)
of the top (m− 1) highest opponent valuations. Since in all
cases that we will examine, whether bidder i wins or not,
we know that the opponents with the top (m−1) valuations
will win an item, we know that they will gain this amount
C from doing so. Now:

C = E(

m−1∑
j=1

U
(j)) =

m−1∑
j=1

E(U (j)) =

m−1∑
j=1

∫ uh

ul

ω · Φ′

j(ω) · dω

is a constant and does not depend on the bid vi. We need
to consider the following three cases:

(i) When B(m) > vi, bidder i does not win any item and

the closing price is B(m). Therefore bidder i’s gain is 0 and
the opponents make a gain from gaining an extra item (the
mth), in addition to the (m − 1) items that they always
win (this was counted in the computation of constant C),

but they also must make total payments of m · B(m). The
total additional10 expected utility for bidder i in this case is
hence:

ΔU1 = α ·

∫
∞

vi

(
m · ω − g

−1
α (ω)

)
·

d

dω

(
Φm(g−1

α (ω))
)
· dω

(ii) When B(m−1) > vi ≥ B(m), bidder i wins an item and
the closing price is vi. Therefore bidder i’s gain is ui − vi

and the opponents pay (m − 1) · vi for the items that they
win. The total additional expected utility for bidder i is:

ΔU2 =
(
(1 − α) · (ui − vi) + α · (m − 1) · vi

)
·(

Φm(g−1
α (vi)) − Φm−1(g

−1
α (vi))

)
(iii) When vi ≥ B(m−1), bidder i wins an item and the

closing price is B(m−1). Therefore bidder i’s gain is ui −

B(m−1) and the opponents must pay (m − 1) · B(m−1) for
the items that they purchase. The total additional expected
utility for bidder i in this case is:

ΔU3 =

∫ vi

0

(
(1 − α) · (ui − ω) + α · (m − 1) · ω

)
·

d

dω

(
Φm−1(g

−1
α (ω))

)
· dω

10We mean additional to the fact that the agent always loses
utility α ·C, since its opponents always gain a value C from
the top (m − 1) items.

The total expected utility for bidder i when considering all
possibilities is therefore EUi = −α ·C +ΔU1 +ΔU2 +ΔU3.
This implies:

EUi = α ·

∫
∞

vi

(
m · ω − g

−1
α (ω)

)
·
Φ′

m(g−1
α (ω))

g′
α(g−1

α (ω))
· dω

+
(
(1−α)·ui+(α·m−1)·vi

)
·
(
Φm(g−1

α (vi))−Φm−1(g
−1
α (vi))

)

+

∫ vi

0

(
(1 − α) · ui + (α · m − 1) · ω

)
·
Φ′

m−1(g
−1
α (ω))

g′
α(g−1

α (ω))
· dω

− α ·

m−1∑
j=1

∫ uh

ul

ω · Φ′

j(ω) · dω (10)

To find the value of vi that maximizes equation 10, we set
dEUi

dvi
= 0. If strategy gα(u) gives the equilibrium strategy,

then it must be the case that the value of vi that maximizes
the total utility is given by gα(u) (i.e. that vi = gα(ui)).
By substituting this into the equation derived from setting
dEUi

dvi
= 0, we finally get the differential equation:(

ui − gα(ui)
)
·
Φ′

m(ui)

g′
α(ui)

= (1− α ·m) ·
(
Φm(ui)−Φm−1(ui)

)
(11)

To simplify this equation we use lemma 2 to get:

g
′

α(ui) =
(
ui − gα(ui)

)
·

N − m

1 − α · m
·
F ′(ui)

F (ui)
(12)

The solution of this equation is:

gα(u) = u − (F (u))−
N−m

1−α·m ·

∫ u

c

(F (z))
N−m

1−α·m · dz (13)

where c depends on the boundary condition.
To select the appropriate boundary condition one should

note that terms (ui − gα(ui)) and (1−α ·m) have the same
sign, since all other terms in equation 12 are positive. There-
fore:

(i) if α · m < 1, then ui − gα(ui) > 0 and the boundary
condition is gα(ul) = ul, and the resulting strategy is given
by equation 2,

(ii) if α · m = 1, then ui − gα(ui) = 0 ⇒ gα(ui) = ui

(equation 3), and
(iii) if α · m > 1, then ui − gα(ui) < 0 and the boundary

condition is gα(uh) = uh, and the resulting strategy is given
by equation 4.

A.2 Proof of Theorem 2
We assume that all bidders except i follow the strategy
gα(u). In this case, bidder i, is allowed to bid for any num-
ber of items. In order to show a contradiction we assume
that he bids for 2 items, and the bids are equal to vi and ṽi.
Without loss of generality, we assume that vi ≥ ṽi.

By considering several possible cases that can occur de-
pending on the relative values of vi and ṽi to the bids of
the opponents, we conclude that the total expected utility
in this case is:

ẼUi = EUi + ΔEUi

where EUi depends only on vi (not ṽi) and is given by equa-
tion 10 and ΔEUi depends only on ṽi (not vi). Therefore
we need to maximize both terms in order to maximize the
total utility. The value that maximizes the first term is
vi = gα(ui). The second term is equal to:
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ΔEUi = −

∫ ṽi

0

(
(1−α)·ui+(α·m−1)·ω

)
·
Φ′

m−1(g
−1
α (ω))

g′
α(g−1

α (ω))
·dω

+
(
(1−α)·ui+(α·m−2)·ṽi

)
·
(
Φm−1(g

−1
α (ṽi))−Φm−2(g

−1
α (ṽi))

)

+

∫ ṽi

0

(
(1 − α) · ui + (α · m − 2) · ω

)
·
Φ′

m−2(g
−1
α (ω))

g′
α(g−1

α (ω))
· dω

+α

∫ ṽi

0

g
−1
α (ω) ·

Φ′

m−1(g
−1
α (ω))

g′
α(g−1

α (ω))
· dω

To simplify this equation, let us set τ = g−1
α (ṽi). Then

ul ≤ τ ≤ ui. Hence ΔEUi can be expressed as a function of
τ and α:

ΔEUi(τ, α) =

∫ τ

ul

(
α · ω − gα(ω)

)
· Φ′

m−1(ω) · dω (14)

+(α · m − 2) ·

∫ τ

ul

g
′

α(ω) ·
(
Φm−1(ω) − Φm−2(ω)

)
· dω

If α·m ≤ 2 it is easy to see that both integrals are negative,
when τ > ul, so the maximizing value is τ = ul, which means
that one should not bid for the second item.11

If α · m > 2, then using lemma 2 and equation 12, equa-
tion 14 can be rewritten as:

ΔEUi(τ, α) =

∫ τ

ul

(
− (N − m + 1)

(
gα(ω) − α · ω

)
(15)

+(N−m)·
αm − 2

αm − 1

(
gα(ω)−ω

))F ′(ω)

F (ω)

(
Φm−1−Φm−2

)
(ω)·dω

So even in this case ∀α > 2
m

, τ :

ΔEUi(τ, α) ≤

∫ τ

ul

(
− (N − m + 1)

(
gα(ω) − ω

)

+(N−m)·
αm − 2

αm − 1

(
gα(ω)−ω

))F ′(ω)

F (ω)

(
Φm−1−Φm−2

)
(ω)·dω

⇒ ΔEUi(τ, α) ≤ 0

This shows that it is not beneficial to bid for a second item,12

when the opponents use the equilibrium strategy gα(u) of
theorem 1. Thus the best response to strategy gα(u) is bid-
ding according to gα(u) for exactly one item.

A.3 Proof of Theorem 3
We assume that all bidders except i follow the strategy
gα(u). Bidder i bids vi, the bid that maximizes his objec-
tive function on expectation. Let C be the sum (on expec-
tation) of the top m highest opponent valuations. In most
cases that we will examine (when bidder i does not win),
the opponents with the top m valuations will win an item,
and they will gain this amount C from doing so. In the case
that bidder i outbids the competition (case iii below), then
we will subtract the mth valuation from the opponents’ gain
to compensate. Now:

11To be more precise, τ = ul means to bid as if it had the
minimum valuation for the item, which in practice is equiv-
alent to not bidding.

12And since bidding for a second is not beneficial, bidding
for a second and third and/or more, is not beneficial either.

C = E(

m∑
j=1

U
(j)) =

m∑
j=1

E(U (j)) =

m∑
j=1

∫ uh

ul

ω · Φ′

j(ω) · dω

is a constant and does not depend on the bid vi. We need
to consider the following three cases:

(i) When B(m+1) > vi, bidder i does not win any item and

the closing price is B(m+1). Therefore bidder i’s gain is 0
and the opponents must make total payments of m ·B(m+1).
The total additional expected utility for bidder i in this case
is hence:

ΔU1 = α ·

∫
∞

vi

m · ω ·
d

dω

(
Φm+1(g

−1
α (ω))

)
· dω

(ii) When B(m) > vi ≥ B(m+1), bidder i does not win and
the closing price is vi. Therefore bidder i’s gain is 0 and the
opponents must pay m · vi for the items that they purchase.
The total additional expected utility for bidder i in this case
is:

ΔU2 = α · m · vi ·
(
Φm+1(g

−1
α (vi)) − Φm(g−1

α (vi))
)

(iii) When vi ≥ B(m), bidder i wins an item and the clos-

ing price is B(m). Therefore bidder i’s gain is ui − B(m)

and the opponents must pay (m − 1) · B(m) for the items
that they purchase. We also need to subtract the mth high-
est valuation U (m) = g−1(B(m)) from the total gain of the
opponents, since they only won (m − 1) items. The total
additional expected utility for bidder i in this case is:

ΔU3 =

∫ vi

0

(
(1 − α) · (ui − ω) + α · ((m − 1) · ω + g

−1
α (ω))

)
·

d

dω

(
Φm(g−1

α (ω))
)
· dω

The total expected utility for bidder i when considering all
possibilities is therefore EUi = −α ·C +ΔU1 +ΔU2 +ΔU3.
This implies:

EUi = α ·

∫
∞

vi

m · ω ·
Φ′

m+1(g
−1
α (ω))

g′
α(g−1

α (ω))
· dω

+α · m · vi ·
(
Φm+1(g

−1
α (vi)) − Φm(g−1

α (vi))
)

+

∫ vi

0

(
(1−α)·ui+(α·m−1)·ω+α·g

−1
α (ω)

)
·
Φ′

m(g−1
α (ω))

g′
α(g−1

α (ω))
·dω

− α ·

m∑
j=1

∫ uh

ul

ω · Φ′

j(ω) · dω (16)

To find the value of vi that maximizes equation 16, we set
dEUi

dvi
= 0. If strategy gα(u) gives the equilibrium strategy,

then it must be the case that the value vi that maximizes
the total utility is given by gα(u) (i.e. that vi = gα(ui)).
By substituting this into the equation derived from setting
dEUi

dvi
= 0, we finally get the differential equation:(

ui−gα(ui)
)
·
Φ′

m(ui)

g′
α(ui)

= −α ·m ·
(
Φm+1(ui)−Φm(ui)

)
(17)

To simplify this equation we use lemma 2 to get:

g
′

α(ui) = −
1

α
·
(
ui − gα(ui)

)
·

F ′(ui)

1 − F (ui)
(18)

The solution of this equation is:

gα(u) = u − (1 − F (u))−
1

α ·

∫ u

c

(1 − F (z))
1

α · dz (19)

where c depends on the boundary condition.
To select the appropriate boundary condition one should

note that term (ui − gα(ui)) is negative since −α · m is
negative and all the other terms in equation 12 are positive.
Therefore the boundary condition is gα(uh) = uh, and the
resulting strategy is given by equation 6.
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