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Abstract
The task of finding duplicate records in large
databases has long been an area of active re-
search in the data-mining community. The
gravity of the problem posed by duplicate
“contamination” of the data has rarely been
addressed directly, however, with more efforts
being directed at the related problem of class
imbalance. We consider the consequences of
duplicate presence on the quality of classi-
fiers learnt with such data, emphasizing that
contamination rates among the training and
test collections may be considerably different.
The discussion is supported by experiments
using the spam-detection task as an exam-
ple where dealing with varying degrees of du-
plication is commonplace. Our results indi-
cate the generally detrimental effect of dupli-
cate presence on classification accuracy, but
also demonstrate that, for classifiers such as
Naive Bayes Perceptron with Margins, dupli-
cate rates need to be rather high to be truly
harmful.

1. Introduction

Many practical problems in predictive data mining uti-
lize data acquired from different sources and/or over
different periods of time. It has long been recog-
nized that, aside from other quality control issues, such
process can lead to accounting for essentially the same
record multiple times. To counter this phenomenon
(referred to, among others, as record linkage [40], ref-
erence matching [26], deduplication [36] or copy detec-
tion [37]), a number of solutions have been proposed,
ranging from manually coded rules to applications of
the latest machine learning techniques. Their accuracy
varies and, for large collections, some of these tech-
niques may be computationally too expensive to be

deployed in their full capacity. In reality, despite best
efforts to clean the data, duplicates may be present
and it is important to understand their impact on the
quality of the data mining performed. I particular,
the presence of duplicates may skew the content dis-
tribution of the learning sample and thus affect the
process of classification in a way similar to that ob-
served in class-imbalance scenarios [18]. Unlike the
impact of general class imbalance, the practical conse-
quces of data duplication appear to be less understood
however.

In this work we investigate the effects of data duplica-
tion on classifier accuracy using the problem of spam
detection as a real-world example (although the results
should be applicable to other domains). Spam filtering
is viewed as a two-class text categorization problem,
where data duplication occurs naturally due to mes-
sages being sent in volume (particularly for market-
ing and commercial purposes). Due to the temporal
nature of email, the distributions of duplicates in the
learning sample and the target environment will gener-
ally differ1. Also, measures of duplicate detection are
actively countered (by spammers), which reduces the
effectiveness of content-based deduplication [15]. In
this report we identify the potentially harmful effects
of the duplicates on the process of classifier learning
and evaluation and provide experimental results based
on actual email data.

The paper is organized as follows: Section 2 discusses
the sources of duplicates in email data. In Section 3 we
outline the potential effects of duplicate presence on
classifier learning, while an evaluation scheme based
upon unique data is presented in Section 4. Section

1We consider the problem of spam detection from the
system-wide perspective, where a single filter needs to serve
a large group of people. The related problem of spam de-
tection on a personal level is not significantly affected by
data duplication and is not discussed in this work.
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5 describes an experimental setup for evaluating the
impact of duplication rates on classification accuracy.
The results are presented in Section 6. Section 7 de-
scribes prior work related to learning with imbalanced
data, spam filtering and detection of duplicate text
documents. The paper is concluded in Section 8.

2. Duplicates, volume and the sample
selection bias

Traditionally, it is assumed that the collection of data
available to a learner represents an i.i.d. sample from
the underlaying probability distribution. This is often
violated in practice, and the learning sample may ex-
hibit properties quite different from the ones encoun-
tered by the classifier once deployed [42]. Often this is
caused by the sample selection bias, whereby certain
areas of the input space are more costly to sample than
others. For example, in the email classification do-
main obtaining labeled instances of personal/sensitive
emails is very difficult due to understandable privacy
concerns but, ironically, private emails are also con-
sidered to be the most valuable to the users, and the
classifier faces the difficult problem of insuring a low
error rate in an area of the input space that is ex-
tremely undersampled. On the other hand, it is easy
to establish a data collection process where primarily
spam and legitimate bulk messages are collected. Here,
essentially the same message may be encountered mul-
tiple times, where the duplication rate in the collected
sample does not necessarily have to reflect the orig-
inal duplication rate in the email stream (unless the
data collection process insures uniform sampling), and
certainly not the future expected duplication rate.

For on-line learning scenarios with fair sampling one
could argue that the presence of duplicates repre-
sents useful information about the target invironment,
which should be taken into account when adjusting the
model. We consider however the more typical scenario
where the learning sample is collected over an extended
period of time, in a setup possibly quite different from
the target environment of the classifier. Thus if indeed
duplicates in the test sample are present, they are not
necessarily the same (or even of similar content) as the
ones present in the learning sample.

3. Classifier learning in the presence of
duplicates

3.1. Cost-sensitive classification

According to the Bayesian decision theory, the quality
of any particular classifier F in an N -class discrete-

input setting (i.e., F : X → {1..N}) can be expressed
by the loss function [12]

L =
X
x

P (x)
NX
i=1

[F (x) = i]
NX
j=1

P (j|x)C (j, i, x) (1)

where, P (j|x) is the probability that x belongs to class
j and C (i, j, x) is the cost associated with classifying x
as a member of class i when in fact it belongs to class
j; F (x) denotes the decision made by the classifier,
with [F (x) = i] equal to 1 if the classifier returns i as
the class label — and is otherwise equal to 0. Usually,
it is assumed that predicting the correct class leads to
zero cost.

For the particular 2-class problem of spam filtering we
denote the class labels as L (legit) and S (spam), and
(1) is transformed to

L =
X
x

P (x) (P (S|x) [F (x) = L] + cost (x) · P (L|x) [F (x) = S])

(2)
where cost (x) is the cost of misclassifying a legitimate
message as spam, while it is assumed the cost of mis-
classifying a spam message as legitimate to be unity.
This is because the cost of letting the spam through
is fairly nominal (and linked to the cost of physical
storage and the resources being spent on handling cus-
tomer complaints).

The cost of a “civilian kill” is usually considered to
be higher, since the loss of an important email might
mean more than mere annoyance to a customer. The
precise value of cost (x) is difficult to measure however,
and the literature provides many examples where it
is simply set to a certain “reasonable” number (e.g.,
10—100) [32][1]. A possible “compromise” is to forgo
the concept of message-specific misclassification costs
and only to differentiate the cost of misclassifying spe-
cific sub-categories of legitimate email (e.g., personal
vs. bulk)[19]. This will not be considered here how-
ever and, for simplicity, we will assume that cost (x) is
message independent, i.e., cost (x) = cost for all x.

3.2. Potential impact of duplicates

3.2.1. Classifier learning

If the learning collection of data is used to optimize
F (and it’s particular operating point, if applicable)
such that L is minimized, it is clear that duplicates
will be influential insofar as they affect the estimates
of P (x), P (S|x) and P (L|x), and the actual process of
learning F , which may be algorithm dependent. Note
that in many cases the optimization process will induce
F first, using the learning sample, and then (2) gets



applied to adjust the final decision threshold. High
rates of duplication are likely to increase the impor-
tance of misclassification costs in the corresponding
regions of the input space X (due to relatively high
values of P (x) estimated), and since many learners are
naturally minimizing the error rate, they might over-
fit the corresponding areas of X . Note that in direct
cost-sensitive decision making [42], the classification
outcome depends only on the values of P (S|x) and
P (L|x) and cost. In this case, duplicates impact clas-
sification via their influence on estimation of P (S|x)
and P (L|x).

3.2.2. Feature selection

Another, more indirect, aspect of duplicate presence
involves feature selection. Typically, many classifiers
suffer from the problem of the “curse of the dimen-
sionality” and perform poorly if the dimensionality of
the feature space is too high. And even if the feature-
space size is not inherently a problem, some form of
feature selection may be necessary to make learning
with large datasets computationally feasible. Common
feature-selection techniques used in text mining, such
as χ2 , mutual information or odds-ratio, are based
upon estimating the asymmetry in the distribution of
each term across the classes, a process which judges
the most asymmetric features as most relevant [41].
Naturally, high duplicate rates involving certain fea-
tures increase their chance of being selected, to the
possible detriment of others.

3.2.3. Data sampling

High duplication rates may also affect the sampling
regimens used for data collection, especially those
based upon uniform sampling. Alternative sampling
strategies, such as active sampling, might be effective
in reducing duplicate presence in the leaning corpus.

4. Validation with unique data

Even though the presence of duplicates in the learning
sample may be difficult to avoid, some of the poten-
tially negative effects of their presence could be allevi-
ated by using a (possibly much smaller) duplicate-free
validation sample for the final tuning of a trained clas-
sifier (e.g., choosing the decision threshold) and/or for
estimating its classification accuracy. Although the
premise of this paper is that duplicates may be impos-
sible to eliminate from large databases, the task be-
comes more feasible for smaller data collections (which
makes it even possible to apply techniques based on
pairwise document comparisons — see Section 7.1 for
an overview). We believe that the bias caused by du-

plicate presence can be at least partially countered by
tuning a trained classifier with a duplicate-free sample.

Note that the traditional techniques, such as cross-
validation or bootstrap sampling, assume that the
original learning collection represents an i.i.d. sam-
ple from the underlying distribution and attempt to
closely replicate it for test/validation purposes. Re-
search in the related problem of learning with imbal-
anced data typically uses ROC analysis for measuring
classifier performance, since an ROC does not depend
on the relative representation of the positive and nega-
tive examples in the test collection [28]. An ROC will,
however, be influenced by the relative distribution of
sub-categories within a class and also by the presence
of duplicates.

Let us assume the availability of an evaluation sample
T consisting of legitimate, L , and spam, S, subsets.
Given that T may contain duplicates, let Tu denote the
set of unique points within T (with the correspond-
ing unique-message subsets of Lu and Su for the two
classes). The misclassification cost of a classifier F
over T can be expressed as:

L =
X
x∈Su

v(x) [F (x) = L] + cost
X
x∈Lu

v(x) [F (x) = S]

= Lu + Ld

where

Lu =
X
x∈Su

[F (x) = L] + cost
X
x∈Lu

[F (x) = S] (3)

and v(x) is the volume of message x in the test sample.
In this work, we will use Lu as the basis for accuracy
calculation. In this way, it is essentially assumed that
any content region might potentially become a source
of duplicates. Note that (3) does not remove other
forms of sample-selection bias, however. For example,
Lmay still consist largely of non-personal emails, since
these were the easiest ones to collect. Thus certain ar-
eas of unique content may be sampled more densely
than others. To counter this within-class imbalance
between different sub-categories, one might purpose-
fully increase the weight of document the rare cate-
gories [28] — a process that can be seen as controlled
duplication of the evaluation data. Note that this tech-
nique requires the knowledge of sub-category labels.

In the following experimental section we will use (3)
indirectly, i.e., as a basis for calculating the area under
ROC (AUC) [4]. Let us define the false-positive (FP )
and false-negative (FN) rates of classifier F with re-
spect to the unique data as:

FP =

P
x∈Su [F (x) = L]

|Su|



and the false-negative rate of a classifier as

FN =

P
x∈Lu [F (x) = S]

|Lu|

and let π = Su/Tu. In the above |Lu| and |Su| denote
the number of elements in Lu and Su, respectively.
Then the misclassification cost of classifier F with re-
spect to unique messages can be expressed as:

Lu = π · FP + (1− π) · cost · FN

The relationship between FP and FN for a given clas-
sifier is known as the Receiver Operating Character-
istic (ROC)[14]. For classifiers returning a numeric
score, different choices of the decision threshold will re-
sult in different points along the ROC curve, while for
non-adjustable classifier the curve is created by join-
ing the given (FP,FN) point with (0,0) in (1,1) in the
ROC space (see for details). Given the target values
of π and cost, one can adjust the operating point of
the given classifier so that the misclassification cost is
minimized. Recently, the area under the ROC curve
(AUC) [4] has been used as single-value metric which
captures the average accuracy of a classifier under all
operating conditions. We have adopted AUC as the
primary measure of classification accuracy in the ex-
periments performed in this work.

5. Experimental Setup

5.1. The objectives

Given the discussion above, we set out to experimen-
tally assess the practical impact of the presence of du-
plicates on the performance of text classifiers in the
spam detection context. In particular, we were inter-
ested in evaluating the influence of the rate of dupli-
cation, as expressed by the repetition of a document
in the learning sample. To this end, duplicates were
created artificially by increasing the count of certain
documents selected from the original collection.

For better clarity (and to reflect the typical case), du-
plication was only applied to the spam portion of the
data. Although non-spams can also occur in volume,
duplication of legitimate email is much more content
dependent than is the case for spam, which can be
treated more uniformly. Also, since legitimate bulk-
mailers do not purposefully randomize their emails,
finding duplicates in such data is likely to be much eas-
ier than in the case of spam, and hence the problem
of duplicate contamination of the learning sample is
mostly applicable to the spam portion of the collection.
We focused on the perceived more common scenario,
but are nevertheless planning to address more general

distributions of duplicates among different classes in
the future.

5.2. The email data set

The data collection consisted of 29, 683 legitimate and
28, 442 spam messages, with unknown number of du-
plicates, collected over a 3-month period. The collec-
tion process relied on a large number of volunteers,
whose decision regarding the nature of each email was
taken at face value (i.e., no further label verification
was applied). The feature set was limited to the words
present in the subject line and textual body parts
of each message, where a word was defined as a se-
quence of ASCII characters delimited by punctuation
or whitespace. All words were converted to lower-
case, with the exception of all capital words that were
counted twice (once as all lowercase and once as all
caps). Otherwise, multiple occurrences of the same
word were ignored. No header features or attributes
tied to spam-filtering domain knowledge were used on
this study2.

One important consequence of the use of binary doc-
ument representation in conjunction with feature se-
lection is that, it provides a convenient platform for
some rudimentary duplicate detection, whereby mes-
sages projected onto the same set of most relevant fea-
tures can be considered duplicates of each other. Our
past research indicates the effectiveness of such a tech-
nique in deduplicating large collections of web pages
[8]. In this work, this approach was used to pre-screen
the original dataset for potential duplicates and thus
ensure that the only duplicates used were the ones cre-
ated synthetically. To reduce the influence of potential
duplicates already present in the data, the original col-
lection was first tokenized and projected onto the set of
5, 000 highest ranking word features according to the

2A email message constitutes a combination of format-
ted (header) and freeform (body) text. Although classifi-
cation accuracy can be increased by incorporating domain
knowledge in the analysis of header features [32], only the
textual components of each message represented by the
message body and the subject line were taken into account
in this work. We used the bag-of-words representation
of each message, where only the presence or absence of
a word was taken into account. Binary feature representa-
tions have been used quite extensively in text retrieval and
categorization (e.g., a text classification study with Sup-
port Vector Machines [11] reported highest accuracy when
using binary features rather than tf-idf representations),
and carry the advantage of efficient implementation when
the dimensionality of the feature space is high.



Mutual Information (MI) criterion 3. For each class, in
cases where multiple messages resulted in exactly the
same feature vector, only one random message was re-
tained, with the rest getting discarded. The resulting
message collection (now containing 25, 751 legitimate
and 17, 609 spam messages) was then split into a train-
ing and a test set, such that 2/3 of data were used for
training and the rest were used for testing.

To examine the effects of duplicate messages on classi-
fication performance, a 10% portion of the spam train-
ing set was randomly selected and messages within this
subset had their multiplicity increased by 1, 5, 10, 50
and 100 fold. The duplication was realized via sam-
pling with replacement where, at each episode, a mes-
sage was selected at random from the working set and
its copy was added to the working set. That way, the
actual multiplicity varied from message to message,
but the overall presence of messages in the oversam-
pled subset was increased by the desired factor. This
also reflected to some extent the apparent self-selection
effect, where spam messages observed in high volume
in a given time interval often arrive at an even higher
relative volume in the following time interval. The
process of randomly selecting a different 10% subset
of the spam training data was repeated 10 times, and
we report results averaged over the 10 trials.

To assess the impact on duplicates on different strate-
gies of data collection that might occur in practice we
considered two cases:

• One where the amplified portion of the training
data was simply merged with the remaining por-
tion. This case corresponds to dense sampling
(e.g., one where a complete message stream is cap-
tured within a certain time window). Note that
in this setup increasing levels of duplication were
accompanied by increasing overall class imbalance
of the learning sample.

• One where, after merging, the resulting set was
uniformly down-sampled to its original size. This
case corresponds to uniform sparse sampling (e.g.,
one where every Nth message in a data stream is
captured). In this setup the data was class bal-

3The Mutual Information (MI) criterion was defined as:

MI (t) =
X

t∈{0,1}

X
c∈{L,S}

P (t, c) log
P (t, c)

P (t)P (c)
(4)

where t denotes the term (i.e., feature), c is the class label
and P (t, c) is the joint probability of t and c cooccurring
in a document collection; P (t) is the probability of a doc-
ument (regardless of class) containing term t and P (c) is
the probability of a document belonging to class c.

anced, with duplicates “pushing out” some of the
remaining data.

One might also envision various active-sampling regi-
mens, where the choice about sampling a message is
tied to the performance of a classifier (or a committee
of classifiers) but we did not consider them here.

5.3. The classifiers

Research in text categorization suggests that, due to
the inherently high dimensionality of the data, linear
classifiers tend to be sufficient for this task and, in
fact, often outperform nonlinear approaches. We con-
sidered two linear classifiers that scale well to massive
datasets: multinomial Naive Bayes [23] (NB) and Per-
ceptron with Margins (PAM) [24], which have been
successfully applied to text categorization problems.
The accuracy was measured in terms of the area un-
der the ROC curve (AUC) so as to assess the general
quality of the classifier without committing to any par-
ticular operating conditions.

The multinomial version of the Naive Bayes algorithm
[25] was chosen since it tends to outperform other vari-
ants in text classification applications [13]. For each
input document, x, containing terms [x1, .., xD] with
frequencies [f1, .., fD] (fi ≥ 0), a Naive Bayes score
was produced in the form of the log-odds ratio

F (x) = log

µ
P (L|x)
P (S|x)

¶
= const+

X
fi·log

µ
P (xi|L)
P (xi|S)

¶
where the class conditional probability of feature xi
was computed as

P (xi|L) =
1 +

P
x∈L fi(x)

D +
P
j

P
x∈L fj(x)

P (xi|S) =
1 +

P
x∈S fi(x)

D +
P
j

P
x∈S fj(x)

with L and S denoting the legitimate and spam sub-
sets of the learning sample. In the above, fi(x) is the
frequency of feature xi in x and D is the dimensional-
ity of the feature space (dictionary size).

In the case of PAM, the classifier output was generated
as:

F (x) =
X
i

wi · xi + b

with the weight vector, w, and the bias term, b, re-
sulting from an iterative training procedure, where at
each step a correction in the form of

wi ← wi + ηyxi

b ← b+ ηyR2



was made if

y

ÃX
i

wi · xi + b
!
≤ τ

with τ representing the classification margin, η the
learning rate and y equal to +1 for x ∈ L. and equal
to -1 otherwise. R was set to maxx kxk. Addition-
ally, to insure convergence, the λ-trick [24] was used,
whereby the for an N -element training set, each input
vector as well as the weight vector had its dimension-
ality increased by N , and for the jth training point,
the extension vectors was set to 0 apart from the jth
position, where it was set to a positive value of λ.

For each version of the training set, a feature selec-
tion stage was performed, where the top 1,000 fea-
tures were chosen according to the Mutual Informa-
tion criterion. The messages consisting the training
and test set were then projected on this feature set
and the induced NB and PAM models were applied to
the test set. In the case of PAM, the feature vectors
were normalized to unit length and PAM was trained
with even margins ( τ = 0.001) at the rate of η = 0.01.
The λ-trick was used to account for the possibility of
non linearly-separable cases, with λ set to 0.25. Each
training episode proceeded till convergence or until 100
iterations were reached — whichever came sooner.

6. Results

Table 1 presents the AUC (averaged over 10 random
trials) performance of the classifiers in the two sam-
pling scenarios and for each fold of duplication. The
results are also plotted in Figures 1 and 2 for better
visualization. As can be seen, AUC decreases with
the amount of duplicate contamination of the train-
ing data. For both classifiers, and for both types of
sampling, the AUC metric for duplicate rates greater
than 1 is significantly lower (according to a one-tailed
t-test with α = 0.05) than in the case of rate = 1.
The decrease is rather gradual, however, indicating
that, in the current setup, a much higher contamina-
tion level would be necessary to greatly impact either
classifier, although the outcome might be different for
other learners. One reason for this might be due to
the fact that 10% of the spam sample chosen for du-
plicate generation (i.e., about 1,000 messages) perhaps
captures much of the content variability for this class
(spam tends to focus on the same narrow categories
over and over again), given that sampling was carried
over the set of unique messages. We suspect that the
effect of duplicate contamination might be more dra-
matic if their bulk represented a narrow content cate-
gory (a realistic scenario for dealing with such a sample

would be when spam complaints were to be gathered
over a short period of time, in which case they might
correspond to the campaign of a particular spammer
who managed to penetrate the system defenses).
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Figure 1. ROC AUC of Naive Bayes (avereged over 10 ran-
dom trials). Duplication rate refers to randomly selecting
a 10% portion of the spam training data and increasing
their counts (on average) by the value of the rate shown.
The graph indicated by an arrow corresponds to down-
sampling the spam portion of the training data so that the
the training-set size remains constant.

Interestingly, for Naive Bayes, the down-sampling
setup led to a better performance (significantly higher
for folds 5, 50, 100 according to a one-tailed t-test with
α = 0.05). We believe that this could be attributed to
the relatively high class-imbalance sensitivity of Naive
Bayes, which also has been noted elsewhere [31]. One
should be cautious when applying these results, how-
ever. Although not evident in the setup used in this
work, one could easily envision a scenario where an
extreme number of duplicates is present, in which case
downsampling might result in compressing one side of
the training set to copies of essentially one data point.
In a more general context, the class-imbalance sensi-
tivity of a given learner should be taken into account
to decide what kind of sampling would be more bene-
ficial (e.g., see [39]). In the case of PAM, on the other
hand, down-sampling seems to somewhat degrade the
performance, but this becomes significant only at the
highest duplication rate of 100. Clearly, PAM appears
to be not as sensitive as NB as far as type of sampling
is concerned.

Although the experiments were not performed with the
aim of comparing NB and PAM at the spam detection



Table 1. AUC results for for the Naive Bayes and PAM classifiers, averaged accross 10 random trials with standard
deviations indicated. The experiments where duplicates increase the size of the training set are labeled as AUC-org, while
the ones where the training set with duplicates is downsampled to its original size are labeled as AUC-down.

Duplication rate AUC-org AUC-down AUC-org AUC-down
Naive Bayes Perceptron with margins

1 0.917±0.0011 0.917±0.0012 0.946±0.0014 0.946±0.0016
5 0.915±0.0019 0.916±0.0018 0.943±0.0011 0.943±0.0012
10 0.913±0.0030 0.915±0.0030 0.941±0.0014 0.940±0.0017
50 0.908±0.0050 0.913±0.0052 0.931±0.0029 0.930±0.0035
100 0.907±0.0035 0.911±0.0045 0.931±0.0026 0.925±0.0031

task, we note that at all duplication levels PAM scored
significantly higher than NB on the dataset used. Ac-
tually, for rate = 1 a linear SVM performed only
slightly better than PAM, resulting in AUC of 0.949.
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Figure 2. Classifcation accuracy of PAM in terms of ROC
AUC (avereged over 10 random trials). Duplication rate
refers to randomly selecting a 10% portion of the spam
training data and increasing their counts (on average) by
the value of the rate shown. The graph indicated by an
arrow corresponds to down-sampling the spam portion of
the training data so that the the training-set size remains
constant. The two graphs differ significantly only at rate =
100.

7. Prior and related work

7.1. Duplicate detection

The various approaches to finding these similar docu-
ments can be roughly classified as [17] similarity based
and fingerprint based.

Approaches that compute document-to-document sim-
ilarity measures [7][35][17] are similar to document

clustering work [34] in that they use similarity com-
putations to group potentially duplicate documents.
In principle all pairs of documents need to be com-
pared but in reality these approaches only evaluate
documents with an overlap of terms. The basic hy-
pothesis of similarity-based techniques is that similar-
ity between different instances if the same document
is higher than between unrelated documents.

Fingerprinting techniques examine a document as a
stream of tokens [5][16][6]. The stream is broken into
segments and each segment is hashed and referred to
as a shingle. Each document is then represented as a
set of shingles. The set of generated shingles or fin-
gerprint is then compared against all other documents
with matching shingles. To determine the similarity
of two documents, a percentage of overlapping shin-
gles is calculated. To combat the inherent efficiency
issues, several optimization techniques were proposed
to reduce the number of comparisons made [16][6].

The I-Match [8] approach eliminates the I/O costs by
producing a single hash representation of a document
and guaranteeing that a single document will map to
one and only one cluster, while still providing fuzziness
of non-exact matching. Each document is reduced to a
feature vector and term collection statistics are used to
produce a binary feature selection-filtering agent. The
filtered feature vector is then hashed to a single value
for all documents that produced the identical filtered
feature vector, thus producing an efficient mechanism
for duplicate detection.

Most technique assume that documents are duplicates
when they contain highly similar text, which may be of
limited validity in the spam filtering domain. Hall [15]
examined the question of can duplicate detection ap-
proaches keep up with hostile environments and found
that it is easier to mask messages then to determine
they are the same, thus duplicate detection alone can
not keep up with spam techniques.



7.2. Learning with imbalanced data

Dealing with problems where the learning sample con-
tains much fewer examples of at least one the classes
has been noticed to be an important problem in ma-
chine learning and data mining [18]. Due to the nat-
ural rarity of certain events [38], or due to the difficulty
(or high cost) of sampling certain types of data [42], a
learner if often faced with sample that is higly class-
imbalanced. This often poses difficulties for inducing
and measuring the accuracy of classifiers, especially
since many standard techniques are geared towards
minimizing the raw error rate. In some cases, an ap-
propriate setting of the classifier’s operating point may
be sufficient [27], but published results (e.g., [39][20])
suggest that rebalancing of the learning sample (via
downsampling or oversampling [22]) tends to be gen-
erally effective. Interestingly, there is evidence that
optimum mixing proportions do not have to be equal
and may be dataset and classifier dependent [39]. All
in all, although the presence of class imbalance tends
to be a challenge to classifiers, understanding of the na-
ture of the problem remains incomplete and, indeed,
there have been reports that for some tasks extreme
class imbalance may in fact be beneficial [21].

7.3. Filtering of email spam

Spam filtering based on actual text of email messages
can be seen as a special case of text categorization,
with the categories being spam and non-spam. Al-
though the task of document/text categorization has
been researched extensively, its particular application
to email data, and especially detection of spam, is rel-
atively recent. Most researchers focus on creating per-
sonal categorizers/filters as opposed to system-wide
solutions, which have to perform this function for a
large and diversified group of users.

Cohen [10] considered the general problem of rout-
ing emails into a set of folders and demonstrated that
an automatic rule learning system (RIPPER [9]) ri-
vals hand-crafted rules, while being much more easy
to maintain.

Provost [29] compared RIPPER with Naive Bayes
(NB) in the email categorization task (in [29] spam
filtering was treated as special case of categorization)
and found NB to be more effective ( Rennie [30] used
NB to develop ifile, an email foldering system).

The first research studies which focused primarily on
the problem of filtering spam were those of Sahami
et al. [32] and Drucker et al. [11]. In [32], the au-
thors applied NB to the problem of building a personal
spam filter. NB was advocated due to its previously

demonstrated robustness in the text-classification do-
main, and due to its ability to be easily implemented
in a cost-sensitive decision framework.

The validity of SVMs’ effectiveness in spam detection
(suggested in [32]) was verified by Drucker et al. [11],
who compared SVMs with RIPPER, a TF-IDF based
classifier and a boosted ensemble of C4.5 trees.

In a series of papers, Androutsopoulos et al. [1][2][3]
extended the NB filter proposed in [32], by investi-
gating the effect of different numbers of features and
training-set sizes on the filter’s performance. The ac-
curacy of the NB filter was shown to greatly outper-
form the keyword-based filter used by Outlook 2000
[2]. NB was also shown comparable with a memory-
based classifier (k-nearest neighbor (k-nn))[3], with a
combination of the two via stacking producing the best
results [33].

8. Conclusions

Detection of duplicates in large data collections is an
important problem in machine learning and data min-
ing. The actual consequences of the presence of du-
plicates are less understood, however, and may be ap-
plication dependent. In this work we examined the
challenges and potential risks of training and evaluat-
ing classifiers using data contaminated with duplicates
in text classification. Our focus was the task of spam
detection, where varying rates of data duplication are
common, but the results should be applicable to other
domains.

We examined the practical impact of duplicates on the
accuracy of classification (as measured on a duplicate-
free collection) and its dependence on the rate of dupli-
cation. The results obtained indicate that the presence
of duplicates in the learning sample does indeed pose a
problem, even if they cover a diverse range of content.
This stresses the importance of performing data dedu-
plication which, even if not perfect, can at least insure
that the level of duplicate contamination is reduced.
This seems to be essential, since our results indicate
that the loss of classification accuracy can be strongly
correlated with the contamination level.

It is interesting that, even if generally negatively af-
fected by duplicates in the learning sample, classifiers
such as the Naive Bayes and PAM learners used in our
study can be fairly robust, if the presence of duplicates
is not too extreme. This is quite encouraging, given
that duplicate detection tends to be imperfect, espe-
cially in domains such as spam filtering, where there is
an active effort on the part of document creators (i.e.,
spammers) to avoid message duplication attempts. We



expect, however, that the impact of duplicates is likely
to very with relation to their distribution in the input
(content) space, and also among different classes. We
would like to investigate this further in the future.
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