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ABSTRACT
The winner determination problem in combinatorial auc-
tions is the problem of determining the allocation of the
items among the bidders that maximizes the sum of the
accepted bid prices. While this problem is in general NP-
hard, it is known to be feasible in polynomial time on
those instances whose associated item graphs have bounded
treewidth (called structured item graphs). Formally, an item
graph is a graph whose nodes are in one-to-one correspon-
dence with items, and edges are such that for any bid, the
items occurring in it induce a connected subgraph. Note
that many item graphs might be associated with a given
combinatorial auction, depending on the edges selected for
guaranteeing the connectedness. In fact, the tractability
of determining whether a structured item graph of a fixed
treewidth exists (and if so, computing one) was left as a
crucial open problem.

In this paper, we solve this problem by proving that the
existence of a structured item graph is computationally in-
tractable, even for treewidth 3. Motivated by this bad news,
we investigate different kinds of structural requirements that
can be used to isolate tractable classes of combinatorial auc-
tions. We show that the notion of hypertree decomposition,
a recently introduced measure of hypergraph cyclicity, turns
out to be most useful here. Indeed, we show that the win-
ner determination problem is solvable in polynomial time
on instances whose bidder interactions can be represented
with (dual) hypergraphs having bounded hypertree width.
Even more surprisingly, we show that the class of tractable
instances identified by means of our approach properly con-
tains the class of instances having a structured item graph.
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1. INTRODUCTION
Combinatorial auctions. Combinatorial auctions are

well-known mechanisms for resource and task allocation
where bidders are allowed to simultaneously bid on combi-
nations of items. This is desirable when a bidder’s valuation
of a bundle of items is not equal to the sum of her valuations
of the individual items. This framework is currently used to
regulate agents’ interactions in several application domains
(cf., e.g., [21]) such as, electricity markets [13], bandwidth
auctions [14], and transportation exchanges [18].

Formally, a combinatorial auction is a pair 〈I,B〉, where
I = {I1, ..., Im} is the set of items the auctioneer has
to sell, and B = {B1, ..., Bn} is the set of bids from the
buyers interested in the items in I. Each bid Bi has
the form 〈item(Bi), pay(Bi)〉, where pay(Bi) is a rational
number denoting the price a buyer offers for the items in
item(Bi) ⊆ I. An outcome for 〈I,B〉 is a subset b of B
such that item(Bi)∩ item(Bj) = ∅, for each pair Bi and Bj

of bids in b with i �= j.
The winner determination problem. A crucial prob-

lem for combinatorial auctions is to determine the outcome
b∗ that maximizes the sum of the accepted bid prices (i.e.,∑

Bi∈b∗ pay(Bi)) over all the possible outcomes. This prob-

lem, called winner determination problem (e.g., [11]), is
known to be intractable, actually NP-hard [17], and even
not approximable in polynomial time unless NP = ZPP [19].
Hence, it comes with no surprise that several efforts have
been spent to design practically efficient algorithms for gen-
eral auctions (e.g., [20, 5, 2, 8, 23]) and to identify classes of
instances where solving the winner determination problem
is feasible in polynomial time (e.g., [15, 22, 12, 21]). In fact,
constraining bidder interaction was proven to be useful for
identifying classes of tractable combinatorial auctions.

Item graphs. Currently, the most general class of
tractable combinatorial auctions has been singled out by
modelling interactions among bidders with the notion of
item graph, which is a graph whose nodes are in one-to-one
correspondence with items, and edges are such that for any
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Figure 1: Example MaxWSP problem: (a) Hypergraph
H〈I0,B0〉, and a packing h for it; (b) Primal graph for
H〈I0,B0〉; and, (c,d) Two item graphs for H〈I0,B0〉.

bid, the items occurring in it induce a connected subgraph.
Indeed, the winner determination problem was proven to be
solvable in polynomial time if interactions among bidders
can be represented by means of a structured item graph,
i.e., a tree or, more generally, a graph having tree-like struc-
ture [3]—formally bounded treewidth [16].

To have some intuition on how item graphs can be built,
we notice that bidder interaction in a combinatorial auction
〈I,B〉 can be represented by means of a hypergraph H〈I,B〉
such that its set of nodes N (H〈I,B〉) coincides with set of
items I, and where its edges E(H〈I,B〉) are precisely the bids
of the buyers {item(Bi) | Bi ∈ B}. A special item graph for
〈I,B〉 is the primal graph of H〈I,B〉, denoted by G(H〈I,B〉),
which contains an edge between any pair of nodes in some
hyperedge of H〈I,B〉. Then, any item graph for H〈I,B〉 can be
viewed as a simplification of G(H〈I,B〉) obtained by deleting
some edges, yet preserving the connectivity condition on the
nodes included in each hyperedge.

Example 1. The hypergraph H〈I0,B0〉 reported in Fig-
ure 1.(a) is an encoding for a combinatorial auction 〈I0,B0〉,
where I0 = {I1, ..., I5}, and item(Bi) = hi, for each
1 ≤ i ≤ 3. The primal graph for H〈I0,B0〉 is reported in
Figure 1.(b), while two example item graphs are reported in
Figure 1.(c) and (d), where edges required for maintaining
the connectivity for h1 are depicted in bold. �

Open Problem: Computing structured item
graphs efficiently. The above mentioned tractability result
on structured item graphs turns out to be useful in practice
only when a structured item graph either is given or can be
efficiently determined. However, exponentially many item
graphs might be associated with a combinatorial auction,
and it is not clear how to determine whether a structured
item graph of a certain (constant) treewidth exists, and if
so, how to compute such a structured item graph efficiently.

Polynomial time algorithms to find the “best” simplifica-
tion of the primal graph were so far only known for the cases
where the item graph to be constructed is a line [10], a cycle
[4], or a tree [3], but it was an important open problem (cf.
[3]) whether it is tractable to check if for a combinatorial
auction, an item graph of treewidth bounded by a fixed nat-
ural number k exists and can be constructed in polynomial
time, if so.

Weighted Set Packing. Let us note that the hypergraph
representation H〈I,B〉 of a combinatorial auction 〈I,B〉 is
also useful to make the analogy between the winner deter-
mination problem and the maximum weighted-set packing
problem on hypergraphs clear (e.g., [17]).

Formally, a packing h for a hypergraph H is a set of hyper-
edges of H such that for each pair h, h′ ∈ h with h �= h′, it
holds that h∩h′ = ∅. Letting w be a weighting function for
H, i.e., a polynomially-time computable function from E(H)
to rational numbers, the weight of a packing h is the ratio-
nal number w(h) =

∑
h∈h w(h), where w({}) = 0. Then,

the maximum-weighted set packing problem for H w.r.t. w,
denoted by MaxWSP(H, w), is the problem of finding a pack-
ing for H having the maximum weight over all the packings
for H. To see that MaxWSP is just a different formulation
for the winner determination problem, given a combinato-
rial auction 〈I,B〉, it is sufficient to define the weighting
function w〈I,B〉(item(Bi)) = pay(Bi). Then, the set of the
solutions for the weighted set packing problem for H〈I,B〉
w.r.t. w〈I,B〉 coincides with the set of the solutions for the
winner determination problem on 〈I,B〉.

Example 2. Consider again the hypergraph H〈I0,B0〉 re-
ported in Figure 1.(a). An example packing for H〈I0,B0〉 is
h = {h1}, which intuitively corresponds to an outcome for
〈I0,B0〉, where the auctioneer accepted the bid B1. By as-
suming that bids B1, B2, and B3 are such that pay(B1) =
pay(B2) = pay(B3), the packing h is not a solution for
the problem MaxWSP(H〈I0,B0〉, w〈I0,B0〉). Indeed, the packing
h∗ = {h2, h3} is such that w〈I0,B0〉(h

∗) > w〈I0,B0〉(h). �

Contributions
The primary aim of this paper is to identify large tractable
classes for the winner determination problem, that are,
moreover polynomially recognizable. Towards this aim, we
first study structured item graphs and solve the open prob-
lem in [3]. The result is very bad news:

� It is NP complete to check whether a combinatorial auc-
tion has a structured item graph of treewidth 3. More
formally, letting C(ig, k) denote the class of all the hyper-
graphs having an item tree of treewidth bounded by k,
we prove that deciding whether a hypergraph (associated
with a combinatorial auction problem) belongs to C(ig, 3)
is NP-complete.

In the light of this result, it was crucial to assess whether
there are some other kinds of structural requirement that
can be checked in polynomial time and that can still be
used to isolate tractable classes of the maximum weighted-
set packing problem or, equivalently, the winner determina-
tion problem. Our investigations, this time, led to very good
news which are summarized below:

� For a hypergraph H, its dual H̄ = (V, E) is such that
nodes in V are in one-to-one correspondence with hyper-
edges in H, and for each node x ∈ N (H), {h | x ∈ h∧ h ∈
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E(H)} is in E. We show that MaxWSP is tractable on the
class of those instances whose dual hypergraphs have hy-
pertree width[7] bounded by k (short: class C(hw, k) of hy-
pergraphs). Note that a key issue of the tractability is to
consider the hypertree width of the dual hypergraph H̄ in-
stead of the auction hypergraph H. In fact, we can show
that MaxWSP remains NP-hard even when H is acyclic (i.e.,
when it has hypertree width 1), even when each node is
contained in 3 hyperedges at most.

� For some relevant special classes of hypergraphs in
C(hw, k), we design a higly-parallelizeable algorithm for
MaxWSP. Specifically, if the weighting functions can be
computed in logarithmic space and weights are polyno-
mial (e.g., when all the hyperegdes have unitary weights
and one is interested in finding the packing with the maxi-
mum number of edges), we show that MaxWSP can be solved
by a LOGCFL algorithm. Recall, in fact, that LOGCFL is
the class of decision problems that are logspace reducible
to context free languages, and that LOGCFL ⊆ NC2 ⊆ P
(see, e.g., [9]).

� Surprisingly, we show that nothing is lost in terms of
generality when considering the hypertree decomposition
of dual hypergraphs instead of the treewidth of item
graphs. To the contrary, the proposed hypertree-based
decomposition method is strictly more general than the
method of structured item graphs. In fact, we show that
strictly larger classes of instances are tractable according
to our new approach than according to the structured item
graphs approach. Intuitively, the NP-hardness of recogniz-
ing bounded-width structured item graphs is thus not due
to its great generality, but rather to some peculiarities in
its definition.

� The proof of the above results give us some interesting in-
sight into the notion of structured item graph. Indeed, we
show that structured item graphs are in one-to-one corre-
spondence with some special kinds of hypertree decompo-
sition of the dual hypergraph, which we call strict hypertree
decompositions. A game-characterization for the notion of
strict hypertree width is also proposed, which specializes
the Robber and Marshals game in [6] (proposed to charac-
terize the hypertree width), and which makes it clear the
further requirements on hypertree decompositions.

The rest of the paper is organized as follows. Section 2 dis-
cusses the intractability of structured item graphs. Section 3
presents the polynomial-time algorithm for solving MaxWSP

on the class of those instances whose dual hypergraphs have
bounded hypertree width, and discusses the cases where the
algorithm is also highly parallelizable. The comparison be-
tween the classes C(ig, k) and C(hw, k) is discussed in Sec-
tion 4. Finally, in Section 5 we draw our conclusions by also
outlining directions for further research.

2. COMPLEXITY OF STRUCTURED
ITEM GRAPHS

Let H be a hypergraph. A graph G = (V, E) is an item
graph for H if V = N (H) and, for each h ∈ E(H), the
subgraph of G induced over the nodes in h is connected.
An important class of item graphs is that of structured item
graphs, i.e., of those item graphs having bounded treewidth
as formalized below.

A tree decomposition [16] of a graph G = (V, E) is a pair
〈T, χ〉, where T = (N, F ) is a tree, and χ is a labelling
function assigning to each vertex p ∈ N a set of vertices
χ(p) ⊆ V , such that the following conditions are satisfied:
(1) for each vertex b of G, there exists p ∈ N such that
b ∈ χ(p); (2) for each edge {b, d} ∈ E, there exists p ∈ N
such that {b, d} ⊆ χ(p); (3) for each vertex b of G, the
set {p ∈ N | b ∈ χ(p)} induces a connected subtree of T .
The width of 〈T, χ〉 is the number maxp∈N |χ(p) − 1|. The
treewidth of G, denoted by tw(G), is the minimum width
over all its tree decompositions.

The winner determination problem can be solved in poly-
nomial time on item graphs having bounded treewidth [3].

Theorem 1 (cf. [3]). Assume a k-width tree decom-
position 〈T, χ〉 of an item graph for H is given. Then,
MaxWSP(H, w) can be solved in time O(|T |2×(|E(H)|+1)k+1).

Many item graphs can be associated with a hypergraph.
As an example, observe that the item graph in Figure 1.(c)
has treewidth 1, while Figure 1.(d) reports an item graph
whose treewidth is 2. Indeed, it was an open question
whether for a given constant k it can be checked in poly-
nomial time if an item graph of treewidth k exists, and if so,
whether such an item graph can be efficiently computed.

Let C(ig, k) denote the class of all the hypergraphs having
an item graph G such that tw(G) ≤ k. The main result of
this section is to show that the class C(ig, k) is hard to
recognize.

Theorem 2. Deciding whether a hypergraph H belongs to
C(ig, 3) is NP-hard.

The proof of this result relies on an elaborate reduction from
the Hamiltonian path problem HP(s, t) of deciding whether
there is an Hamiltonian path from a node s to a node t in a
directed graph G = (N, E). To help the intuition, we report
here a high-level overview of the main ingredients exploited
in the proof1.

The general idea it to build a hypergraph HG such that
there is an item graph G′ for HG with tw(G′) ≤ 3 if and only
if HP(s, t) over G has a solution. First, we discuss the way
HG is constructed. See Figure 2.(a) for an illustration, where
the graph G consists of the nodes s, x, y, and t, and the set of
its edges is {e1 = (s, x), e2 = (x, y), e3 = (x, t), e4 = (y, t)}.
From G to HG. Let G = (N, E) be a directed graph.
Then, the set of the nodes in HG is such that: for each
x ∈ N , N (HG) contains the nodes bsx, btx, b′x, b′′x, bdx; for
each e = (x, y) ∈ E, N (HG) contains the nodes ns′x, ns′′x,
nt′y, nt′′y , nse

x and nte
y. No other node is in N (HG).

Hyperedges in HG are of three kinds:

1) for each x ∈ N , E(HG) contains the hyperedges:

• Sx = {bsx} ∪ {nse
x | e = (x, y) ∈ E};

• Tx = {btx} ∪ {nte
x | e = (z, x) ∈ E};

• A1
x = {bdx, b′x}, A2

x = {bdx, b′′x}, and A3
x = {b′x, b′′x}

—notice that these hyperedges induce a clique on
the nodes {b′x, b′′x, bdx};

1Detailed proofs can be found in the Appendix, available at
www.mat.unical.it/∼ggreco/papers/ca.pdf.
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Figure 2: Proof of Theorem 2: (a) from G to HG — hyperedges in 1) and 2) are reported only; (b) a skeleton
for a tree decomposition TD for HG.

• SA1
x = {bsx, b′x}, SA2

x = {bsx, b′′x}, SA3
x =

{bsx, bdx} —notice that these hyperedges plus
A1

x, A2
x, and A3

x induce a clique on the nodes
{bsx, b′x, b′′x, bdx};

• TA1
x = {btx, b′x}, TA2

x = {btx, b′′x}, and TA3
x =

{btx, bdx} —notice that these hyperedges plus
A1

x, A2
x, and A3

x induce a clique on the nodes
{btx, b′x, b′′x, bdx};

2) for each e = (x, y) ∈ E, E(HG) contains the hyperedges:

• SHx = {ns′x, ns′′x};
• THy = {nt′y, nt′′y};
• SE′

e = {ns′x, nse
x} and SE′′

e = {ns′′x, nse
x} —notice

that these two hyperedges plus SHx induce a clique
on the nodes {ns′x, ns′′x, nse

x};
• TE′

e = {nt′y, nte
y} and TE′′

e = {nt′′y , nte
y} —notice

that these two hyperedges plus THy induce a clique
on the nodes {nt′y, nt′′y , nte

y}.
Notice that each of the above hyperedges but those of the
form Sx and Tx contains exactly two nodes. As an example
of the hyperedges of kind 1) and 2), the reader may refer
to the example construction reported in Figure 2.(a), and

notice, for instance, that Sx = {bsx, nse2
x , nse3

x } and that
Tt = {btt, nte4

t , nte3
t }.

3) finally, we denote by DG the set containing the hy-
peredges in E(HG) of the third kind. In the reduc-
tion we are exploiting, DG can be an arbitrary set
of hyperedges satisfying the four conditions that are
discussed below. Let PG be the set of the following
|PG| ≤ |N | + 3 × |E| pairs: PG = {(b′x, b′′x) | x ∈ N} ∪
{(ns′x, ns′′x), (nt′y, nt′′y ), (nse

x, nte
y) | e = (x, y) ∈ E}.

Also, let I(v) denote the set {h ∈ E(H) | v ∈ h} of the
hyperedges of H that are touched by v; and, for a set
V ⊆ N (H), let I(V ) =

⋃
v∈V I(v). Then, DG has to be

a set such that:

(c1) ∀(α, β) ∈ PG, I(α) ∩ I(β) ∩ DG = ∅;
(c2) ∀(α, β) ∈ PG, I(α) ∪ I(β) ⊇ DG;

(c3) ∀α ∈ N such that � ∃β ∈ N with (α, β) ∈ PG or
(β, α) ∈ PG, it holds: I(α) ∩ DG = ∅; and,

(c4) ∀S ⊆ N such that |S| ≤ 3 and where � ∃α, β ∈ S
with (α, β) ∈ PG, it is the case that: I(S) �⊇ DG.

Intuitively, the set DG is such that each of its hyperedges
is touched by exactly one of the two nodes in every pair
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of PG — cf. (c1) and (c2). Moreover, hyperedges in
DG touch only vertices included in at least a pair of PG

— cf. (c3); and, any triple of nodes is not capable of
touching all the elements of DG if none of the pairs that
can be built from it belongs to PG — cf. (c4).

The reader may now ask whether a set DG exists at
all satisfying (c1), (c2), (c3) and (c4). In the following
lemma, we positively answer this question and refer the
reader to its proof for an example construction.

Lemma 1. A set DG, with |DG| = 2 × |PG| + 2, sat-
isfying conditions (c1), (c2), (c3), and (c4) can be built
in time O(|PG|2).

Key Ingredients. We are now in the position of presenting

an overview of the key ingredients of the proof. Let G′ be
an arbitrary item graph for HG, and let TD = 〈T, χ〉 be a
3-width tree decomposition of G′ (note that, because of the
cliques, e.g., on the nodes {bsx, b′x, b′′x, bdx}, any item graph
for HG has treewidth 3 at least).

There are three basic observations serving the purpose of
proving the correctness of the reduction.

“Blocks” of TD: First, we observe that TD must contain
some special kinds of vertex. Specifically, for each
node x ∈ N , TD contains a vertex bs(x) such that
χ(bs(x)) ⊇ {bsx, b′x, b′′x, bdx}, and a vertex bt(x) such
that χ(bt(x)) ⊇ {btx, b′x, b′′x, bdx}. And, for each edge
e = (x, y) ∈ E, TD contains a vertex ns(x,e) such that
χ(ns(x,e)) ⊇ {nse

x, ns′x, ns′′x}, and a vertex nt(y,e) such
that χ(nt(y,e)) ⊇ {nte

y, nt′y, nt′′y}.
Intuitively, these vertices are required to cover the
cliques of HG associated with the hyperedges of kind
1) and 2). Each of these vertices plays a specific
role in the reduction. Indeed, each directed edge
e = (x, y) ∈ E is encoded in TD by means of the
vertices: ns(x,e), representing precisely that e starts
from x; and, nt(y,e), representing precisely that e ter-
minates into y. Also, each node x ∈ N is encoded in
TD be means of the vertices: bs(x), representing the
starting point of edges originating from x; and, bt(x),
representing the terminating point of edges ending into
x. As an example, Figure 2.(b) reports the “skeleton”
of a tree decomposition TD. The reader may notice
in it the blocks defined above and how they are re-
lated with the hypergraph HG in Figure 2.(a) — other
blocks in it (of the form w(x,y)) are defined next.

Connectedness between blocks,
and uniqueness of the connections: The second cru-

cial observation is that in the path connecting a ver-
tex of the form bs(x) (resp., bt(y)) with a vertex of
the form ns(x,e) (resp., nt(y,e)) there is one special
vertex of the form w(x,y) such that: χ(w(x,y)) ⊇
{nse′

x , nte′
y }, for some edge e′ = (x, y) ∈ E. Guar-

anteeing the existence of one such vertex is precisely
the role played by the hyperedges in DG. The ar-
guments for the proof are as follows. First, we ob-
serve that I(χ(bs(x))) ∩ I(χ(ns(x,e))) ⊇ DG ∪ {Sx}
and I(χ(bt(y))) ∩ I(χ(nt(y,e))) ⊇ DG ∪ {Ty}. Then,
we show a property stating that for a pair of con-
secutive vertices p and q in the path connecting bs(x)

and ns(x,e) (resp., bt(y) and nt(y,e)), I(χ(p) ∩ χ(q)) ⊇
I(χ(bs(x))) ∩ I(χ(ns(x,e))) (resp., I(χ(p) ∩ χ(q)) ⊇

I(χ(bt(x))) ∩ I(χ(nt(y,e)))). Thus, we have: I(χ(p) ∩
χ(q)) ⊇ DG∪{Sx} (resp., I(χ(p)∩χ(q)) ⊇ DG∪{Ty}).
Based on this observation, and by exploiting the prop-
erties of the hyperedges in DG, it is not difficult to
show that any pair of consecutive vertices p and q
must share two nodes of HG forming a pair in PG, and
must both touch Sx (resp., Ty). When the treewidth
of G′ is 3, we can conclude that a vertex, say w(x,y),

in this path is such that χ(w(x,y)) ⊇ {nse′
x , nte′

y }, for
some edge e′ = (x, y) ∈ E — to this end, note that

nse′
x ∈ Sx, nte′

t ∈ Ty, and I(χ(w(x,y))) ⊇ DG. In par-
ticular, w(x,y) is the only kind of vertex satisfying these
conditions, i.e., in the path there is no further vertex
of the form w(x,z), for z �= y (resp., w(z,y), for z �= x).

To help the intuition, we observe that having a vertex
of the form w(x,y) in TD corresponds to the selection
of an edge from node x to node y in the Hamiltonian
path. In fact, given the uniqueness of these vertices se-
lected for ensuring the connectivity, a one-to-one cor-
respondence can be established between the existence
of a Hamiltonian path for G and the vertices of the
form w(x,y). As an example, in Figure 2.(b), the ver-
tices of the form w(s,x), w(x,y), and w(y,t) are in TD,
and GTD shows the corresponding Hamiltonian path.

Unused blocks: Finally, the third ingredient of the proof
is the observation that if a vertex of the form w(x,y),
for an edge e′ = (x, y) ∈ E is not in TD (i.e., if the
edge (x, y) does not belong to the Hamiltonian path),
then the corresponding block ns(x,e′) (resp., nt(y,e′))
can be arbitrarily appended in the subtree rooted at
the block ns(x,e) (resp., nt(y,e)), where e is the edge of
the form e = (x, z) (resp., e = (z, y)) such that w(x,z)

(resp., w(z,y)) is in TD.

E.g., Figure 2.(a) shows w(x,t), which is not used in
TD, and Figure 2.(b) shows how the blocks ns(x,e3)

and nt(t,e3) can be arranged in TD for ensuring the
connectedness condition.

3. TRACTABLE CASES VIA HYPERTREE
DECOMPOSITIONS

Since constructing structured item graphs is intractable, it
is relevant to assess whether other structural restrictions can
be used to single out classes of tractable MaxWSP instances.
To this end, we focus on the notion of hypertree decompo-
sition [7], which is a natural generalization of hypergraph
acyclicity and which has been profitably used in other do-
mains, e.g, constraint satisfaction and database query evalu-
ation, to identify tractability islands for NP-hard problems.

A hypertree for a hypergraph H is a triple 〈T, χ, λ〉, where
T = (N, E) is a rooted tree, and χ and λ are labelling
functions which associate each vertex p ∈ N with two sets
χ(p) ⊆ N (H) and λ(p) ⊆ E(H). If T ′ = (N ′, E′) is a subtree
of T , we define χ(T ′) =

⋃
v∈N′ χ(v). We denote the set of

vertices N of T by vertices(T ). Moreover, for any p ∈ N ,
Tp denotes the subtree of T rooted at p.

Definition 1. A hypertree decomposition of a hyper-
graph H is a hypertree HD = 〈T, χ, λ〉 for H which satisfies
all the following conditions:

1. for each edge h ∈ E(H), there exists p ∈ vertices(T )
such that h ⊆ χ(p) (we say that p covers h);
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Figure 3: Example MaxWSP problem: (a) Hypergraph
H1; (b) Hypergraph H̄1; (b) A 2-width hypertree
decomposition of H̄1.

2. for each node Y ∈ N (H), the set {p ∈ vertices(T ) |
Y ∈ χ(p)} induces a (connected) subtree of T ;

3. for each p ∈ vertices(T ), χ(p) ⊆ N (λ(p));
4. for each p ∈ vertices(T ), N (λ(p)) ∩ χ(Tp) ⊆ χ(p).

The width of a hypertree decomposition 〈T, χ, λ〉 is
maxp∈vertices(T )|λ(p)|. The HYPERTREE width hw(H) of H
is the minimum width over all its hypertree decompositions.
A hypergraph H is acyclic if hw(H) = 1. �

Example 3. The hypergraph H〈I0,B0〉 reported in Fig-
ure 1.(a) is an example acyclic hypergraph. Instead, both
the hypergraphs H1 and H̄1 shown in Figure 3.(a) and Fig-
ure 3.(b), respectively, are not acyclic since their hypertree
width is 2. A 2-width hypertree decomposition for H̄1 is
reported in Figure 3.(c).

In particular, observe that H1 has been obtained by
adding the two hyperedges h4 and h5 to H〈I0,B0〉 to model,
for instance, that two new bids, B4 and B5, respectively,
have been proposed to the auctioneer. �

In the following, rather than working on the hypergraph
H associated with a MaxWSP problem, we shall deal with its
dual H̄, i.e., with the hypergraph such that its nodes are in
one-to-one correspondence with the hyperedges of H, and
where for each node x ∈ N (H), {h | x ∈ h ∧ h ∈ E(H)}
is in E(H̄). As an example, the reader may want to check
again the hypergraph H1 in Figure 3.(a) and notice that the
hypergraph in Figure 3.(b) is in fact its dual.

The rationale for this choice is that issuing restrictions on
the original hypergraph is a guarantee for the tractability
only in very simple scenarios.

Theorem 3. On the class of acyclic hypergraphs, MaxWSP
is (1) in P if each node occurs into two hyperedges at most;
and, (2) NP-hard, even if each node is contained into three
hyperedges at most.

3.1 Hypertree Decomposition on the Dual
Hypergraph and Tractable Packing
Problems

For a fixed constant k, let C(hw, k) denote the class of
all the hypergraphs whose dual hypergraphs have hyper-
tree width bounded by k. The maximum weighted-set pack-
ing problem can be solved in polynomial time on the class
C(hw, k) by means of the algorithm ComputeSetPackingk,
shown in Figure 4.

The algorithm receives in input a hypergraph H, a weight-
ing function w, and a k-width hypertree decomposition
HD = 〈T=(N, E), χ, λ〉 of H̄.

For each vertex v ∈ N , let Hv be the hypergraph whose
set of nodes N (Hv) ⊆ N (H) coincides with λ(v), and whose
set of edges E(Hv) ⊆ E(H) coincides with χ(v). In an ini-
tialization step, the algorithm equips each vertex v with all
the possible packings for Hv, which are stored in the set
Hv. Note that the size of Hv is bounded by (|E(H)| + 1)k,
since each node in λ(v) is either left uncovered in a pack-
ing or is covered with precisely one of the hyperedges in
χ(v) ⊆ E(H). Then, ComputeSetPackingk is designed to
filter these packings by retaining only those that “conform”
with some packing for Hc, for each children c of v in T , as
formalized next. Let hv and hc be two packings for Hv and
Hc, respectively. We say that hv conforms with hc, denoted
by hv ≈ hc if: for each h ∈ hc ∩ E(Hv), h is in hv; and, for
each h ∈ (E(Hc) − hc), h is not in hv.

Example 4. Consider again the hypertree decomposi-
tion of H̄1 reported in Figure 3.(c). Then, the set of all
the possible packings (which are build in the initialization
step of ComputeSetPackingk), for each of its vertices, is re-

Figure 5: Example application of Algorithm
ComputeSetPackingk.
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Input: H, w, and a k-width hypertree decomposition HD = 〈T=(N, E), χ, λ〉 of H̄;
Output: A solution to MaxWSP(H, w);
var Hv : set of packings for Hv , for each v ∈ N ; h∗ : packing for H;

�v
hv

: rational number, for each partial packing hv for Hv ;
hhv,c : partial packing for Hc, for each partial packing hv for Hv , and for each (v, c) ∈ E;

———————————————————————————————————————————–
Procedure BottomUp;
begin

Done := the set of all the leaves of T ;
while ∃v ∈ T such that (i) v �∈ Done, and (ii) {c | c is child of v} ⊆ Done do

for each c such that (v, c) ∈ E do
Hv := Hv − {hv |� ∃hc ∈ Hc s.t. hv ≈ hc};

for each hv ∈ Hv do
�v
hv

:= w(hv);
for each c such that (v, c) ∈ E do

h̄c := arg maxhc∈Hc|hv≈ hc

(
�c
hc

− w(hc ∩ hv)
)

;

hhv,c := h̄c; (* set best packing *)
�v
hv

:= �v
hv

+ �c
h̄c

− w(h̄c ∩ hv);

end for
end for
Done := Done ∪ {v};

end while
end;

———————————————————————————————————————————–
begin (* MAIN *)

for each vertex v in T do
Hv := {hv packing for Hv};

BottomUp;
let r be the root of T ;
h̄r := arg maxhr∈Hr �r

hr
;

h∗ := h̄r; (* include packing *)
TopDown(r, hr);
return h∗;

end.

Procedure TopDown(v : vertex of N , h̄v ∈ Hv);
begin

for each c ∈ N s.t. (v, c) ∈ E do
h̄c := hh̄v,c;
h∗ := h∗ ∪ h̄c; (* include packing *)
TopDown(c, h̄c);

end for
end;

Figure 4: Algorithm ComputeSetPackingk.

ported in Figure 5.(a). For instance, the root v1 is such that
Hv1 = { {}, {h1}, {h3}, {h5} }.

Moreover, an arrow from a packing hc to hv denotes that
hv conforms with hc. For instance, the reader may check
that the packing {h3} ∈ Hv1 conforms with the packing
{h2, h3} ∈ Hv3 , but do not conform with {h1} ∈ Hv3 . �

ComputeSetPackingk builds a solution by traversing T in
two phases. In the first phase, vertices of T are processed
from the leaves to the root r, by means of the procedure
BottomUp. For each node v being processed, the set Hv is
preliminary updated by removing all the packings hv that
do not conform with any packing for some of the children
of v. After this filtering is performed, the weight �hv is up-
dated. Intuitively, �v

hv
stores the weight of the best partial

packing for H computed by using only the hyperedges oc-
curring in χ(Tv). Indeed, if v is a leaf, then �v

hv
= w(hv).

Otherwise, for each child c of v in T , �v
hv

is updated with
the maximum of �c

hc
− w(hc ∩ hv) over all the packings hc

that conforms with hv (resolving ties arbitrarily). The pack-
ing h̄c for which this maximum is achieved is stored in the
variable hhv,c.

In the second phase, the tree T is processed starting from
the root. Firstly, the packing h∗ is selected that maximizes
the weight equipped with the packings in Hr. Then, proce-
dure TopDown is used to extend h∗ to all the other partial
packings for vertices of T . In particular, at each vertex v,
h∗ is extended with the packing hhv,c, for each child c of v.

Example 5. Assume that, in our running example,
w(h1) = w(h2) = w(h3) = w(h4) = 1. Then, an ex-
ecution of ComputeSetPackingk is graphically depicted in
Figure 5.(b), where an arrow from a packing hc to a pack-
ing hv is used to denote that hc = hhv,c. Specifically, the

choices made during the computation are such that the pack-
ing {h2, h3} is computed.

In particular, during the bottom-up phase, we have that:
(1) v4 is processed, and we set �v4

{h2} = �v4
{h4} = 1 and �v4

{} = 0;

(2) v3 is processed, and we set �v3
{h1} = �v3

{h3} = 1 and �v3
{} = 0;

(3) v2 is processed, and we set �v2
{h1} = �v2

{h2} = �v2
{h3} =

�v2
{h4} = 1, �v2

{h2,h3} = 2 and �v3
{} = 0; (4) v1 is processed

and we set �v1
{h1} = 1, �v1

{h5} = �v1
{h3} = 2 and �v1

{} = 0. For

instance, note that �v1
{h5} = 2 since {h5} conforms with the

packing {h4} of Hv2 such that �v2
{h4} = 1.

Then, at the beginning of the top-down phase,
ComputeSetPackingk selects {h3} as a packing for Hv1 and
propagates this choice in the tree. Equivalently, the algo-
rithm may have chosen {h5}.

As a further example, the way the solution {h1} is ob-
tained by the algorithm when w(h1) = 5 and w(h2) =
w(h3) = w(h4) = 1 is reported in Figure 5.(c). Notice
that, this time, in the top-down phase, ComputeSetPackingk

starts selecting {h1} as the best packing for Hv1 . �

Theorem 4. Let H be a hypergraph and w be a weighting
function for it. Let HD = 〈T, χ, λ〉 be a complete k-width
hypertree decomposition of H̄. Then, ComputeSetPackingk

on input H, w, and HD correctly outputs a solution for
MaxWSP(H, w) in time O(|T | × (|E(H)| + 1)2k).

Proof. [Sketch] We observe that h∗ (computed by
ComputeSetPackingk) is a packing for H. Indeed, consider
a pair of hyperedges h1 and h2 in h∗, and assume, for the
sake of contradiction, that h1 ∩ h2 �= ∅. Let v1 (resp., v2)
be an arbitrary vertex of T , for which ComputeSetPackingk

included h1 (resp., h2) in h∗ in the bottom-down computa-
tion. By construction, we have h1 ∈ χ(v1) and h2 ∈ χ(v2).
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Let I be an element in h1 ∩ h2. In the dual hypergraph
H, I is a hyperedge in E(H̄) which covers both the nodes
h1 and h2. Hence, by condition (1) in Definition 1, there is
a vertex v ∈ vertices(T ) such that {h1, h2} ⊆ χ(v). Note
that, because of the connectedness condition in Definition 1,
we can also assume, w.l.o.g., that v is in the path connecting
v1 and v2 in T .

Let hv ∈ Hv denote the element added by
ComputeSetPackingk into h∗ during the bottom-down
phase. Since the elements in Hv are packings for Hv, it is the
case that either h1 ∈ hv or h2 ∈ hv. Assume, w.l.o.g., that
h1 �∈ hv, and notice that each vertex w in T in the path con-
necting v to v1 is such that h1 ∈ χ(w), because of the con-
nectedness condition. Hence, because of definition of con-
formance, the packing hw selected by ComputeSetPackingk

to be added at vertex w in h∗ must be such that h1 �∈ hw.
This holds in particular for w = v1. Contradiction with the
definition of v1.

Therefore, h∗ is a packing for H. It remains then to show
that it has the maximum weight over all the packings for H.
To this aim, we can use structural induction on T to prove
that, in the bottom-up phase, the variable �v

hv
is updated

to contain the weight of the packing on the edges in χ(Tv),
which contains hv and which has the maximum weight over
all such packings for the edges in χ(Tv). Then, the result
follows, since in the top-down phase, the packing hr giving
the maximum weight over χ(Tr) = E(H) is first included in
h∗, and then extended at each node c with the packing hhv ,c

conformingly with hv and such that the maximum value of
�v
hv

is achieved.
As for the complexity, observe that the initialization step

requires the construction of the set Hv, for each vertex v, and
each set has size (|E(H)| + 1)k at most. Then, the function
BottomUp checks for the conformance between strategies
in Hv with strategies in Hc, for each pair (v, c) ∈ E, and
updates the weight �v

hv
. These tasks can be carried out in

time O((|E(H)| + 1)2k) and must be repeated for each edge
in T , i.e., O(|T |) times. Finally, the function TopDown can
be implemented in linear time in the size of T , since it just
requires updating h∗ by accessing the variable hhv ,c.

The above result shows that if a hypertree decomposition
of width k is given, the MaxWSP problem can be efficiently
solved. Moreover, differently from the case of structured
item graphs, it is well known that deciding the existence of
a k-bounded hypertree decomposition and computing one
(if any) are problems which can be efficiently solved in poly-
nomial time [7]. Therefore, Theorem 4 witnesses that the
class C(hw, k) actually constitutes a tractable class for the
winner determination problem.

As the following theorem shows, for large subclasses
(that depend only on how the weight function is specified),
MaxWSP(H, w) is even highly parallelizeable. Let us call a
weighting function smooth if it is logspace computable and
if all weights are polynomial (and thus just require O(log n)
bits for their representation). Recall that LOGCFL is a par-
allel complexity class contained in NC2, cf. [9]. The func-
tional version of LOGCFL is LLOGCFL, which is obtained by
equipping a logspace transducer with an oracle in LOGCFL.

Theorem 5. Let H be a hypergraph in C(hw, k), and let w
be a smooth weighting function for it. Then, MaxWSP(H, w)
is in LLOGCFL.

4. HYPERTREE DECOMPOSITIONS VS
STRUCTURED ITEM GRAPHS

Given that the class C(hw, k) has been shown to be an
island of tractability for the winner determination problem,
and given that the class C(ig, k) has been shown not to be
efficiently recognizable, one may be inclined to think that
there are instances having unbounded hypertree width, but
admitting an item graph of bounded tree width (so that the
intractability of structured item graphs would lie in their
generality).

Surprisingly, we establish this is not the case. The line of
the proof is to first show that structured item graphs are in
one-to-one correspondence with a special kind of hypertree
decompositions of the dual hypergraph, which we shall call
strict. Then, the result will follow by proving that k-width
strict hypertree decompositions are less powerful than k-
with hypertree decompositions.

4.1 Strict Hypertree Decompositions
Let H be a hypergraph, and let V ⊆ N (H) be a set of

nodes and X, Y ∈ N (H). X is [V ]-adjacent to Y if there
exists an edge h ∈ E(H) such that {X, Y } ⊆ (h − V ). A
[V ]-path π from X to Y is a sequence X = X0, . . . , X� = Y
of variables such that: Xi is [V ]-adjacent to Xi+1, for each
i ∈ [0...�-1]. A set W ⊆ N (H) of nodes is [V ]-connected
if ∀X, Y ∈ W there is a [V ]-path from X to Y . A
[V ]-component is a maximal [V ]-connected non-empty set
of nodes W ⊆ (N (H) − V ). For any [V ]-component C, let
E(C) = {h ∈ E(H) | h ∩ C �= ∅}.

Definition 2. A hypertree decomposition HD =
〈T, χ, λ〉 of H is strict if the following conditions hold:

1. for each pair of vertices r and s in vertices(T )
such that s is a child of r, and for each
[χ(r)]-component Cr s.t. Cr ∩ χ(Ts) �= ∅, Cr is a
[χ(r) ∩N (λ(r) ∩ λ(s))]-component;

2. for each edge h ∈ E(H), there is a vertex p such that
h ∈ λ(p) and h ⊆ χ(p) (we say p strongly covers h);

3. for each edge h ∈ E(H), the set {p ∈ vertices(T ) | h ∈
λ(p)} induces a (connected) subtree of T .

The strict hypertree width shw(H) of H is the minimum
width over all its strict hypertree decompositions. �

The basic relationship between nice hypertree decompo-
sitions and structured item graphs is shown in the following
theorem.

Theorem 6. Let H be a hypergraph such that for each
node v ∈ N (H), {v} is in E(H). Then, a k-width tree de-
composition of an item graph for H exists if and only if H̄
has a (k + 1)-width strict hypertree decomposition2.

Note that, as far as the maximum weighted-set packing
problem is concerned, given a hypergraph H, we can always
assume that for each node v ∈ N (H), {v} is in E(H). In
fact, if this hyperedge is not in the hypergraph, then it can
be added without loss of generality, by setting w({v}) = 0.
Therefore, letting C(shw, k) denote the class of all the hyper-
graphs whose dual hypergraphs (associated with maximum

2The term “+1” only plays the technical role of taking care
of the different definition of width for tree decompositions
and hypertree decompositions.
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weighted-set packing problems) have strict hypertree width
bounded by k, we have that C(shw, k + 1) = C(ig, k).

By definition, strict hypertree decompositions are special
hypertree decompositions. In fact, we are able to show that
the additional conditions in Definition 2 induce an actual
restriction on the decomposition power.

Theorem 7. C(ig, k) = C(shw, k + 1) ⊂ C(hw, k + 1).

A Game Theoretic View. We shed further lights on
strict hypertree decompositions by discussing an interesting
characterization based on the strict Robber and Marshals
Game, defined by adapting the Robber and Marshals game
defined in [6], which characterizes hypertree width.

The game is played on a hypergraph H by a robber against
k marshals which act in coordination. Marshals move on
the hyperedges of H, while the robber moves on nodes of
H. The robber sees where the marshals intend to move, and
reacts by moving to another node which is connected with
its current position and through a path in G(H) which does
not use any node contained in a hyperedge that is occupied
by the marshals before and after their move—we say that
these hyperedges are blocked. Note that in the basic game
defined in [6], the robber is not allowed to move on vertices
that are occupied by the marshals before and after their
move, even if they do not belong to blocked hyperedges.

Importantly, marshals are required to play monotonically,
i.e., they cannot occupy an edge that was previously occu-
pied in the game, and which is currently not. The marshals
win the game if they capture the robber, by occupying an
edge covering a node where the robber is. Otherwise, the
robber wins.

Theorem 8. Let H be a hypergraph such that for each
node v ∈ N (H), {v} is in E(H). Then, H̄ has a k-width
strict hypertree decomposition if and only if k marshals can
win the strict Robber and Marshals Game on H̄, no matter
of the robber’s moves.

5. CONCLUSIONS
We have solved the open question of determining the

complexity of computing a structured item graph associ-
ated with a combinatorial auction scenario. The result is
bad news, since it turned out that it is NP-complete to
check whether a combinatorial auction has a structured item
graph, even for treewidth 3. Motivated by this result, we in-
vestigated the use of hypertree decomposition (on the dual
hypergraph associated with the scenario) and we shown that
the problem is tractable on the class of those instances whose
dual hypergraphs have bounded hypertree width. For some
special, yet relevant cases, a highly parallelizable algorithm
is also discussed. Interestingly, it also emerged that the class
of structured item graphs is properly contained in the class
of instances having bounded hypertree width (hence, the
reason of their intractability is not their generality).

In particular, the latter result is established by showing
a precise relationship between structured item graphs and
restricted forms of hypertree decompositions (on the dual
hypergraph), called query decompositions (see, e.g., [7]). In
the light of this observation, we note that proving some ap-
proximability results for structured item graphs requires a
deep understanding of the approximability of query decom-
positions, which is currently missing in the literature.

As a further avenue of research, it would be relevant to
enhance the algorithm ComputeSetPackingk, e.g., by using
specialized data structures, in order to avoid the quadratic
dependency from (|E(H)| + 1)k.

Finally, an other interesting question is to assess whether
the structural decomposition techniques discussed in the pa-
per can be used to efficiently deal with generalizations of the
winner determination problem. For instance, it might be rel-
evant in several application scenarios to design algorithms
that can find a selling strategy when several copies of the
same item are available for selling, and when moreover the
auctioneer is satisfied when at least a given number of copies
is actually sold.
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