
Smoothing Gamma Ray Spectra to Improve Outlier
Detection

Vincent Barnabé-Lortie, Colin Bellinger, Nathalie Japkowicz
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Canada K1N 6N5

Email: {vbarn021, cbell052}@uottawa.ca, nat@site.uottawa.ca

Abstract—Rapid detection of radioisotopes in gamma-ray data
can, in some situations, be an important security concern. The
task of designing an automated system for this purpose is complex
due to, amongst other factors, the noisy nature of the data. The
method described herein consists of preprocessing the data by
applying a smoothing method tailored to gamma ray spectra,
hoping that this should decrease their variance. Given that the
number of counts at a given energy level in a spectrum should
follow a Poisson distribution, smoothing may allow us to estimate
the true photon arrival rate. Our experiments suggest that the
added data preprocessing step can have large impact on the
performance of anomaly detection algorithms on this particular
domain.

I. INTRODUCTION

In many situations, particularly in large public events, mon-
itoring radiation levels can be an important security concern.
In such cases, most spectra produced by a gamma-ray detector
show nothing but background levels of radiation.

It is critical, however, to be able to rapidly identify those
spectra that tell a different story: if, for example, an individual
walked by a detector with a dangerous amount of radioactive
material, we should, hopefully, be able to detect it quickly by
analyzing the spectra.

Given the enormous number of spectra that may come in
hourly, however, it is not possible for a team of physicists to
comb through every single one in search of anomalies. We also
typically wish to obtain results faster than human resources
could provide. Typically, automated methods like template
fitting and peak fitting are used to detect anomalies. Machine
learning methods, however, are also particularly suited to this
problem, as they could learn to discriminate anomalous spectra
from background levels of radiation.

The research described in this paper is not our first attempt
at solving this problem using machine learning. We have had
some success in the past using a variety of different methods
[1]. The scope of this paper, however, is limited to one of
our latest attempts at increasing classification performance on
this particular domain, where we use smoothing to counter the
high variability effect of the Poisson process of gamma-ray
arrivals. Specifically, we apply a specific smoothing method
first introduced in [2], which was designed specifically to
emphasize important information about gamma-ray spectra, to
preprocess the data before using it to train a model.

Our experiments, where we compare the performance of
classifiers trained and tested on the smoothed data to our
previous results, yield encouraging results, suggesting that the
smoothing regularly leads to significant performance gains.
We do not claim that the specific method of smoothing we
used is superior to other methods; only that smoothing can
have a positive impact in general. For this reason, we do not
directly compare the smoothing method by Burr et al [2] to
other smoothing methods.

The remainder of this paper is structured as follows: In
Section 2, we describe the problem at hand in more detail,
as well as previous work in this domain. In Section 3, we
detail the proposed method, which makes use of Burr et al’s
smoothing method. Then, Section 4 explains the experimental
methodology we followed to study the merits of this method.
The results of our experiments are documented in Section 5
and discussed in Section 6.

II. BACKGROUND AND RELATED WORK

This section describes methods commonly applied to deal
with gamma-ray anomaly detection - namely outlier detection
methods and one-class classification learners - and the smooth-
ing method for gamma-ray data introduced in [2].

A. Outlier Detection

There are many techniques that tackle the problem of out-
lier detection directly, rather than framing it as a classification
problem.

First, there are statistical testing based methods, which
typically assume that the “background” class follows a certain
kind of statistical distribution (often Gaussian), estimates the
parameters of that distribution, and mark as outliers points
that are unlikely to have been generated by that distribution
(e.g. they deviate from the mean by more than 3 standard
deviations). If we assume a multivariate gaussian distribution,
then the Mahalanobis distance [3] can be used to score the
level of anomaly of an instance. Similarly, deviation-based
approaches such as proposed in [4] judge points to be outliers
when their removal from the dataset causes a significant
decrease in its variance.

Second, there are depth-based methods [5] which see the
domain as an onion where each layer is the convex hull of the
data when all outer layers are removed. In those methods, the
outliers are the objects on the outer layers.978–1–4799-5431-5/14/$31.00 c©2014 IEEE

Third, distance-based approaches, of which there are many
variants, generally judge the level of “outlierness” of an
instance based on how far its nearest neighbors are from it.
For example, DB(ε,π) Outliers [6] are points for which, given
a radius ε and a percentage π, at most π percent of all other
points are closer than ε.

Fourth, there are density-based approaches, such as the
Local Outlier Factor [7], which consider the density around
a point relative to the density around its nearest neighbors. If
a point is in a very sparse area relative to its neighbors, then
it is likely to be an outlier.

Without going into further detail, there are also clustering-
based techniques [8], which cluster the data and find instances
that are far from cluster centers; information theoretic ap-
proaches such as, for example, the Kolomogorov complexity
[9]; and many more.

Finally, there are classification-based anomaly detection
techniques, which use a learned classification model to dis-
tinguish between background instances and anomalies. While
traditionally these models were trained on instances of both
classes, many methods now learn from instances of only one
of the classes. These methods are discussed in Section II-B.

B. One-Class Learning

When treating anomaly detection as a classification prob-
lem, we are often faced with the problem of rarity: examples
of the anomalous class are not only vastly outnumbered by
those of the background (or normal) class, they are also rare
in absolute terms. The consequences of these problems are well
known to be severe [10], even moreso when the data is noisy
[11], in which case background instances that are particularly
noisy may look very much like the anomalies.

In addition, we may not have instances representative of
all of the outlier subconcepts. For example, in the domain of
gamma-ray spectra, we may have multiple subconcepts of the
anomalous classes: anomalies caused by a Uranium source,
anomalies caused by a Technetium source, etc. To train a
binary classifier for the task of outlier classification, we may
need examples of each of these subconcepts, which is not
practically feasible.

Fortunately, an alternative to binary learners, the one-class
classifiers, which learn only one concept, and discriminate
between what does and does not belong to that concept, can
be used to alleviate both of these issues. For instance, one-
class support vector machines (like εSVM [12]) can be used
to learn a hyperplane that wraps around the class to learn. In
addition, in [13], it was shown that the unsupervised variant of
feedforward neural networks, the autoassociator, when taught
to recognize a concept and reject instances that do not belong
to it, could outperform its supervised equivalent, the multilayer
perceptron, on certain binary classification tasks.

These one-class learners are not affected by rarity of the
minority class when they are trained to recognize the majority
class. In addition, since they flag anything that does not look
like the learned concept as anomalous, they can deal very well
with previously unseen subconcepts of the minority class.

C. Smoothing Gamma-Ray Data

The presence of noise in the data, particularly in the
majority class, may perturb the learning of the minority class
even further, especially when it is rare, since we may end up
with more noisy majority instances leaking into the minority
class’ space than there are representative examples of that
class. This problem, overlap, has recently been studied in more
detail [14] and shown to be as serious a problem if not more
so than the class imbalance.

Again, noise is also an issue that applies to the gamma
ray spectra domain. The number of photon counts a detector
will see at a given energy level follows a Poisson distribution,
parameterized by their true arrival rate. The variance of these
counts is therefore also linked to this rate, and the counts,
when samples are short, can be quite noisy.

A popular method for noisy data is to, when possible,
apply smoothing methods, in the hope that it might reduce
the variance. In [2], Burr et al. propose a smoothing technique
designed specifically for spectral data.

As they explain, when spectra are measured over short
time intervals, the effect of the Poisson process’ variance
are particularly obvious. If the expected number of counts
at a particular energy level in a given time interval is 1, for
example, then it wouldn’t be very surprising to actually see
none at all, or to see 1 or 2 more.

However, it can be expected that the arrival rates of
neighboring energy level bins would be related. Anomalies,
such as spikes, should then be perceivable in a series of
neighboring bins.

By applying a smoothing procedure, which evens out the
counts in the energy bins so that they follow a smooth curve,
we might then be able to get values that are closer to the
actual Poisson arrival rates. In addition, a variance-stabilizing
transformation is applied before smoothing, and reversed after
smoothing: for these Poisson variables, taking the square root
transforms their distribution to a gaussian with a variance of
exactly 0.25.

What Burr et al. claim, however, is that traditional smooth-
ing methods such as kernel smoothing and cubic spline
smoothing will often de-emphasize the peaks and valleys of
a spectrum (understandably), while those peaks and valleys
actually contain all of the information relevant to anomaly
detection.

They propose, as a solution, to apply a multiplicative bias
correction (MBC), where the ratio between the original spectra
and the result of the first pass of smoothing is computed, then
itself smoothed before being reapplied multiplicatively to the
smooth spectra. This results in smooth spectra where the peaks
and valleys have been re-emphasized.

The impact of cubic spline smoothing as well as the
multiplicative bias correction are shown in Figure 1. The
original spectrum is very noisy, and the cubic spline smoother
produces a nice smooth curve, but the peaks and valleys could
use more emphasis. This is what the MBC smoother attempts
to correct.

The smoothing with multiplicative bias correction method
by Burr et al was not used in the context of a machine learning

0 100 200 300 400 500 600
0

50

100

150

200

250

Energy of the photons (Bin number)

P
h

o
to

n
 c

o
u
n

ts

Original Spectrum

Cubic Spline Smoother

MBC Smoother

Fig. 1: Effect of cubic spline smoothing and the multiplicative bias correction on a 1-minute sample of data

system. As described in the following section, we propose to
assess its impact on the performance of an anomaly detection
system applied to the domain of gamma-ray data.

III. PROPOSED METHOD

The method we examine consists of an additional pre-
processing step (smoothing with multiplicative bias correc-
tion) preceding the training of a classifier and testing of its
performance. The gamma ray spectra data are submitted to
the preprocessing process before being split into training and
testing sets, or folds for cross-validation.

Obviously, once such a system is deployed, any new
instances would have to be run through the same preprocessing
steps before being fed to the classifier.

To each individual spectrum, we apply a two-pass smooth-
ing procedure inspired by [2], as was briefly described in
section II-C:

First, we fit a smooth curve to the spectrum. There is a
variety of smoothers from which to choose, including kernel-
based regression smoothers [15] such as the Nadaraya-Watson
smoother [16], [17], wavelet smoothers, which have been used
for sodium iodide spectra before [18], and smoothing splines
[19]. In the paper by Burr et al. [2], cubic splines seemed to
perform reasonably well, and they will constitute our choice
of smoother in our experiments. Our MATLAB experimental
environment offers an implementation of cubic smoothing
splines through the csaps function.

Once smoothing splines have been fitted to a spectrum,
we apply the multiplicative bias correction to re-emphasize
the peaks and valleys. This is done by taking the ratio of the
initial spectrum and its smoothing splines, applying a smoother
to that ratio (once again, we used MATLAB’s csaps cubic
smoothing splines), then reapplying the smoothed ratio multi-
plicatively to the smooth spectrum.

The full procedure is illustrated in algorithm 1.

Algorithm 1 Smoothing preprocessing pseudocode

firstPass← cubicSplines(originalSpectrum)
ratios← originalSpectrum� firstPass
smoothRatios← cubicSplines(ratios)
secondPass← smoothRatios� firstPass

IV. EXPERIMENTS

In our experiments, we apply the smoothing procedure
before training a classifier on the smoothed data, and compare
the results to those obtained when using the data without
smoothing. The following subsections detail the base classifiers
that were used in these experiments, the datasets we used, and
the methodology we followed to assess the results.

A. Classifiers used

1) Classifier based on the Mahalanobis distance: The first
classifier that was used in conjunction with the smoothing pre-
processing procedure was a parametric classifier based on the
Mahalanobis measure of distance, as used in previous work on
this particular domain [1].

During the training phase, the parameters of a multivariate
gaussian distribution are estimated from a training set con-
sisting of instances belonging to the background (negative)
class only. This distribution is what the classifier assumes non-
anomalous instances should look like.

Then, during the testing phase, we use the parameters
previously estimated to compute the Mahalanobis distance of
testing instances to the background class’ distribution. This is
a simple computation, and it consists of applying the following
formula for the Mahalanobis distance:

DM (x) =
√
(x− µ)TS−1(x− µ)

Where µ and S are respectively the mean vector and
covariance matrix of the training set.

This gives us a score of how different an instance is from
the background class: an anomaly score. We can use these
scores to identify anomalies by simply setting a threshold over
the anomaly score, past which an instance is considered to be
an anomaly.

prediction(x) =

{
anomalous if score(x) ≥ threshold
background if score(x) < threshold

The particular threshold to be used can be determined
by using a held-out set of instances, separate from both the
training and test instances, and selecting the value that results
in a desired rate of false or true positives. When selecting based
on the number of false positives, for example, we would take
all negative examples of our held-out set, sort them by their
anomaly scores, and select as our threshold the score of the
instance for which the desired portion of the set (false positive
rate) is above that instance.

If we set the threshold for a particular false positive
rate, then we must evaluate the classifier with respect to its
sensitivity, whereas if we set the threshold with a specific true
positive rate in mind, it is the specificity that will tell us how
well the classifier did.

Another way to think of the anomaly scores produced by
the Mahalanobis distance formula is as an ordering of the
instances by how likely we estimate them to be anomalies.
This ordering interpretation will be particularly useful when
plotting ROC curves [20] for these classifiers, as described in
Section IV-C.

2) One-Class SVM: As popular as support vector machines
[21] are for binary classification problems, there are similar
one-class learning algorithms that have proven to be quite
useful for outlier detection problems [12], [22]. In these
experiments, we use the εSVM method introduced in [12]
by Schölkopf et al. This, once again, is in continuation of
previous work on this domain [1].

As with regular support vector machines, εSVM makes
use of a kernel function to map the data to a higher dimensional
space, where it may easier to separate it with linear methods.
A popular choice of kernel is the radial basis function.

The SVM algorithm defines a hyperplane with a maximum
margin separating the two classes by using a series of training
instances that lie on or within the margin. Those instances
are called support vectors. The training of an SVM takes into
account the tradeoff between the width of the margin (which
is greater when the regularization parameters are larger) and
the classification error.

The optimization problem for regular support vector ma-
chines, where the ξi’s are terms quantifying the error made on
each training instance, is formulated as such:

minimize
w,ξ,b

{
1

2
‖w‖2 + C

n∑
i=1

ξi

}
subject to yi(w · φ(xi)− b) ≥ 1− ξi for all i = 1, . . . , n,

ξi ≥ 0 for all i = 1, . . . , n.

In the εSVM formulation, however, the class is no longer
important, and we instead try to find a hyperplane that sepa-
rates, in our high dimensional space, the instances belonging
to the class being learned from the origin.

In this formulation, rather than the parameter C being
used to set how smooth the hyperplane should be, we have
a parameter ν which sets a lower bound on the number of
support vectors and an upper bound on the fraction of outliers.

minimize
w,ξ,ρ

{
1

2
‖w‖2 + 1

νn

n∑
i=1

ξi − ρ

}
subject to (w · φ(xi)) ≥ ρ− ξi for all i = 1, . . . , n,

ξi ≥ 0 for all i = 1, . . . , n.

We can then use the parameters w and ρ of the model to
make predictions for new instances:

prediction(x) =

{
anomalous if w · φ(x) ≤ ρ
background if w · φ(x) > ρ

If we wanted a ranking of the “anomaly score” of multiple
instances, we could simply use −(w · φ(x)).

When using εSVM , there are two parameters that need
to be finely tuned in order to obtain satisfactory performance.
In our experiments, we found that for the ν and γ (gaussian
kernel bandwidth) parameters of the LibSVM implementation,
the values of 0.0001 and 0.001 (respectively) lead to the best
results.

B. Datasets

For the purpose of evaluating the impact of the smoothing
pre-processing method described in section III, we make use
of a dataset given to us by the Radiation Protection Bureau of
Health Canada.

Instances of the dataset correspond to samples from
gamma-ray detectors that were collected over periods of 1
minute each. Each sample is associated to a timestamp, which
can be used as identifiers when communicating with the
Radiation Protection Bureau.

The data was collected over a period of approximately
one year (from February 2010 to March 2011) in the city of
Vancouver, Canada. The detectors collected gamma ray counts
over about 600 channels, though domain experts confirmed that
only the first 250 should carry information relevant to the task
at hand. The other 350 were therefore not used.

Out of the 39023 data instances we have in this dataset,
only 23 are anomalies, for a class skew of 1696 to 1. Of these
23 anomalies, we have some for 3 different potential sources
of radiation, which is obviously not a sample representative of
all anomalies that may surface. For this reason, the anomalies
can be used for testing purposes, but using them for training
would be of little help.

Another issue that comes up as a result of the small number
of anomalies is that the resolution of our test results is limited.

There are only 23 different levels of sensitivity we can reach,
and the distance between two subsequent such levels is already
a significant gap in performance. This makes evaluation more
difficult.

We limited our experiments to this domain only due to
the applied nature of this research: our goal was to show that
smoothing works for the specific domain of gamma-ray data.

C. Evaluation Methodology

The goal of the experiments was to determine whether or
not the smoothing pre-processing procedure had an impact on
the performance of the classifiers built upon the data, and, if
it did, whether or not that impact was positive.

From the Original dataset, we generated two additional
datasets: Smoothed, i.e. the result of a first pass of cubic spline
smoothing on the original data, and MBC, i.e. the result of the
multiplicative bias correction applied to the smoothed data.

For both of the two passes of smoothing, the parameter p of
the csaps smoother in MATLAB was set to 1× 10−6. This
value was determined to yield the best results when used before
training a classifier on a set of negative instances held out of
the later experiments. Given the small number of available
anomalous instances for testing, those could unfortunately not
be held out. We also noticed that using different parameters
for the two passes of smoothing typically resulted in weaker
classifier performance.

On these datasets, the two classifiers, Mahalanobis distance
and εSVM , were used, though their results will be presented
separately as the goal was not to compare the classifiers but
instead to study the impact of the smoothing on each one of
them. For εSVM , due its the extremely long training time,
we sample one tenth of the dataset for each iteration in the
experiment, reducing the training time to feasible levels. This
may lead to higher variance in the results.

We then used 10x10-fold cross-validation to collect perfor-
mance measurements for each of the two classifiers on each of
the three datasets. The instances in each fold of each iteration
were controlled to be the same across all of the conditions. This
is important because it allows us to use a paired statistical test,
which often has greater statistical power than non-paired tests.

The folds were defined over the background (negative)
data, as the anomalies (positive data) would never be used for
training purposes anyway. These anomalies were incorporated
into the test set for each fold. In essence, the classifier’s goal
then becomes to, using the training background data, rank the
testing background data so that it falls below this fixed set of
anomalies in terms of anomaly scores. Each fold is used as the
testing set once, and is part of the training set the nine other
times out of ten.

After applying the trained classifier to the test set and
obtaining an anomaly score for each of the testing instances,
background and anomalous, we used the scores to plot an ROC
curve. To do so, we use the scores given to each of the testing
background instances as thresholds, and find the number of
true and false positives each of these thresholds would give
us. We then plot these true and false positive rate pairs as
points in the ROC space.

It Original Smoothed MBC
1 0.9572 0.9574 0.9762
2 0.9573 0.9573 0.9762
3 0.9573 0.9573 0.9763
4 0.9573 0.9574 0.9762
5 0.9573 0.9574 0.9762
6 0.9573 0.9574 0.9762
7 0.9573 0.9574 0.9762
8 0.9573 0.9574 0.9763
9 0.9573 0.9574 0.9762
10 0.9572 0.9574 0.9763
Avg. 0.9573 0.9574 0.9762
S.D. 3.5E-5 3.0E-5 3.0E-5

(a) Mahalanobis distance classifier

It Original Smoothed MBC
1 0.8851 0.9854 0.9931
2 0.8940 0.9856 0.9912
3 0.8915 0.9755 0.9882
4 0.8326 0.9820 0.9912
5 0.8902 0.9791 0.9891
6 0.8949 0.9864 0.9934
7 0.8819 0.9783 0.9927
8 0.8967 0.9802 0.9894
9 0.8865 0.9699 0.9918
10 0.8918 0.9885 0.9895
Avg. 0.8845 0.9811 0.9910
S.D. 0.0188 0.0057 0.0018

(b) εSVM one-class classifier

TABLE I: AUROC over 10 iterations

The ROC curve is useful to gain insight into the levels
of selectivity at which each method dominates, or whether
a single method dominates no matter the selectivity of the
threshold. However, since it is based on a single iteration of
10-fold cross-validation, we can’t use its results to come to a
strong conclusion on the relative strengths of the methods.

As the next step in our evaluation methodology, we com-
pute the area under the ROC curve as a single metric of a
classifier’s performance over one of the 10 iterations of 10-
fold cross-validation. It suffices to take the average of the
true positive rates of the points of the ROC curve because
these points are equally distant in terms of their coordinates
on the false positive rate axis, resulting in bands of equal width
when using the rectangle method to compute the area under
the curve.

After the 10 iterations of 10-fold cross-validation, we there-
fore end up with 10 AUROC measurements for each condition
(dataset and classifier). We can then use these measurements in
a paired t-test to compare the results of the different methods.
We will consider the results to be statistically significant if the
p-value is lower than 0.01.

V. RESULTS

The results of the 10 iterations of 10-fold cross-validation,
for the 3 versions of the dataset, are shown in Tables Ia and Ib
respectively for the Mahalanobis distance classifier and εSVM
one-class classifier.

In addition, figures 2a and 2b show the ROC curves for
2 of these iterations. The curves for the performance on the
Original, Smoothed and MBC datasets are respectively in
black/full, blue/dotted and red/dashed.

Given that the MBC dataset lead to the best results in
all cases, we now want to support the hypothesis that the

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Iteration 2 of 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Iteration 1 of 10

(a) Mahalanobis distance classifier

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Iteration 2 of 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

Iteration 1 of 10

(b) εSVM one-class classifier

Fig. 2: ROC Curves for 2 of the 10 iterations of 10-fold cross-validation.
Black/Full: Original, Blue/Dotted: Smoothed and Red/Dashed: MBC

performance on this dataset is better than the performance
on the Original dataset with statistical testing results. We use
Student’s t-test with paired samples to compare the results
on both. The t statistics for the differences between the two
paired samples are tMaha = 1.2214× 103 and tSVM =
1.7563× 101.

Both of these test statistics are larger than the critical value
for p = 0.01, i.e. 2.821. In fact, these test statistics are so
extreme that we could reject the null hypothesis that there is
no difference between the two sets of results at p-values in the
order of 3× 10−8.

Another useful statistic is Cohen’s d Effect Size [23], the
difference between the means divided by the pooled standard

deviation. According to Cohen [23], anything above 0.8 is
considered a “large” effect size. In this case, the effect sizes
are 575 and 7.97 respectively for the Mahalanobis distance
and εSVM classifiers, which are both clearly “large” under
that definition.

VI. DISCUSSION

We notice two interesting results, which are discussed in
the next subsections. First, smoothing had a quantitative impact
on the performance of the classifiers as measured by the
AUROC. Second, it had a qualitative impact on the kind of
instance the models judge to be anomalous.

A. Quantitative Impact of Smoothing

As a first element of discussion, it is quite clear that
the full smoothing with multiplicative bias correction pre-
processing procedure brings performance benefits with both
the εSVM and Mahalanobis distance classifier. This improve-
ment is statistically significant in both cases, and the effect
sizes are beyond what Cohen would have called “large”. There
is no denying that for this particular domain, the smoothing
procedure has great benefits.

It is interesting, however, to look at the differences in how
the different smoothing steps affect both classifiers.

First, in the case of the Mahalanobis distance classifier, it
seems like the first smoothing step, the simple cubic smoothing
splines, has extremely little impact on performance. It really is
the multiplicative bias correction that makes all the difference.
Perhaps this is because the multiplicative bias correction, by
emphasizing the peaks and valleys of the spectra, forces the
gaussian-by-nature classifier to use the “right” information.

Another important observation for the Mahalanobis dis-
tance classifier results is that the results all have very low
variances. This is not particularly surprising, as with datasets
of the size of the one used, we can expect the parameters of
the gaussian distribution used by the classifier to be very stable
from one fold to the other.

One might think that it is because it used the entire dataset,
whereas the εSVM classifier only used a tenth, that the
Mahalanobis distance classifier had such a lower variance. In
a later experiment, the results of which are not documented
here, we attempted to replicate the Mahalanobis distance
classifier results using only one tenth of the dataset, as with
εSVM . The variance of the AUROC did not change much,
suggesting that the Mahalanobis distance simply produced
more stable results naturally. This is not particularly surprising,
as a single instance can make a significant difference for the
non-parametric SVM classifier, if that instance is chosen to
become a support vector, whereas all instances are given equal
weight in the parametric Mahalanobis distance classifier.

Second, we see that the results of the εSVM classifier tell
a very different story. In their case, the ROC curve plots clearly
show that both smoothing passes, the initial cubic smoothing
spline and the multiplicative bias correction, had a large impact
on the classification performance.

More specifically, the first pass of smoothing seems to
bring about a large portion of the improvements, but with
varying levels of success on different folds. In some cases,
the first pass alone brings us very close to the end, optimal
result. In other cases, however, the first pass does not take
us as far, and the multiplicative bias correction is what takes
us all the way. In other words, the improvement effected
by the first smoothing pass are, on average, large, but with
a large variance. The improvements brought about by both
smoothing passes combined, however, are more stable and
bring us consistently to an AUROC close to 0.9910.

B. Qualitative Impact of Smoothing Using PCA

Principal component analysis can be a useful tool to study
classifier performance. Placing the instances in a bidimensional

plot based on their first two principal components has previ-
ously helped us identify incorrectly labeled instances, and it
often helps us see how anomalies differ from normal data.

To further our analysis of the results described above, we
plot the instances of the dataset along their first 2 principal
components and color code them to identify different types of
instances. The results are shown in Figure 3, where instances in
green/crosses are true anomalies, and instances in red/circles
are the top 20 most anomalous instances of the background
class according to the different classifiers trained and tested
on the different datasets. The remainder of the background
class instances are shown as black dots.

As is obvious in the Mahalanobis distance plots, the
multiplicative bias correction causes the type of instances the
classifier judges to be anomalous to change qualitatively. The
classifier used to select its anomalies from the top of the main
cloud of background instances, and kept doing so despite the
first pass of smoothing. When the multiplicative bias correction
was introduced, however, it started picking its anomalies from
the bottom of the cloud, close to a cluster of true anomalies.

A similar change is observed with the εSVM results. In
this case, the first pass of smoothing helps to kickstart this
transition, as we see the qualitative changes in the type of
instances judged anomalous begins in the second graph.

The PCA plots give us some insight, but it is still not
clear what the real impact is, as we don’t know what the
principal components actually represent. We hypothesize that
the smoothing, by reducing the variance caused by the Poisson
nature of the photon counts, forces the classifiers to consider
another source of variance, one that actually gives us mean-
ingful information as to the anomaly of an instance.

VII. CONCLUSION

In this project, we studied the impact of a smoothing
pre-processing procedure on the performance of one-class
classifiers in the context of a gamma ray spectral anomaly
detection problem.

Overall, the results are very encouraging and show that
on one particular domain the preprocessing procedure effects
significant performance improvements as measured by the area
under the ROC curve.

Future work may investigate whether this effect is as strong
on data that is less noisy, such as gamma-ray detector samples
collected over longer periods. It would also be interesting to
look into the profile of instances that are better classified when
smoothed, in the hope that it may give us further insight into
how the smoothing helps.

Finally, gamma-ray spectra are not the only type of data
where peaks and valleys are of vital importance to classifica-
tion. Perhaps this smoothing method could be used to improve
the performance of classifiers in other similar domains.

ACKNOWLEDGMENT

The authors would like to thank Health Canada, particularly
Dr. Kurt Ungar and Dr. Rodney Berg, for their gracious support
of this research.

Fig. 3: PCA plots of the anomalies identified by each classifier.
Black/Dots: Background, Green/Crosses: True Anomalies, Red/Circles: Top False Anomalies

REFERENCES

[1] S. Sharma, C. Bellinger, N. Japkowicz, R. Berg, and K. Ungar,
“Anomaly detection in gamma ray spectra: A machine learning per-
spective,” in Computational Intelligence for Security and Defence
Applications (CISDA), 2012 IEEE Symposium on. IEEE, 2012, pp.
1–8.

[2] T. Burr, N. Hengartner, E. Matzner-Lober, S. Myers, and L. Rouviere,
“Smoothing low resolution gamma spectra,” Nuclear Science, IEEE
Transactions on, vol. 57, no. 5, pp. 2831–2840, 2010.

[3] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55,
1936.

[4] A. Arning, R. Agrawal, and P. Raghavan, “A linear method for deviation
detection in large databases.” in KDD, 1996, pp. 164–169.

[5] J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, 1977.
[6] E. M. Knorr and R. T. Ng, “A unified approach for mining outliers,” in

Proceedings of the 1997 conference of the Centre for Advanced Studies
on Collaborative research. IBM Press, 1997, p. 11.

[7] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying
density-based local outliers,” in ACM Sigmod Record, vol. 29, no. 2.
ACM, 2000, pp. 93–104.

[8] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski,
“Clustering approaches for anomaly based intrusion detection,” Pro-
ceedings of intelligent engineering systems through artificial neural
networks, pp. 579–584, 2002.

[9] M. Li and P. M. Vitányi, An introduction to Kolmogorov complexity and
its applications. Springer, 2009.

[10] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 7–19, 2004.

[11] G. M. Weiss and H. Hirsh, “The problem with noise and small
disjuncts,” in ICML, 1998, p. 574.

[12] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion,” Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[13] N. Japkowicz, C. Myers, M. Gluck et al., “A novelty detection approach
to classification,” in IJCAI, 1995, pp. 518–523.

[14] M. Denil and T. Trappenberg, “Overlap versus imbalance,” in Advances
in Artificial Intelligence. Springer, 2010, pp. 220–231.

[15] M. P. Wand and M. C. Jones, Kernel smoothing. Crc Press, 1994,
vol. 60.

[16] E. A. Nadaraya, “On estimating regression,” Theory of Probability &
Its Applications, vol. 9, no. 1, pp. 141–142, 1964.

[17] G. S. Watson, “Smooth regression analysis,” Sankhyā: The Indian
Journal of Statistics, Series A, pp. 359–372, 1964.

[18] C. Sullivan, M. Martinez, and S. Garner, “Wavelet analysis of sodium
iodide spectra,” in Nuclear Science Symposium Conference Record,
2005 IEEE, vol. 1. IEEE, 2005, pp. 302–306.

[19] C. De Boor, A practical guide to splines. Springer-Verlag New York,
1978, vol. 27.

[20] N. Japkowicz and M. Shah, Evaluating learning algorithms: a classifi-
cation perspective. Cambridge University Press, 2011.

[21] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[22] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45–66, 2004.

[23] J. Cohen, Statistical power analysis for the behavioral sciences (rev.
Lawrence Erlbaum Associates, Inc, 1977.

