On The Complexity of Combinatorial Auctions: Structured Item Graphs and Hypertree Decompositions

[Extended Abstract]

Georg Gottlob
Computing Laboratory
Oxford University
OX1 3QD Oxford, UK
georg.gottlob@comlab.ox.ac.uk

Gianluigi Greco
Dipartimento di Matematica
University of Calabria
I-87030 Rende, Italy
ggreco@mat.unical.it

ABSTRACT
The winner determination problem in combinatorial auctions is the problem of determining the allocation of the items among the bidders that maximizes the sum of the accepted bid prices. While this problem is in general NP-hard, it is known to be feasible in polynomial time on those instances whose associated item graphs have bounded treewidth (called structured item graphs). Formally, an item graph is a graph whose nodes are in one-to-one correspondence with items, and edges are such that for any bid, the items occurring in it induce a connected subgraph. Note that many item graphs might be associated with a given combinatorial auction, depending on the edges selected for guaranteeing the connectedness. In fact, the tractability of determining whether a structured item graph of a fixed treewidth exists (and if so, computing one) was left as a crucial open problem.

In this paper, we solve this problem by proving that the existence of a structured item graph is computationally intractable, even for treewidth 3. Motivated by this bad news, we investigate different kinds of structural requirements that can be used to isolate tractable classes of combinatorial auctions. We show that the notion of hypertree decomposition, a recently introduced measure of hypergraph cyclicity, turns out to be most useful here. Indeed, we show that the winner determination problem is solvable in polynomial time on instances whose bidder interactions can be represented with (dual) hypergraphs having bounded hypertree width. Even more surprisingly, we show that the class of tractable instances identified by means of our approach properly contains the class of instances having a structured item graph.

Categories and Subject Descriptors

General Terms
Algorithms, Economics, Theory

Keywords
Hypergraphs, combinatorial auctions, hypertree decompositions

1. INTRODUCTION
Combinatorial auctions. Combinatorial auctions are well-known mechanisms for resource and task allocation where bidders are allowed to simultaneously bid on combinations of items. This is desirable when a bidder’s valuation of a bundle of items is not equal to the sum of her valuations of the individual items. This framework is currently used to regulate agents’ interactions in several application domains (cf., e.g., [21]) such as, electricity markets [13], bandwidth auctions [14], and transportation exchanges [18].

Formally, a combinatorial auction is a pair \((\mathcal{I}, \mathcal{B})\), where \(\mathcal{I} = \{I_1, \ldots, I_m\}\) is the set of items the auctioneer has to sell, and \(\mathcal{B} = \{B_1, \ldots, B_n\}\) is the set of bids from the buyers interested in the items in \(\mathcal{I}\). Each bid \(B_i\) has the form \(\langle \text{item}(B_i), \text{pay}(B_i) \rangle\), where \(\text{pay}(B_i)\) is a rational number denoting the price a buyer offers for the items in \(\text{item}(B_i) \subseteq \mathcal{I}\). An outcome for \((\mathcal{I}, \mathcal{B})\) is a subset \(\mathbf{b}\) of \(\mathcal{B}\) such that \(\text{item}(B_i) \cap \text{item}(B_j) = \emptyset\) for each pair \(B_i, B_j\) of bids in \(\mathbf{b}\) with \(i \neq j\).

The winner determination problem. A crucial problem for combinatorial auctions is to determine the outcome \(\mathbf{b}^*\) that maximizes the sum of the accepted bid prices (i.e., \(\sum_{B_i \in \mathbf{b}^*} \text{pay}(B_i)\)) over all the possible outcomes. This problem, called winner determination problem (e.g., [11]), is known to be intractable, actually NP-hard [17], and even not approximable in polynomial time unless \(\text{NP} = \text{ZPP}\) [19]. Hence, it comes with no surprise that several efforts have been spent to design practically efficient algorithms for general auctions (e.g., [20, 5, 2, 8, 23]) and to identify classes of instances where solving the winner determination problem is feasible in polynomial time (e.g., [15, 22, 12, 21]). In fact, constraining bidder interaction was proven to be useful for identifying classes of tractable combinatorial auctions.

Item graphs. Currently, the most general class of tractable combinatorial auctions has been singled out by modelling interactions among bidders with the notion of item graph, which is a graph whose nodes are in one-to-one correspondence with items, and edges are such that for any
we notice that bidder interaction in a combinatorial auction hyperedge of H Figure 1.(b), while two example item graphs are reported in Figure 1.(a) is an encoding for a combinatorial auction nodes included in each hyperedge.

Indeed, the winner determination problem was proven to be solvable in polynomial time if interactions among bidders can be represented by means of a structured item graph, i.e., a tree or, more generally, a graph having tree-like structure [3]—formally bounded treewidth [16].

To have some intuition on how item graphs can be built, we notice that bidder interaction in a combinatorial auction (I, B) can be represented by means of a hypergraph $H(I, B)$, such that its set of nodes $N(H(I, B))$ coincides with set of items I, and where its edges $E(H(I, B))$ are precisely the bids of the buyers $(item(B_i) | B_i \in B)$. A special item graph for (I, B) is the primal graph of $H(I, B)$, denoted by $G(H(I, B))$, which contains an edge between any pair of nodes in some hyperedge of $H(I, B)$. Then, any item graph for $H(I, B)$ can be viewed as a simplification of $G(H(I, B))$ obtained by deleting some edges, yet preserving the connectivity condition on the nodes included in each hyperedge.

Example 1. The hypergraph $H(I_0, B_0)$ reported in Figure 1.(a) is an encoding for a combinatorial auction (I_0, B_0), where $I_0 = \{I_1, ..., I_5\}$, and $item(B_i) = h_i$, for each $1 \leq i \leq 3$. The primal graph for $H(I_0, B_0)$ is reported in Figure 1.(b), while two example item graphs are reported in Figure 1.(c) and (d), where edges required for maintaining the connectivity for h_1 are depicted in bold.

Open Problem: Computing structured item graphs efficiently. The above mentioned tractability result on structured item graphs turns out to be useful in practice only when a structured item graph either is given or can be efficiently determined. However, exponentially many item graphs might be associated with a combinatorial auction, and it is not clear how to determine whether a structured item graph of a certain (constant) treewidth exists, and if so, how to compute such a structured item graph efficiently.

Polynomial time algorithms to find the “best” simplification of the primal graph were so far only known for the cases where the item graph to be constructed is a line [10], a cycle [4], or a tree [3], but it was an important open problem (cf. [3]) whether it is tractable to check if for a combinatorial auction, an item graph of treewidth bounded by a fixed natural number k exists and can be constructed in polynomial time, if so.

Weighted Set Packing. Let us note that the hypergraph representation $H(I, B)$ of a combinatorial auction (I, B) is also useful to make the analogy between the winner determination problem and the maximum weighted-set packing problem on hypergraphs clear (e.g., [17]).

Formally, a packing h for a hypergraph H is a set of hyperedges of H such that for each pair $h, h' \in h$ with $h \neq h'$, it holds that $h \cap h' = \emptyset$. Letting w be a weighting function for H, i.e., a polynomially-time computable function from $E(H)$ to rational numbers, the weight of a packing h is the rational number $w(h) = \sum_{h \in h} w(h)$, where $w(\emptyset) = 0$. Then, the maximum-weighted set packing problem for H w.r.t. w, denoted by $\text{MaxWSP}(H, w)$, is the problem of finding a packing for H having the maximum weight over all the packings for H. To see that MaxWSP is just a different formulation for the winner determination problem, given a combinatorial auction (I, B), it is sufficient to define the weighting function $w(I, B)(item(B_i)) = pay(B_i)$. Then, the set of the solutions for the weighted set packing problem for $H(I, B)$ w.r.t. $w(I, B)$ coincides with the set of the solutions for the winner determination problem on (I, B).

Example 2. Consider again the hypergraph $H(I_0, B_0)$ reported in Figure 1.(a). An example packing for $H(I_0, B_0)$ is $h = \{h_1\}$, which intuitively corresponds to an outcome for (I_0, B_0), where the auctioneer accepted the bid B_1. By assuming that bids B_1, B_2, and B_3 are such that $\text{pay}(B_1) = \text{pay}(B_2) = \text{pay}(B_3)$, the packing h is not a solution for the problem $\text{MaxWSP}(H(I_0, B_0), w(I_0, B_0))$. Indeed, the packing $h' = \{h_2, h_3\}$ is such that $w(I_0, B_0)(h') > w(I_0, B_0)(h)$.

Contributions.

The primary aim of this paper is to identify large tractable classes for the winner determination problem, that are, moreover polynomially recognizable. Towards this aim, we first study structured item graphs and solve the open problem in [3]. The result is very bad news:

- It is NP complete to check whether a combinatorial auction has a structured item graph of treewidth 3. More formally, letting $C(ig, k)$ denote the class of all the hypergraphs having an item tree of treewidth bounded by k, we prove that deciding whether a hypergraph (associated with a combinatorial auction problem) belongs to $C(ig, 3)$ is NP-complete.

In the light of this result, it was crucial to assess whether there are some other kinds of structural requirement that can be checked in polynomial time and that can still be used to isolate tractable classes of the maximum weighted-set packing problem or, equivalently, the winner determination problem. Our investigations, this time, led to very good news which are summarized below:

- For a hypergraph H, its dual $\bar{H} = (V, E)$ is such that nodes in V are in one-to-one correspondence with hyperedges in H, and for each node $x \in N(\bar{H})$, $\{h | x \in h \land h \in$
Let \(\mathcal{E}(\mathcal{H}) \) be in \(E \). We show that \(\text{MaxWSP} \) is tractable on the class of those instances whose dual hypergraphs have hypertree width \(\mathcal{H} \) bounded by \(k \) (short: class \(\mathcal{C}(\mathcal{H}, k) \) of hypergraphs). Note that a key issue of the tractability is to consider the hypertree width of the dual hypergraph \(\mathcal{H} \) instead of the auction hypergraph \(\mathcal{H} \). In fact, we can show that \(\text{MaxWSP} \) remains NP-hard even when \(\mathcal{H} \) is acyclic (i.e., when it has hypertree width 1), even when each node is contained in 3 hyperedges at most.

For some relevant special classes of hypergraphs in \(\mathcal{C}(\mathcal{H}, k) \), we design a highly-parallelizable algorithm for \(\text{MaxWSP} \). Specifically, if the weighting functions can be computed in logarithmic space and weights are polynomial (e.g., when all the hyperedges have unitary weights and one is interested in finding the packing with the maximum number of edges), we show that \(\text{MaxWSP} \) can be solved by a LOGCFL algorithm. Recall, in fact, that LOGCFL is the class of decision problems that are logspace reducible to context free languages, and that LOGCFL \(\subseteq \mathcal{NC}_2 \subseteq \mathcal{P} \) (see, e.g., [9]).

Surprisingly, we show that nothing is lost in terms of generality when considering the hypertree decomposition of dual hypergraphs instead of the treewidth of item graphs. To the contrary, the proposed hypertree-based decomposition method is strictly more general than the method of structured item graphs. In fact, we show that strictly larger classes of instances are tractable according to our new approach than according to the structured item graphs approach. Intuitively, the NP-hardness of recognizing bounded-width structured item graphs is thus not due to its general complexity, but rather to some peculiarities in its definition.

The proof of the above results give us some interesting insight into the notion of structured item graph. Indeed, we show that structured item graphs are in one-to-one correspondence with some special kinds of hypertree decomposition of the dual hypergraph, which we call \emph{strict hypertree decompositions}. A game-characterization for the notion of strict hypertree width is also proposed, which specializes the Robber and Marshals game in [6] (proposed to characterize the hypertree width), and which makes it clear the further requirements on hypertree decompositions.

The rest of the paper is organized as follows. Section 2 discusses the intractability of structured item graphs. Section 3 presents the polynomial-time algorithm for solving \(\text{MaxWSP} \) on the class of those instances whose dual hypergraphs have bounded hypertree width, and discusses the cases where the algorithm is also highly parallelizable. The comparison between the classes \(\mathcal{C}(\mathcal{ig}, k) \) and \(\mathcal{C}(\mathcal{H}, k) \) is discussed in Section 4. Finally, in Section 5 we draw our conclusions by also outlining directions for further research.

2. COMPLEXITY OF STRUCTURED ITEM GRAPHS

Let \(\mathcal{H} \) be a hypergraph. A graph \(G = (V, E) \) is an item graph for \(\mathcal{H} \) if \(V = \mathcal{N}(\mathcal{H}) \) and, for each \(h \in \mathcal{E}(\mathcal{H}) \), the subgraph of \(G \) induced over the nodes in \(h \) is connected. An important class of item graphs is that of \emph{structured} item graphs, i.e., of those item graphs having bounded treewidth as formalized below.

A tree decomposition \([16]\) of a graph \(G = (V, E) \) is a pair \((T, \chi)\), where \(T = (N, F) \) is a tree, and \(\chi \) is a labelling function assigning to each vertex \(p \in N \) a set of vertices \(\chi(p) \subseteq V \), such that the following conditions are satisfied: (1) for each vertex \(b \) of \(G \), there exists \(p \in N \) such that \(b \in \chi(p) \); (2) for each edge \(\{b, d\} \in E \), there exists \(p \in N \) such that \(\{b, d\} \subseteq \chi(p) \); (3) for each vertex \(b \) of \(G \), the set \(\{p \in N \mid b \in \chi(p)\} \) induces a connected subtree of \(T \).

The width of \((T, \chi)\) is the number \(\max_{p \in N} |\chi(p)| - 1 \). The treewidth of \(G \), denoted by \(tw(G) \), is the minimum width over all its tree decompositions.

The winner determination problem can be solved in polynomial time on item graphs having bounded treewidth \([3]\).

\begin{theorem}[cf. \cite{3}]
Assume a \(k \)-width hypertree decomposition \((T, \chi)\) of an item graph for \(\mathcal{H} \) is given. Then, \(\text{MaxWSP}(\mathcal{H}, w) \) can be solved in time \(O(|T|^3 \times (|\mathcal{E}(\mathcal{H})|+1)^{k+1}) \).
\end{theorem}

Many item graphs can be associated with a hypergraph. As an example, observe that the item graph in Figure 1.(c) may depend on hypertree decompositions. Intuitively, the NP-hardness of recognizing bounded-width structured item graphs is thus not due to its general complexity, but rather to some peculiarities in its definition.

The proof of this result relies on an elaborate reduction from the Hamiltonian path problem \(\text{HP}(s, t) \) of deciding whether there is an Hamiltonian path from a node \(s \) to a node \(t \) in a directed graph \(G = (N, E) \). To help the intuition, we report here a high-level overview of the main ingredients exploited in the proof\(^1\).

The general idea is to build a hypergraph \(\mathcal{H}_G \) such that there is an item graph \(G' \) for \(\mathcal{H}_G \) with \(tw(G') \leq 3 \) if and only if \(\text{HP}(s, t) \) over \(G \) has a solution. First, we discuss the way \(\mathcal{H}_G \) is constructed. See Figure 2.(a) for an illustration, where the graph \(G \) consists of the nodes \(s, x, y, \) and \(t \), and the set of its edges is \(\{e_1 = (s, x), e_2 = (x, y), e_3 = (x, t), e_4 = (y, t)\} \).

From \(G \) to \(\mathcal{H}_G \). Let \(G = (N, E) \) be a directed graph. Then, the set of the nodes in \(\mathcal{H}_G \) is such that: for each \(x \in N, N(\mathcal{H}_G) \) contains the nodes \(b_s, b_x, b_y, b_t, b_d \); for each \(e = (x, y) \in E, \mathcal{H}_G \) contains the nodes \(n_s, n_x, n_y, n_t, n_e, n_y, n_t, n_e, n_s, n_e, n_t, n_e, n_s, n_e, n_t, n_e \). No other node is in \(N(\mathcal{H}_G) \).

Hyperedges in \(\mathcal{H}_G \) are of three kinds:

1) for each \(x \in N, E(\mathcal{H}_G) \) contains the hyperedges:

- \(S_s = \{b_s \cup \{e \in (x, y) \in E\} \}
- \(T_s = \{b_s \cup \{e \in (x, y) \in E\} \}
- \{A_{x}^{1} = \{b_x, b_y\}, A_{x}^{2} = \{b_x, b_t\}, \text{ and } A_{x}^{3} = \{b_x, b_y\} \}
- \text{note that these hyperedges induce a clique on the nodes } (b_x, b_y, b_t, e_d) \)

\(^1\)Detailed proofs can be found in the Appendix, available at www.mat.unical.it/~ggreco/papers/ca.pdf.
for a tree decomposition TD

Notice that each of the above hyperedges but those of the kind 1) and 2), the reader may refer to the example construction reported in Figure 2(a), and

2) for each (x, y) ∈ E, E(H_G) contains the hyperedges:

- SA_1 = \{bs_x, b_y\}, SA_2 = \{bs_x, b_y'\}, SA_3 = \{bs_x, bd_x\} — notice that these hyperedges plus A_1, A_2, and A_3 induce a clique on the nodes \{bs_x, b_y', b_y'', bd_x\};
- TA_1 = \{bt_x, b_y'\}, TA_2 = \{bt_x, b_y''\}, and TA_3 = \{bt_x, bd_x\} — notice that these hyperedges plus A_1, A_2, and A_3 induce a clique on the nodes \{bt_x, b_y', b_y'', bd_x\};

3) finally, we denote by D_G the set containing the hyperedges in E(H_G) of the third kind. In the reduction we are exploiting, D_G can be an arbitrary set of hyperedges satisfying the four conditions that are discussed below.

Let P_G be the set containing the hyperedges such that each of its hyperedges is such that each of its hyperedges is touched by exactly one of the two nodes in every pair of hyperedges satisfying the four conditions that are discussed below.

Also, let I(v) denote the set \{h ∈ E(H) | v ∈ h\} of the hyperedges of H that are touched by v; and, for a set V ⊆ N(H), let I(V) = \bigcup_{v ∈ V} I(v). Then, D_G has to be a set such that:

- ∀(α, β) ∈ P_G, I(α) ∩ I(β) ∩ D_G = \{\};
- ∀(α, β) ∈ P_G, I(α) ∪ I(β) ⊇ D_G;
- ∀x ∈ N such that ββ ∈ N with (α, β) ∈ P_G or (β, α) ∈ P_G, it holds: I(α) ∩ D_G = \{\}; and,
- ∀S ⊆ N such that |S| ≤ 3 and where βα, β ∈ S with (α, β) ∈ P_G, it is the case that: I(S) ⊇ D_G.

Intuitively, the set D_G is such that each of its hyperedges is touched by exactly one of the two nodes in every pair

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{Proof of Theorem 2: (a) from G to H_G — hyperedges in 1) and 2) are reported only; (b) a skeleton for a tree decomposition TD for H_G.}
\end{figure}
of \mathcal{P}_G — cf. (c1) and (c2). Moreover, hyperedges in \mathcal{D}_G touch only vertices included in at least a pair of \mathcal{P}_G — cf. (c3); and, any triple of nodes is not capable of touching all the elements of \mathcal{D}_G if none of the pairs that can be built from it belongs to \mathcal{P}_G — cf. (c4).

The reader may now ask whether a set \mathcal{D}_G exists at all satisfying (c1), (c2), (c3) and (c4). In the following lemma, we positively answer this question and refer the reader to its proof for an example construction.

Lemma 1. A set \mathcal{D}_G, with $|\mathcal{D}_G| = 2 \times |\mathcal{P}_G| + 2$, satisfying conditions (c1), (c2), (c3), and (c4) can be built in time $O(|\mathcal{P}_G|^2)$.

Key Ingredients. We are now in the position of presenting an overview of the key ingredients of the proof. Let G' be an arbitrary item graph for \mathcal{H}_G, and let $TD = (T, \chi)$ be a 3-width tree decomposition of G' (note that, because of the cliques, e.g., on the nodes $\{bs_x, b'_x, b''_x, bd_x\}$, any item graph for \mathcal{H}_G has treewidth at least 3).

There are three basic observations serving the purpose of proving the correctness of the reduction.

“Blocks” of TD: First, we observe that TD must contain some special kinds of vertex. Specifically, for each node $x \in N, TD$ contains a vertex bs_x such that $\chi(bs_x) = \{bs_x, b'_x, b''_x, bd_x\}$, and a vertex bt_x such that $\chi(bt_x) = \{bs_x, b'_x, b''_x, bd_x\}$. And, for each edge $e = (x, y) \in E, TD$ contains a vertex $nt_{(y, e)}$ such that $\chi(nt_{(y, e)}) = \{nt_{(y, e)}, nt'_{(y, e)}\}$. Intuitively, these vertices are required to cover the cliques of \mathcal{H}_G associated with the hyperedges of kind 1) and 2). Each of these vertices plays a specific role in the reduction. Indeed, each directed edge $e = (x, y) \in E$ is encoded in TD by means of the vertices: $ns_{(x, e)}(resp., nt_{(y, e)})$, representing precisely that e starts from x; and, $nt_{(y, e)}(resp., e$ terminates into $y). Also, each node $x \in N$ is encoded in TD by means of the vertices: bs_x, representing the starting point of edges originating from x; and, bt_x, representing the terminating point of edges ending into x. As an example, Figure 2.(b) reports the “skeleton” of a tree decomposition TD. The reader may notice in it the blocks defined above and how they are related with the hypergraph \mathcal{H}_G in Figure 2.(a) — other blocks in it (of the form $w(x, z)$) are defined next.

Connectedness between blocks, and uniqueness of the connections: The second crucial observation is that in the path connecting a vertex of the form bs_x (resp., bt_y) with a vertex of the form $ns_{(x, e)}$ (resp., $nt_{(y, e)}$) there is one special vertex of the form $w(x, z)$ such that: $\chi(w(x, z)) = \{ns''_x, nt''_y\}$, for some edge $e' = (x, y) \in E$. Guaranteeing the existence of such one vertex is precisely the role played by the hyperedges in \mathcal{D}_G. The arguments for the proof are as follows. First, we observe that $I(\chi(bs_x)) \cap I(\chi(ns_{(x, e)})) \subseteq \mathcal{D}_G \cup \{S_x\}$ and $I(\chi(bt_y)) \cap I(\chi(nt_{(y, e)})) \subseteq \mathcal{D}_G \cup \{T_y\}$. Then, we show a property stating that for a pair of consecutive vertices p and q in the path connecting bs_x and $ns_{(x, e)}$ (resp., bt_y and $nt_{(y, e)}$), $I(\chi(p)) \cap I(\chi(q)) \supseteq I(\chi(bs_x)) \cap I(\chi(ns_{(x, e)}))$ (resp., $I(\chi(p)) \cap I(\chi(q)) \supseteq I(\chi(bt_y)) \cap I(\chi(nt_{(y, e)})))$. Thus, we have: $I(\chi(p)) \cap I(\chi(q)) \supseteq I(\chi(bs_x)) \cap I(\chi(ns_{(x, e)})) \supseteq \mathcal{D}_G \cup \{S_x\}$ (resp., $I(\chi(p)) \cap I(\chi(q)) \supseteq I(\chi(bt_y)) \cap I(\chi(nt_{(y, e)})) \supseteq \mathcal{D}_G \cup \{T_y\}$). Based on this observation, and by exploiting the properties of the hyperedges in \mathcal{D}_G, it is not difficult to show that any pair of consecutive vertices p and q must share two nodes of \mathcal{H}_G forming a pair in \mathcal{P}_G and must both touch S_x (resp., T_y). When the treewidth of G' is 3, we can conclude that a vertex, say y, in this path is such that $\chi(w(x, y)) \supseteq \{ns''_x, nt''_y\}$, for some edge $e' = (x, y) \in E$ — to this end, note that $ns''_x \in S_x$, $nt''_y \in T_y$, and $I(\chi(w(x, y))) \supseteq \mathcal{D}_G$. In particular, $w(x, y)$ is the only kind of vertex satisfying these conditions, i.e., in the path there is no further vertex of the form $w(x, z)$, for $z \not= y$ (resp., $w(x, y)$, for $z \not= x$).

To help the intuition, we observe that having a vertex of the form $w(x, y)$ in TD corresponds to the selection of an edge from node x to node y in the Hamiltonian path. In fact, given the uniqueness of these vertices selected for ensuring the connectivity, a one-to-one correspondence can be established between the existence of a Hamiltonian path for G and the vertices of the form $w(x, y)$. As an example, in Figure 2.(b), the vertices of the form $w(x, z)$, $w(y, z)$, and $w(x, y)$ are in TD, and G_{TD} shows the corresponding Hamiltonian path.

Unused blocks: Finally, the third ingredient of the proof is the observation that if a vertex of the form $w(x, y)$, for an edge $e' = (x, y) \in E$ is not in TD (i.e., if the edge (x, y) does not belong to the Hamiltonian path), then the corresponding block $ns_{(x, e')}$ (resp., $nt_{(y, e')}$) can be arbitrarily appended in the subtree rooted at the block $ns_{(x, e)}$ (resp., $nt_{(y, e)}$), where e is the edge of the form $e = (x, z)$ (resp., $e = (z, y)$) such that $w(x, z)$ (resp., $w(y, z)$) is in TD.

E.g., Figure 2.(a) shows $w(x, x)$, which is not used in TD, and Figure 2.(b) shows how the blocks $ns_{(x, e)}$ and $nt_{(l, e)}$ can be arranged in TD for ensuring the connectedness condition.

3. TRACTABLE CASES VIA HYPERTREE DECOMPOSITIONS

Since constructing structured item graphs is intractable, it is relevant to assess whether other structural restrictions can be used to single out classes of tractable MaxWSF instances. To this end, we focus on the notion of hypertree decomposition [7], which is a natural generalization of hypergraph acyclicity and which has been profitably used in other domains, e.g., constraint satisfaction and database query evaluation, to identify tractability islands for NP-hard problems. A hypertree for a hypergraph \mathcal{H} is a triple (T, χ, λ), where $T = (N, E)$ is a rooted tree, and χ and λ are labelling functions which associate each vertex $p \in N$ with two sets $\chi(p) \subseteq N(\mathcal{H})$ and $\lambda(p) \subseteq E(\mathcal{H})$. If $T' = (N', E')$ is a subtree of T, we define $\chi(T') = \bigcup_{\gamma \in \gamma'} \chi(\gamma)$. We denote the set of vertices N of T by $\text{vertices}(T)$. Moreover, for any $p \in N$, T_p denotes the subtree of T rooted at p.

Definition 1. A hypertree decomposition of a hypergraph \mathcal{H} is a hypertree $HD = (T, \chi, \lambda)$ for \mathcal{H} which satisfies all the following conditions:

1. for each edge $h \in E(\mathcal{H})$, there exists $p \in \text{vertices}(T)$ such that $h \subseteq \chi(p)$ (we say that p covers h);
and, (2) NP-hard, even if each node is contained into three hyperedges.

For a fixed constant k, let $C(hw,k)$ denote the class of all the hypergraphs whose dual hypergraphs have hyper-tree width bounded by k. The maximum weighted-set packing problem can be solved in polynomial time on the class $C(hw,k)$ by means of the algorithm ComputeSetPackingk, shown in Figure 4.

The algorithm receives in input a hypergraph H, a weighting function w, and a k-width hypertree decomposition $HD = (T = (N,E), \chi, \lambda)$ of H.

For each vertex $v \in N$, let H_v be the hypergraph whose set of nodes $N(H_v) \subseteq N(H)$ coincides with $\lambda(v)$, and whose set of edges $E(H_v) \subseteq E(H)$ coincides with $\chi(v)$. In an initialization step, the algorithm equips each vertex v with all the possible packings for H_v, which are stored in the set H_v. Note that the size of H_v is bounded by $(|E(H)| + 1)^k$, since each node in $\lambda(v)$ is either left uncovered in a packing or is covered with precisely one of the hyperedges in $\chi(v) \subseteq \varepsilon(H)$. Then, ComputeSetPackingk is designed to filter these packings by retaining only those that “conform” with some packing for H_v, for each children c of v in T, as formalized next. Let h_v and h_c be two packings for H_v and H_c, respectively. We say that h_c conforms with h_v, denoted by $h_c \approx h_v$, if: for each $h \in h_v \cap \varepsilon(H_c)$, h is in h_c; and, for each $h \in (\varepsilon(H_c) - h_c)$, h is not in h_c.

Example 4. Consider again the hypertree decomposition of H_1 reported in Figure 3.(c). Then, the set of all the possible packings (which are built in the initialization step of ComputeSetPackingk), for each of its vertices, is re-

Figure 5: Example application of Algorithm ComputeSetPackingk.
ported in Figure 5.(a). For instance, the root from the leaves to the root \(T \) do not conform with any packing for some of the children \(k \) dated. Intuitively, Figure 5.(b), where an arrow from a packing \(h \) for \(H_c \), for each partial packing \(h \) for \(H_c \), and for each \((v, c) \in E;\)

Procedure BottomUp;
begin
 \(Done := \{ \text{the set of all the leaves of } T; \} \)
 while \(2e \in T \text{ such that } (i) \ v \notin Done, \text{ and } (ii) \ c | c \text{ is child of } v \} \subseteq Done \) do
 for each \(c \) such that \((v, c) \in E \) do
 \(h := h \setminus \{ h, h' \in H_c \text{ s.t. } h \approx h \}; \)
 for each \(h \in H_c \) do
 \(\ell_h := w(h); \)
 for each \(c \) such that \((v, c) \in E \) do
 \(h := \arg \max_{h \in H_c} h \left(\ell_h - w(h \cap h) \right); \)
 \(h_{v,c} := h; \quad (\ast \text{ set best packing } \ast) \)
 \(\ell_h := \ell_h + \ell_h - w(h \cap h); \)
 end for
 for
 done := \(Done \cup \{ v \} \)
end while \(end; \)

begin \(\ast \text{ MAIN } \ast \)
for each vertex \(v \) in \(T \) do
 \(H_v := \{ h \} \text{ packing for } H_v; \)
BottomUp:
let \(r \) be the root of \(T; \)
\(h := \arg \max_{h \in H_c} h \) \(\left(\ell_h \right); \)
\(h^* := h; \quad (\ast \text{ include packing } \ast) \)
TopDown(\(r, h^* \))
return \(h^* \);
end.

Procedure TopDown(\(v \) : vertex of \(N, h_v \in H_v); \)
begin
for each \(c \in N \text{ s.t. } (v, c) \in E \) do
 \(h := h_{v,c}; \)
 \(h^* := h^* \cup h; \quad (\ast \text{ include packing } \ast) \)
TopDown(\(c, h^* \))
end for
end;

Figure 4: Algorithm ComputeSetPacking. \(\langle \)

In particular, during the bottom-up phase, we have that:
(1) \(v_1 \) is processed, and we set \(\ell_{v_1}^{(h_2)} = \ell_{v_1}^{(h_3)} = 1 \) and \(\ell_{v_1}^{(h_1)} = 0; \)
(2) \(v_2 \) is processed, and we set \(\ell_{v_2}^{(h_1)} = \ell_{v_2}^{(h_2)} = 1 \) and \(\ell_{v_2}^{(h_3)} = 0; \)
(3) \(v_2 \) is processed, and we set \(\ell_{v_2}^{(h_1)} = \ell_{v_2}^{(h_2)} = \ell_{v_2}^{(h_3)} = 1 \)
(4) \(v_1 \) is processed and we set \(\ell_{v_1}^{(h_1)} = 1, \ell_{v_1}^{(h_2)} = \ell_{v_1}^{(h_3)} = 2 \) and \(\ell_{v_1}^{(h_1)} = 0. \)
(4) \(v_1 \) is processed and we set \(\ell_{v_1}^{(h_1)} = 1, \ell_{v_1}^{(h_2)} = \ell_{v_1}^{(h_3)} = 2 \) and \(\ell_{v_1}^{(h_1)} = 0. \)
For instance, note that \(\ell_{v_1}^{(h_1)} = 2 \) since \(\{ h \} \) conforms with the packing \(\{ h \} \) of \(H_v \) such that \(\ell_{v_1}^{(h_1)} = 1. \)
Then, at the beginning of the top-down phase, ComputeSetPacking selects \(\{ h \} \) as a packing for \(H_v \) and propagates this choice in the tree. Equivalently, the algorithm may have chosen \(\{ h \} \).
As a further example, the way the solution \(\{ h \} \) is obtained by the algorithm when \(w(h_1) = 5 \) and \(w(h_2) = w(h_3) = w(h_4) = 1 \) is reported in Figure 5.(c). Notice that, this time, in the top-down phase, ComputeSetPacking starts selecting \(\{ h \} \) as the best packing for \(H_v \).

Theorem 4. Let \(H \) be a hypergraph and \(w \) be a weighting function for it. Let \(HD = (T, \chi, \lambda) \) be a complete \(k \)-width hypertree decomposition of \(H \). Then, ComputeSetPacking, on input \(H, w, \) and \(HD \) correctly outputs a solution for \(\text{MaxWSP}(H, w) \) in time \(O(|T| \times (|\mathcal{L}(H)| + 1)^{2k}). \)

Proof. [Sketch] We observe that \(h^* \) (computed by ComputeSetPacking) is a packing for \(H \). Indeed, consider a pair of hyperedges \(h_1 \) and \(h_2 \) in \(h^* \), and assume, for the sake of contradiction, that \(h_1 \cap h_2 \neq \emptyset \). Let \(v_1 \) (resp., \(v_2 \)) be an arbitrary vertex of \(T \), for which ComputeSetPacking included \(h_1 \) (resp., \(h_2 \)) in \(h^* \) in the bottom-down computation. By construction, we have \(h_1 \in \chi(v_1) \) and \(h_2 \in \chi(v_2) \).
Let I be an element in $h_1 \cap h_2$. In the dual hypergraph \mathcal{H}, I is a hyperedge in $\mathcal{E}(\mathcal{H})$ which covers both the nodes h_1 and h_2. Hence, by condition (1) in Definition 1, there is a vertex $v \in \text{vertices}(T)$ such that $\{h_1, h_2\} \subseteq \chi(v)$. Note that, because of the connectedness condition in Definition 1, we can also assume, w.l.o.g., that v is in the path connecting v_1 and v_2 in T.

Let $h_v \in H_v$ denote the element added by ComputeSetPacking into h^* during the bottom-down phase. Since the elements in H_v are packings for \mathcal{H}_v, it is the case that either $h_1 \in h_v$ or $h_2 \in h_v$. Assume, w.l.o.g., that $h_1 \notin h_v$, and notice that each vertex w in T in the path connecting v to v_1 is such that $h_1 \in \chi(w)$, because of the connectedness condition. Hence, because of definition of conformance, the packing h_v, selected by ComputeSetPacking to be added at vertex w in h^* must be such that $h_1 \notin h_w$. This holds in particular for $w = v_1$. Contradiction with the definition of v_1.

Therefore, h^* is a packing for \mathcal{H}. It remains then to show that it has the maximum weight over all the packings for \mathcal{H}. To this aim, we can use structural induction on T to prove that, in the bottom-up phase, the variable ℓ_w is updated to contain the weight of the packing on the edges in $\chi(T_v)$, which contains h_w and which has the maximum weight over all such packings for the edges in $\chi(T_v)$. Then, the result follows, since in the top-down phase, the packing h^* giving the maximum weight over $\chi(T_v) = \mathcal{E}(\mathcal{H})$ is first included in h^*, and then extended at each node c with the packing $h_{w,c}$ conformingly with h_w and such that the maximum value of ℓ_w is achieved.

As for the complexity, observe that the initialization step requires the construction of the set H_v, for each vertex v, and each set has size $(|\mathcal{E}(\mathcal{H})| + 1)^k$ at most. Then, the function BottomUp checks for the conformance between strategies in H_v, for each pair $(v, c) \in E$, and updates the weight ℓ_{h_v}. These tasks can be carried out in time $O((|\mathcal{E}(\mathcal{H})| + 1)^k)$ and must be repeated for each edge in T, i.e., $O(|T|)$ times. Finally, the function TopDown can be implemented in linear time in the size of T, since it just requires updating h^* by accessing the variable $h_{w,c}$.

The above result shows that if a hypertree decomposition of width k is given, the MaxWSP problem can be efficiently solved. Moreover, differently from the case of structured item graphs, it is well known that deciding the existence of a k-bounded hypertree decomposition and computing one (if any) are problems which can be efficiently solved in polynomial time [7]. Therefore, Theorem 4 witnesses that the class $\mathcal{C}(\overline{h}, k)$ actually constitutes a tractable class for the winner determination problem.

As the following theorem shows, for large subclasses (that depend only on how the weight function is specified), MaxWSP(\mathcal{H}, w) is even highly parallelizable. Let us call a weighting function smooth if it is logspace computable and if all weights are polynomial (and thus just require $O(\log n)$ bits for their representation). Recall that LOGCFL is a parallel complexity class contained in NC2, cf. [9]. The functional version of LOGCFL is L^{LOGCFL}, which is obtained by equipping a logspace transducer with an oracle in LOGCFL.

Theorem 5. Let \mathcal{H} be a hypergraph in $\mathcal{C}(\overline{h}, k)$, and let w be a smooth weighting function for it. Then, MaxWSP(\mathcal{H}, w) is in L^{LOGCFL}.

4. HYPERTREE DECOMPOSITIONS VS STRUCTURED ITEM GRAPHS

Given that the class $\mathcal{C}(\overline{h}, k)$ has been shown to be an island of tractability for the winner determination problem, and given that the class $\mathcal{C}(\overline{ig}, k)$ has been shown not to be efficiently recognizable, one may be inclined to think that there are instances having unbounded hypertree width, but admitting an item graph of bounded tree width (so that the intractability of structured item graphs would lie in their generality).

Surprisingly, we establish this is not the case. The line of the proof is to first show that structured item graphs are in one-to-one correspondence with a special kind of hypertree decompositions of the dual hypergraph, which we shall call strict. Then, the result will follow by proving that k-width strict hypertree decompositions are less powerful than k-width hypertree decompositions.

4.1 Strict Hypertree Decompositions

Let \mathcal{H} be a hypergraph, and let $V \subseteq N(\mathcal{H})$ be a set of nodes and $X, Y \subseteq N(\mathcal{H})$. X is $[V]$-adjacent to Y if there exists an edge $h \in \mathcal{E}(\mathcal{H})$ such that $\{X, Y\} \subseteq (h - V)$. A $[V]$-path π from X to Y is a sequence $X = X_0, \ldots, X_r = Y$ of variables such that: X_i is $[V]$-adjacent to X_{i+1}, for each $i \in [0, \ldots, r - 1]$. A set $W \subseteq N(\mathcal{H})$ of nodes is $[V]$-connected if $\forall X, Y \in W$ there is a $[V]$-path from X to Y. A $[V]$-component is a maximal $[V]$-connected non-empty set of nodes $W \subseteq (N(\mathcal{H}) - V)$. For any $[V]$-component C, let $\mathcal{E}(C) = \{h \in \mathcal{E}(\mathcal{H}) \mid h \cap C \neq \emptyset\}$.

Definition 2. A hypertree decomposition $HD = (T, \chi, \lambda)$ of \mathcal{H} is strict if the following conditions hold:

1. for each pair of vertices r and s in $\text{vertices}(T)$ such that s is a child of r, and for each $\chi(r)$-component C_r s.t. $C_r \cap \chi(T_s) \neq \emptyset$, C_r is an $\chi(r)$-component $\cap N(\lambda(r) \cap \lambda(s))$-component;
2. for each edge $h \in \mathcal{E}(\mathcal{H})$, there is a vertex p such that $h \in \lambda(p)$ and $h \subseteq (p)$ (we say p strongly covers h);
3. for each edge $h \in \mathcal{E}(\mathcal{H})$, the set $\{p \in \text{vertices}(T) \mid h \in \lambda(p)\}$ induces a (connected) subtree of T.

The **strict hypertree width** $\text{shw}(\mathcal{H})$ of \mathcal{H} is the minimum width over all its strict hypertree decompositions.

The basic relationship between nice hypertree decompositions and structured item graphs is shown in the following theorem.

Theorem 6. Let \mathcal{H} be a hypergraph such that for each node $v \in N(\mathcal{H})$, $\{v\}$ is in $\mathcal{E}(\mathcal{H})$. Then, a k-width tree decomposition of an item graph for \mathcal{H} exists if and only if \mathcal{H} has a $(k + 1)$-width strict hypertree decomposition.

Note that, as far as the maximum weighted-set packing problem is concerned, given a hypergraph \mathcal{H}, we can always assume that for each node $v \in N(\mathcal{H})$, $\{v\}$ is in $\mathcal{E}(\mathcal{H})$. In fact, if this hyperedge is not in the hypergraph, then it can be added without loss of generality, by setting $w(\{v\}) = 0$. Therefore, let $\mathcal{C}(\text{shw}, k)$ denote the class of all the hypergraphs whose dual hypergraphs (associated with maximum

The term “+1” only plays the technical role of taking care of the different definition of width for tree decompositions and hypertree decompositions.
weighted-set packing problems) have strict hypertree width bounded by \(k\), we have that \(C(\text{shw}, k + 1) = C(\text{ig}, k)\).

By definition, strict hypertree decompositions are special hypertree decompositions. In fact, we are able to show that the additional conditions in Definition 2 induce an actual restriction on the decomposition power.

Theorem 7. \(C(\text{ig}, k) = C(\text{shw}, k + 1) \subset C(\text{shw}, k + 1)\).

A Game Theoretic View. We shed further light on strict hypertree decompositions by discussing an interesting characterization based on the strict Robber and Marshals Game, defined by adapting the Robber and Marshals game defined in [6], which characterizes hypertree width.

The game is played on a hypergraph \(H\) by a robber against \(k\) marshals which act in coordination. Marshals move on the hyperedges of \(H\), while the robber moves on nodes of \(H\). The robber sees where the marshals intend to move, and reacts by moving to another node which is connected with its current position and through a path in \(G(H)\) which does not use any node contained in a hyperedge that is occupied by the marshals before and after their move—we say that these hyperedges are blocked. Note that in the basic game defined in [6], the robber is not allowed to move on vertices that are occupied by the marshals before and after their move, even if they do not belong to blocked hyperedges.

Importantly, marshals are required to play monotonically, i.e., they cannot occupy an edge that was previously occupied in the game, and which is currently not. The marshals win the game if they capture the robber, by occupying an edge covering a node where the robber is. Otherwise, the robber wins.

Theorem 8. Let \(H\) be a hypergraph such that for each node \(v \in N(H), \{v\}\) is in \(E(H)\). Then, \(H\) has a \(k\)-width strict hypertree decomposition if and only if \(k\) marshals can win the strict Robber and Marshals Game on \(H\), no matter of the robber’s moves.

5. CONCLUSIONS

We have solved the open question of determining the complexity of computing a structured item graph associated with a combinatorial auction scenario. The result is bad news, since it turned out that it is NP-complete to check whether a combinatorial auction has a structured item graph, even for treewidth 3. Motivated by this result, we investigated the use of hypertree decomposition (on the dual hypergraph associated with the scenario) and we shown that the problem is tractable on the class of those instances whose dual hypergraphs have bounded hypertree width. For some special, yet relevant cases, a highly parallelizable algorithm is also discussed. Interestingly, it also emerged that the class of structured item graphs is properly contained in the class of instances having bounded hypertree width (hence, the reason of their intractability is not their generality).

In particular, the latter result is established by showing a precise relationship between structured item graphs and restricted forms of hypertree decompositions (on the dual hypergraph), called query decompositions (see, e.g., [7]). In the light of this observation, we note that proving some approximability results for structured item graphs requires a deep understanding of the approximability of query decompositions, which is currently missing in the literature.

As a further avenue of research, it would be relevant to enhance the algorithm ComputeSetPacking, e.g., by using specialized data structures, in order to avoid the quadratic dependency from \((|E(H)| + 1)^k\).

Finally, another interesting question is to assess whether the structural decomposition techniques discussed in the paper can be used to efficiently deal with generalizations of the winner determination problem. For instance, it might be relevant in several application scenarios to design algorithms that can find a selling strategy when several copies of the same item are available for selling, and when moreover the auctioneer is satisfied when at least a given number of copies is actually sold.

6. REFERENCES

