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Abstract

This paper presents a novel local feature
selection approach for text categorization.  It
constructs a feature set for each category by first
selecting a set of terms highly indicative of
membership as well as another set of terms
highly indicative of non-membership, then
unifying the two sets.  The size ratio of the two
sets was empirically chosen to obtain optimal
performance.  This is in contrast with the
standard local feature selection approaches that
either (1) only select the terms most indicative of
membership; or (2) implicitly but not optimally
combine the terms most indicative of
membership with non-membership.  The
experimental comparison between the proposed
approach and standard approaches was
conducted on four feature selection metrics: chi-
square, correlation coefficient, odds ratio, and
GSS coefficient.  The results show that the
proposed approach improves text categorization
performance.

1.  Introduction

Text categorization is a machine learning task, defined as
automatically assigning predefined category labels to new
free text documents.  A growing number of statistical
machine learning techniques have been applied to text
categorization in recent years, notable among which are
five approaches: nearest neighbor classifier (Creey et al.,
1992; Yang, 1994), Bayesian classifier (Tzeras &
Hartman, 1993; Lewis & Ringuette, 1994), decision tree
(Apte, Damerau, & Weiss, 1994), neural networks
(wiener, Pederson & Weigend, 1995; Ng, Goh & Low,
1997), and support vector machines (Joachims, 1998).

One major difficulty in text categorization problems is the
high dimensionality of the input feature space typical for
textual data.  This is because each distinct term or token
appearing in the document collection represents one
dimension in the feature space.  For a typical document
collection, there are tens of thousands or even hundreds of
thousands of distinct terms or tokens.  After the

elimination of stop words and stemming, the set of
features is still too large for many learning algorithms,
e.g. neural networks.  In order to improve scalability of
text categorization, we need to apply feature selection
techniques to reduce the feature size further more.
Various feature selection methods have been proposed in
the literature and their relative merits have been tested by
experimentally evaluating the text categorization
performance.  There are two distinct ways of viewing
feature selection, depending on whether the task is
performed locally or globally: (1) local feature selection.
For each category, a set of terms is chosen for
classification based on the relevant and irrelevant
documents in this category.  (2) global feature selection.
A set of terms is chosen for the classification under all
categories based on the relevant documents in the
categories.  The local feature selection for each category
can be viewed as the global feature selection for two
"categories": relevant and irrelevant.  Local feature
selection is of interest in this paper.

Several feature selection measures have been explored in
the literature including Document Frequency (DF),
Information Gain (IG), Mutual Information (MI), Chi-
square (CHI), Correlation Coefficient (CC), Odds ratio
(OR) and GSS coefficient (GSS) (Galavotti, Sebastiani, &
Simi, 2000; Mitchell, 1996; Mladeni, 1998; Ng, Goh &
Low, 1997; Quinlan, 1986; Rijsbergen, 1979; Sebastiani,
2002; Schutze, Hull & Pederson, 1995; Yang & Pedersen,
1997).  Out of the seven measures, CHI, CC, OR and GSS
seem to be the most effective based on the experiments
reported so far.  We will focus on the four measures.

This paper presents a novel local feature selection method
that explicitly selects and combines the features highly
indicative of membership and non-membership for each
category in a way such that the optimal performance, e.g.
F1 measure, will be obtained on a validation set.  The
features indicative of membership and non-membership
are also referred to as the positive and negative features
respectively.  The presence of positive and negative
features in a document indicates its relevance and non-
relevance respectively.

The rest of the paper is organized as follows.  Section 2
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describes the four feature selection measures and standard
methods of using them.  Section 3 presents the proposed
feature selection technique.  In Section 4, we describe
naïve Bayes classifier whose performance will be used to
evaluate the effectiveness of various feature selection
methods.  Experimental results are analyzed in Section 5.
Conclusions are given in Section 6.

2.  Related Work

In this section, we will first briefly review the four feature
selection measures, then present the methods of using
them in the literature, and finally describe the imbalanced
data problem and its impacts on feature selection.  Note
that, the methods here refer to the scheme of applying
feature selection measures to term selection.

2.1  Feature Selection Measures

In what follows, A, B, C, and D will denote the numbers
of times a term t and a category ic  co-occur, t occurs
without ic , ic  occurs without t, and neither ic  nor t
occurs, respectively.  N represents the total number of
documents.

2.1.1  CHI-SQUARE (CHI)

CHI measures the lack of independence between a term t
and a category ic  and can be compared to the chi-square
distribution with one degree of freedom to judge
extremeness (Yang, 1999; Schutze, Hull & Pederson,
1995).  It is defined as:

has a natural value of zero if t and ic  are
independent.  It is a normalized value, and hence is
comparable across terms for the same category.

2.1.2  CORRELATION COEFFICIENT (CC)

Correlation coefficient ),( ictCC  of a word t with a

category ic  was defined by Ng et al. as (Ng, Goh & Low,

1997; Sebastiani, 2002):

It is a variant of the CHI metric, where 22 χ=CC .  CC
can be viewed as a "one-sided" chi-square metric.  The
positive values correspond to features indicative of
membership, while negative values indicate non-
membership.  The greater (smaller) the positive (negative)
values are, the stronger the terms will be to indicate the
membership (non-membership).  Standard CC based local
feature selection method selects the terms with maximum
CC value as features.  The rationale behind is that terms
coming from the irrelevant texts of a category are
considered useless.  On the other hand, CHI is non-
negative, whose values indicate the membership or non-
memberships of a term to one category.  Accordingly the
ambiguous features will be ranked lower.  In contrast with
CC, CHI considers the terms coming from both the
relevant and non-relevant texts.

2.1.3  ODDS RATIO (OR)

Odds ratio was proposed originally by van Rijsbergen et
al. (1979) for selecting terms for relevance feedback.  The
basic idea is that the distribution of features on the
relevant documents is different from the distribution of
features on the non-relevant documents.  It has been used
by Mladenic (1998) for selecting terms in text
categorization.  It is defined as follows:

The values greater than 1 correspond to features
indicative of membership, while the values less than 1
correspond to features indicative of non-membership.  It
only considers the terms from relevant text.  The
Expected Likelihood Estimate (ELE) smoothing
technique was used in this paper to handle singularities:

2.1.4  GSS COEFFICIENT

GSS Coefficient is another simplified variant of the
statistics proposed by Galavotti et al. (2000), which is
defined as:

Similar to CC, the positive values correspond to features
indicative of membership, while negative values indicate
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non-membership.  Therefore, only the positive terms are
considered.

2.2  Feature Selection Methods

Each of the above four measures is actually a function
with a term t and a category ic  as its

parameters.  The value indicates some relationship
between the term and the category.  In global feature
selection, we assess the value of a term in a global, or
category-independent, sense.  Either the average or the
maximum of their category-specific values are usually
computed and compared (Yang & Pederson, 1997).  That
is,

Given a vocabulary V  and a function f  that maps terms

to real values, we define two subsets of V  of size l , viz.,
VlfVMax ⊆],,[  and VlfVMin ⊆],,[ as follows:

In other words, ],,[ lfVMax  and ],,[ lfVMin  consists of

the l  terms Vt j ∈  with the highest and lowest ( )jtf

values respectively.  Then, in global feature selection, the
feature set F  will be ],,[ max lfVMax  or ],,[ lfVMax avg

,

where l  is the size of F .

In local feature selection, a feature set is constructed for

each category.  Accordingly, the feature set iF  for ic
will be ]),,(,[ lcfVMax i

, where f can be any feature

selection measure that uses two way contingency table of

a term t and a category ic .

Local feature selection methods using asymmetric
measures, e.g. CC, OR and GSS, actually pick out the
terms most indicative of membership.  They will never
consider negative features unless all the positive features
have already been selected.

On the other hand, local feature selection methods using
symmetric measures, e.g. CHI, implicitly combine the
terms most indicative of membership and non-
membership.  The size ratio between the positive and
negative features is internally decided by thresholding on
the size of feature set.

2.3  Imbalanced Data Problem

When training a binary text classifier (text filtering
system) for a category, we use all the documents in the
training corpus that belong to that category as relevant
training data and all the documents in the training corpus
that belong to all the other categories as non-relevant
training data.  It is often the case that there is an
overwhelming number of non-relevant training
documents especially when there is a large collection of
categories with each assigned to a small number of
documents.  Many approaches have been employed to
address the imbalanced data problem.  The concepts of
"query zone" and "category zone" were introduced to
select a subset of the non-relevant documents as the non-
relevant training data (Hearst, et al., 1996; Ruiz &
Srinivasan, 1999).  These documents are the most relevant
non-relevant documents.  Essentially, these methods try to
obtain more balanced relevant and non-relevant training
documents.  In this paper, we consider this problem from
a different perspective.  Instead of balancing the training
data, our method balances the positive and negative
features, e.g., generates the optimal combination of
positive and negative features according to the
imbalanced data.

The impacts of imbalanced data problem on the standard
local feature selection for text filtering can be illustrated
as follows:

(1) For the methods using the positive features only
(e.g. CC, OR, or GSS), the non-relevant documents
are subject to misclassification.  It will be even
worse for the imbalanced data problem, where non-
relevant documents dominate.  How to confidently
reject the non-relevant documents is very important
in that case.

(2) When applying to the imbalanced data the methods
implicitly combining the positive and negative
features, e.g. CHI, the positive features usually have
much higher values than the negative features
according to its definition and our previous
experiments.  Therefore, the positive features will
dominate in the feature set.  The similar situation
occurs as described in (1).  For example, the upper
limit CHI value of a positive or negative feature is

)()(
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represents the case that the feature appears in every
relevant document, but never in any non-relevant
document.  For the negative feature, it means that
the feature appears in every non-relevant document,
but never in any relevant document.  Due to the
large amount and diversity of the non-relevant
documents in imbalanced data set, it is much more
difficult for a negative feature to achieve that

∑
=

=
m

i
iiavg ctfcPtf

1

),()()(

)},({max)(
1

max i

m

i
ctftf

=
=

)()(],,,[],,,[ yfxflfVMaxVylfVMaxx ≥−∈∀∈∀

),()(],,,[],,,[ yfxflfVMinVylfVMinx ≤−∈∀∈∀



maximum than a positive feature.  This extreme
example shed light on why the CHI values of
positive features are usually much larger than that of
negative features.  It will be inappropriate of
standard local feature selection using CHI to simply
compare their CHI values without considering
whether they are positive or negative.

3.  Combining Positive and Negative Features

We believe that:

(1) The negative features are also useful and should be
included in the feature set.  Since the local feature
selection can be viewed globally by considering
relevant and non-relevant as two "categories", the
negative features are actually from the "non-relevant"
category.  In such a bi-category problem, intuitively
thinking, terms from both of them should be
considered.  The presence of negative features in a
document is a good indicator of its non-membership.
Thus the text filtering performance can be improved
through confident rejection of non-relevant
documents.

(2) Implicit combination of positive and negative
features is not necessarily optimal especially for
imbalanced data set, in which the values of positive
features are usually much larger than negative
features.  CHI might only select the positive features
(equivalent to standard CC based approach in this
case) when the size of feature set is small.  Thus the
size ratio of the positive and negative features should
be explicitly set and empirically tuned to different
scenario:  data collection, text classifier, etc.

Based on the above two observations, we propose a new
feature selection approach containing the following three
steps:

For each category ic :

Step 1: generate a positive-feature set 
+

iF  as

]),,(,[ 1lcfVMax i⋅ , 1l , ll ≤< 10 , is a nature

number.

Step 2: generate a negative-feature set 
−

iF  as

]),,(,[ 2lcfVMax i⋅ , 
12 lll −=  is a non-negative

integer.

Step 3: −+ ∪= iii FFF .

Where: l , |,| Vl <<  is the predefined size of feature set.

ll /1 , ,1/0 1 ≤< ll  is the key parameter and should be

chosen to optimize the categorization performance on a

validation set.  When ll =1 , e.g. 02 =l , the method

corresponds to the standard local feature selection
method.  So, the standard method can be viewed as one
particular case of our method.

In Step 1, we intend to pick out those terms most

indicative of membership of ic , while in step 2, those

terms most indicative of non-membership are selected as
well.  The feature set will be the union of the two.

Accordingly, the function ),( ictf  should satisfy: the

larger the function value is, the more likely the term

belongs to the category ic .  Obviously, CC, OR, and

GSS can serve as such functions, while CHI can not.  The
reasons why we present CHI in this paper are as follows:

(1) CHI has been proved to be an effective and robust
feature selection measure in the literature.  In order to
make our experiments comparable to others, we use
it as our baseline.

(2) CHI is very related in concept to CC based
approaches using either the standard method or our
proposed method, as will be shown later.

Based on the definition of the three measures, we can
easily obtain:

Accordingly, Step 2 can be rewritten as:

Step 2:  generate a negative-feature set −
iF  as

]),,(,[ 2lcfVMin i
.

Compared with the standard methods that only consider
the terms indicative of membership, e.g., CC, OR and
GSS, we add the step 2, which add to the feature set those
terms indicative of non-membership.  The advantage of
our approach over the standard one can be illustrated by
the following simple example: given a list of terms t1,
t2,…, t8 whose CC values are 9, 8.5, 8.2, 8, 1, -1, -5.8,
and -5.9 respectively.  If the size of feature set is 6, t1
through t6 will be selected.  Suppose a new document
containing t5, t7 and t8 comes in; the system will assign it
as relevant although it is irrelevant.  On the other hand,
the proposed approach will be more likely to choose t7
and t8 instead of t5 and t6 and hence classify the new
document correctly.

When applying our method to CC, the resulted approach
seems very similar to the standard CHI based approach:
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(1) Both of them consider not only the terms indicative
of membership but non-membership also. The
proposed method using CC explicitly combines them
while standard CHI implicitly considers them.

(2) Because CHI value is equal to the squared CC value,
among those terms with positive/negative CC value
indicative of membership/non-membership, the
greater/smaller the value is, the more likely it will be
selected as features by both methods.

However, the major differences between two approaches
are:

(1) CHI does not differentiate between the terms
indicative of membership and non-membership by
comparing the squared values.  Although it might
consider in concept both positive and negative
features, the size ratio between them is not optimal.
There are no extra parameters to optimize that ratio.
In contrast, due to its design, our approach can
optimize the size ratio to get best performance.  Let
us refer to the above example.  If we apply CHI to
select four features, t1 through t4 will be selected,
each of which is from relevant document set.  When
the same new document comes in, the system can
hardly tell whether it is relevant or not.

(2)  Because the positive examples are far fewer than the
negative examples in the training corpus, CHI
actually favors the positive features according to its
definition.  In other words, the CHI values are not
comparable between the positive and the negative
features.  Usually the values of positive features are
much larger than negative features as described in
Section 2.3.  The proposed approach, however,
allows the sizes of the feature set to be as small as
needed while guaranteeing that the system uses both
positive and negative features in an optimal way.

4.  Naïve Bayes Classifier for Text Filtering
Naïve Bayes classifier is a highly practical Bayesian
learning method [6].  The central idea is to use the joint
probabilities of terms and categories to estimate the
probabilities of categories given a document.  The naïve
part of such a model is the simplifying assumption that
the words are conditionally independent given the
category as well as the probability of word occurrence is
independent of position within the text.  For text filtering,
the relevance score between a new document d  and the
category c  can be calculated as:

∑
∑
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where: iω  is the feature appearing in the document d ;

)(cP and )(cP  represent the prior probabilities

of relevant and non-relevant respectively;

)|( cP iω  and )|( cP iω  represent the likelihood

probabilities of iω  appearing in relevant and non-

relevant training documents respectively.

A binary decision (relevant or non-relevant) on d  with
respect to the category c  is obtained by thresholding on

).,( cdScore   We train one naïve Bayes classifier per

category.  A relevance score threshold is learned per
category to empirically optimize F1 measure on the
validation set.

5.  Experimental Results and Analysis

5.1  Experimental Setting

To make our results comparable to others, we have used
the Reuters-21578 corpus (Yang, 1999; Yang &
Pederson, 1997), as it is a widely used benchmark in text
categorization domain.  For this paper, we use the
ApteMod version of Reuters-21578 as described by Yang
(1999).  Finally we obtain 90 categories in both the
training and test sets, a training set of 7,769 documents,
and a test set of 3,019 documents. The average number of
categories per document is 1.3.  The number of positive
instances per category ranges from a minimum of 1 to
maximum of 2,877 in the training set.  In order to
automatically learn the category specific parameters, e.g.
size ratio in feature selection and thresholds in
classification, we use two thirds of the training set for
training and the remaining one third as "validation".
After obtaining these thresholds, the classifiers will be
retrained on the whole training set.

Classification effectiveness has been evaluated in terms of
the standard precision, recall and F1 measure.

The precision, recall and F1 for each category ic  are
defined as:
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where: 
iα  is the number of documents correctly

assigned by system to category ic , and

iβ  is the number of documents assigned by

system to category ic , and

iγ  is the number of documents from category
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These category-relative values may in turn be averaged
according to two alternative ways:

(1) macro-averaging: the precisions and recalls can be
computed for the  binary decisions on each individual
category first and then be averaged over categories.
That is,

           

(2) micro-averaging: the precisions and recalls are
computed globally over all the n x m binary decisions
where n is the number of total test documents, and m
is the number of categories.  That is,
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micro-averaging F1 has been widely used in cross-method
comparisons.  In this paper, we will focus on this
measure.  Accordingly, the size ratio between the positive
and negative feature sets will be optimized to get best
micro-averaged F1 measure on the validation set.

In order to compare our proposed feature selection
approach with the standard one, we apply them to naïve
Bayes classifiers.  Three groups of feature selection
methods are considered:

Group 1: Standard CHI, Standard CC, and improved CC.
The three methods are referred as G11, G12, and G13
respectively for short form.

Group 2: Standard OR and improved OR, referred as
G21 and G22.

Group 3: Standard GSS coefficient and improved GSS
coefficient, referred as G31 and G32.

where: standard CHI, CC, OR and GSS represents the
standard local feature selection methods using CHI, CC,
OR and GSS measures respectively, while the improved
CC, OR and GSS are the application of the proposed
feature selection method to CC, OR and GSS measures
respectively.  Note that, there is no "improved CHI"
method because CHI measure does not satisfy the
requirement as mentioned in Section 3.  However, due to
its similarity with CC, we put standard CHI in the group
of standard CC and improved CC.  The feature selection

methods are compared with each other in the same group.
Typical size of a local feature set is between 10 and 50
(Sebastiani 2002).  In this paper the performances are
reported at the range of 10 ∼ 100.

5.2  Experimental Results
Table 1 lists the micro-averaged F1 values for naïve
Bayes classifiers with the seven different feature selection
methods (as listed in the first row) at different sizes of
feature set (as listed in the first column).

| Fi | G11 G12 G13 G21 G22 G31 G32

10 .771 .76 .781 .628 .641 .733 .774

20 .767 .763 .803 .644 .661 .74 .78

30 .782 .765 .816 .654 .671 .74 .797

40 .778 .76 .812 .669 .687 .74 .797

50 .784 .769 .82 .689 .712 .734 .797

100 .779 .751 .819 .721 .762 .734 .802

As is shown in Table 1, the improved Correlation
Coefficient method (G13) is much better than the standard
CC (G12) and CHI (G11) method, and the improved Odds
ratio (G22) and GSS Coefficient methods (G32) greatly
outperform the corresponding standard methods (G21 and
G31 respectively).  This confirms our intuition that by
optimally combining positive features with negative
features, the text categorization performance will be
remarkably improved.

Table 2 lists the micro-averaged precision, recall of each
method when the micro-averaged F1 is maximum over
the different sizes of features.  For example, G11 achieve
its maximum micro-averaged F1 (.784) as the size of
feature set is 50 according to the first two columns of
Table 1.  The second row in Table 2 gave the
corresponding micro-averaged precision and recall as
well.  From Table 2, we can see our proposed approach
greatly increases the micro-averaged recall and F1
without hurting precision too much.  Because we optimize
F1 measure for each category, the more balanced micro-
averaged precision and recall are obtained.  It also
explains why the micro-averaged precision remains
unimproved.

In order to illustrate the ratio of negative features in the
feature set, we list in Table 3 the number of categories, in
which the number of positive features is greater than,
smaller than or equal to the number of negative features in
case of improved CC (feature size = 50).  The three cases

microPmicroR

microPmicroR
microF

+
××= 2

1

and

and

Table 1: Micro-averaged F1 values for naïve Bayes
classifiers with the seven feature selection methods at
different sizes of features.



Method microP MicroR microF1

G11 .843 .732 .784

G12 .84 .709 .769

G13 .818 .822 .82

G21 .744 .70 .721

G22 .734 .792 .762

G31 .793 .695 .74

G32 .786 .818 .802

correspond to ll /1  > 0.5, < 0.5 and = 0.5 respectively in

the first column of Table 3.  Table 3 shows that in order to
obtain best text categorization performance in terms of
F1, we should select more negative features than positive
features in 47 out of the 90 categories. It reconfirms the
usefulness of negative features.  Our explanation is: when
the negative examples are overwhelming, rejection of the
negative examples with high confidence (accuracy) will
be of more importance, which could be achieved by
increasing the number of the negative features.

ll /1 Number of categories

> 0.5 33

< 0.5 47

= 0.5 10

6.  Conclusions

Experiments with four known feature selection measures
and methods and a new feature selection method have
been described.  We proposed an effective feature
selection method that optimally combines the terms most
indicative of membership and non-membership.  The
main conclusions are:
• The terms indicative of non-membership are useful

and should be considered in local feature selection.
• By explicitly and optimally setting the size ratio of

the positive and negative features, the text
categorization performance was improved greatly.
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