
Using unsupervised learning for Network Alert
Correlation

Reuben Smith1, Nathalie Japkowicz1, Maxwell Dondo2, and Peter Mason2

1 School of Information Technology and Engineering (SITE), University of Ottawa ON Canada
2 Defence Research and Development Canada (DRDC) Ottawa ON Canada

Abstract. Alert correlation systems are post-processing modules that
enable intrusion analysts to find important alerts and filter false posi-
tives efficiently from the output of Intrusion Detection Systems. Typ-
ically, however, these modules require high levels of human involve-
ment in creating the system and/or maintaining it, as patterns of attacks
change as often as from month to month. We present an alert correlation
system based on unsupervised machine learning algorithms that is ac-
curate and low maintenance. The system is implemented in two stages
of correlation. At the first stage, alerts are grouped together such that
each group forms one step of an attack. At the second stage, the groups
created at the first stage are combined such that each combination of
groups contains the alerts of precisely one full attack. We tested various
implementations of the system. The most successful one relies in the
first stage on a new unsupervised algorithm inspired by an existing nov-
elty detection system, and the EM algorithm in the second stage. Our
experimental results show that, with our model, the number of alerts
that an analyst has to deal with is significantly reduced.

1 Introduction

Intrusion detection systems (IDSs) are computer programs or hardware that attempt to
detect attacks against a computer network. IDSs are deployed to inform administrators
of the threats against their network services and data. Attacks against networks are
common and firewalls are suitable for stopping only certain types of attacks, so IDSs
are important in protecting networks.

The output of IDSs, however, is considered low level since a single attack can be
represented by several alerts. This makes the work of intrusion analysts quite difficult,
if not, virtually, impossible since they have to try to reconstruct the entire pattern of
potential attacks from the alerts they received, many of which, incidentally, correspond
to false alarms.

Tools that could be of great help to analysts are alert correlation systems, that would
automatically find correlations between IDS alerts that represent the same attack. More
specifically, such tools would find relationships between alerts that indicate the mo-
tives and methods of a particular attack attempt against the network. Previously de-
signed alert correlation systems are either based on machine learning techniques or
non-machine learning techniques, including statistical methods, logical rules and graph

theory algorithms. In both cases, these methods require a high level of human involve-
ment in creating the system and/or maintaining it, as patterns of attacks change as often
as from month to month.

This paper introduces an unsupervised machine learning approach for network alert
correlation which does not require any kind of human involvement once the system is
installed. The system we present takes as input the output of an IDS which it processes
in two stages of correlation. After the first stage of correlation, individual steps of the
attacks in the dataset will be clustered. This means that, for example, all similar recon-
naissance probes for each of the attacks in the dataset of alerts will be clustered. After
the second stage of correlation, different steps of the attacks in the dataset will be clus-
tered. So after the second stage of the correlation system each cluster will represent one
specific attack in the dataset.

This work makes three contributions. The first is of an applied nature: our work
introduces an alert correlation system that is easy to deploy and maintain on a com-
puter system, and that is more effective than the simple rule-based systems which are
commonly used by analysts because of their availability and low costs. The next two
contributions are of a more theoretical nature. First, we demonstrate that pure unsu-
pervised learning can be an effective approach for this difficult but practical task and
second, we introduce a new clustering algorithm and demonstrates its competitiveness
with EM, and SOMs, on a subset of our task. One of our more minor contributions,
briefly discussed in the text, consists of extending the two attribute sets previously pro-
posed for this type of task.

The remainder of the paper is divided into four sections. Section 2 presents back-
ground research in the area of network event correlation and situates our research within
this work. Section 3 introduces our model in greater detail, discussing each correlation
stage carefully. The new clustering algorithm we proposed is introduced in this section.
Section 4 presents the experimental set up we used to select an optimal implementation
for our model and to test it effectively on new data. It also presents and discusses the
results we obtained. Section 5 concludes the paper and proposes future extensions of
this work.

2 Background Research

The majority of the existing correlation tools use elementary approaches to correlate at-
tacks. For example, Shadow [1] and ACID [2], use the IP addresses to correlate attacks.
However, IP addresses may be spoofed, therefore using them alone may not provide a
sufficient measure to classify the threat posed by an alert.

Recent work reported by Haines et al. [3], details some of the common correlation
tools and approaches. The majority of these approaches use one alert metric at a time
to correlate with other possible attacks. More sophisticated approaches use statistical
methods on multiple alert metrics [4]. Hatala et al. [5] also analyses various alert corre-
lation efforts by different groups. They give the details of a number of correlation sys-
tems, most of which are not based on machine learning techniques. Other approaches
that do not involve machine learning are reported in [6, 7].

Machine-learning techniques in this area include the work by Julisch et al. [8], Dain
and Cunningham [9], Zanero and Savaresi [10], and Laskov et al [11]. The method by
Julisch et al. relies on clustering algorithms rather than classification algorithms, and
requires an administrator’s input to reflect network changes. Dain et al. use machine
learning algorithms such as neural networks and decision trees to recognise attacks
based on a list of features. Hatala et al. notes that this work uses a simplistic dataset
which does not cover a wide range of attack scenarios. The Dain et al. research was
tested with a defence conference (DEFCON) dataset. The use of this dataset simpli-
fied the problem of alert correlation because attackers were motivated by points in the
competition and no points were awarded for stealthy attacks.

Our approach is related to that of Valdes and Skinner [4] who also proceeds by dis-
covering attack step correlations, once lower level correlations have been established.
However, their work uses statistical methods, and, thus, depends on the underlying at-
tribute behavioural distributions (such as Gaussian distribution) of deviations from what
is expected; by using a machine learning approach, our work was able to avoid the re-
strictions imposed by such parametric models. Our work is also related to that of Julisch
et al. [8] in that it uses unsupervised learning and to that of Dain and Cunninghan [9] in
its choice of a data representation, as will be discussed in the next section.

3 The Proposed System

The system is based on the idea that attacks can be decomposed into attack steps, which
correspond to one action in the attackers greater plan, and, further, that single attack
steps are made up of large numbers of IDS alerts. For instance, one step by an attacker
might be running the security scanning tool nmap, once, against a network to discover
what services are available. This step would likely generate many IDS alerts. With no
correlation tool, a systems operator is faced with thousands of IDS alerts and has no
way of knowing, easily, which alerts represent the same attack step nor which attack
steps should be considered together as parts of the same attack.

First Stage

Second Stage

Snort

Entire attacks
correlated

Individual steps of
attacks correlated

Uncorrelated
IDS alerts

Fig. 1. Architecture of our alert correlation system

We recall that the system we propose is not an IDS, itself, but rather a post-processing
module for the output of an IDS. It takes as input a set of uncorrelated IP packets that
have been flagged as alerts by an IDS, specifically the Snort IDS in our experiments,
and passes the alerts to the First Stage of Correlation module that outputs clusters of
similar IP packets supposed to represent the same attack step. These clusters are subse-
quently input into the Second Stage of Correlation module which outputs super-clusters
(clusters of clusters) representing a specific attack.

At the first stage of correlation, we cluster the dataset of alerts by constructing fea-
tures that differentiate Snort alerts at the IP packet level. We are interested in clustering
alert IP packets that are numerically similar in their protocol attributes, so we construct
our set of attributes to use for clustering in such a way that numerically similar Snort
alerts are clustered together. At the second stage of correlation we are interested in the
trends between groups of similar Snort alerts. For example, if two separate sets of Snort
alerts are comprised of alerts with the same identical IP source address, this might be an
indicator that the sets of alerts are related. Our second set of features were constructed
to reflect this goal. The next two subsections describe the kind of features that were used
in our system while the following one describes the clustering algorithms used in both
stages of correlation: AA, a new clustering approach based on a particular feedforword
neural network architecture called an autoassociator and the EM algorithm.

Both the final choice of features and clustering algorithm were determined exper-
imentally. This paper will describe a subset of the experiments that lead to our final
choices in Section 4. The remainder of the experiments are described in [6, 7].

3.1 Features used in the First Stage of Correlation

The set of features extracted from Snort for the first stage of Correlation are listed in
Table 1.3 This set of features was created to fully represent an IP packet flagged as an
alert by an IDS sensor. In this representation, however, we tried to ensure that only pro-

Table 1. First stage features

Feature Feature Feature Feature
portSrc portDest ipIsIcmpProtocol ipIsIgmpProtocol
ipIsTcpProtocol ipIsUdpProtocol ipLen ipDgmLen
ipId ipTos ipTtl ipOptLsrr
ipPacketDefrag ipReserveBit ipMiniFrag ipFragOffset
ipFragSize icmpCode icmpId icmpSeq
icmpType tcpFlag1 tcpFlag2 tcpFlagUrg
tcpFlagAck tcpFlagPsh tcpFlagRst tcpFlagSyn
tcpFlagFin tcpLen tcpWinNum tcpUrgPtr
tcpOptMss tcpOptNopCount tcpOptSackOk tcpOptTs1
tcpOptTs2 tcpOptWs tcpHeaderTrunc udpLen

3 We used Snort’s acronyms and shorthands to name our features.

tocol features were used. This means that no information specific to Snort was used and
that, therefore, our approach is portable to other IDS systems. Another observation of
interest is that we did not include the IP source address or IP destination address proto-
col fields in the list of features. This is because these features tended to impede correct
clustering. We also reasoned that if we wish to cluster a number of packets together
that make up a distributed denial of service or similar attack, the IP address fields could
impede correct clustering since source IP address is easily forged for certain types of
attacks, and the destination IP address can be masked by attacking many computers at
once even if only one computer is the target.

3.2 Features used in the Second Stage of Correlation

For the second correlation stage, we take the output clusters of the first stage and rep-
resent them, each, as new data items, encoded using a new set of features. Feature
construction for the data ultimately determines what is learned, therefore, we intention-
ally constructed our features such that a cluster of alerts representing a single step of an
attack will be similar to another cluster of alerts from the same attack.

The set of features constructed for the second stage of correlation are listed in Table
2. This list was inspired from the feature list of Dain et al [9]. Our list includes some of
their features as well as some that they did not consider. All the features were meant to

Table 2. A cluster encoded for the second stage

Feature Feature
numAlerts ipSrcAddrCommonPart
ipSrcAddrCommonBits ipDestAddrCommonPart
ipDestAddrCommonBits modePortSrc
modePortDest avgIpHdrLen
avgPayloadLen avgReconsErr
avgSeqNumDiff avgTimeSig
varTimeSig avgTcpFlagsSet

capture the type of reasoning an attacker may go through or the kind of behaviour that
can be observed when considering groups of alerts. We illustrate this kind of reasoning
on a few of our features. Further explanation appear in [6, 7].

ipSrcAddrCommonPart Attackers often perpetrate an attack from a single host, or
from a single IP subnet. Dain and Cunningham included a feature to indicate sim-
ilarity between the source IP addresses of two alerts. In our system, we included
a feature to indicate the shared part of the most-significant bits of a group of IP
addresses from a cluster

modePortSrc and modePortDest We found that using the TCP source and destination
ports was sometimes valuable in determining the grouping of a set of alerts. We also
found that when the ports were useful, there was almost always a particular source

or destination port that was more common than the rest. Accordingly, we created
two features: one feature to encode the most common TCP source port in a cluster
of alerts and a feature to encode the most common destination port.

Please note that while the IP source and destination addresses were not used during
the first stage of correlation, they are used during the second stage, since they were
shown to bring about performance gains. This is because such features are valuable
in detecting an attack source for many types of attacks. For those attacks in which IP
spoofing (i.e., forging a source IP address) can be used, we found that allowing alerts
with dissimilar IP addresses to be clustered together at the first stage of correlation
adequately solved the problem without any need to repeat this approach at the second
stage.

3.3 Clustering Algorithms used in both stages of Correlation

Along with the selection of features for each stage of correlation, clustering algorithms
and their parameters also needed to be chosen. We experimented with three clustering
systems: the EM algorithm, self-organizing maps and AA, a new algorithm based on the
autoassociator, a particular feedforward neural network architecture. In the early stages
of our research, we also experimented with k-means, but it was quickly dismissed given
its low performance levels. This section begins by describing AA and then discusses
the choices that were made in our final implementation. The EM algorithm [12] and
self-organizing maps [13] will not be described here because of lack of space.

An autoassociator (AA) is a fully-connected three-layer, feedforward neural net-
work whose objective is to reproduce an input vector xi made up of alert attributes,
at the output through weights wi. However, the reproduction is not perfect and a re-
construction error, RE, is a measure of this imperfection. Similar attack scenarios have
very similar attributes, and we expect their REs to be very close. Similar alerts are thus
expected to be clustered together based on their RE. This idea is an extension of the
work by [6, 7] on novelty detection. In that work, it was shown that the AA was good
at clustering previously seen events, differentiating them from new events. This kind
of clustering, however, was coarse-grained as the AA was only trained on the positive
class and was only required to recognize data from that class and reject any other. Our
purpose, here, is to use the AA in a similar capacity, but as a finer-grained clustering
system. Specifically, we will train the AA with all the data available (not simply pos-
itive data, but rather, data that may belong to some indeterminate number of clusters)
and cluster it according to their RE.

We will now describe this algorithm in more detail. A three-layer fully connected
feedforward neural network with N input nodes, N output nodes and J(< N) hidden
nodes (unoptimised) was used. Although such feedforward architectures are usually
used in a supervised fashion, in this work, we use it strictly in an unsupervised fashion:
no instance labels are used. In place of the labels usually indicated at the output layer,
the attribute vector used at the input layer is repeated at the output layer for each exam-
ple. The neural network is, thus, expected to learn the identity function. In other words,

the output at node i of each layer is given by:

oi = f(
Ki∑

k=1

wikyk) (1)

where yi is the output of neuron i after receiving Ki signals from the neurons of the
preceding layer, and yi = xi for the input layer.

The AA was trained using the error-backpropagation algorithm with the objective
of reconstructing the input space at the output. The training objective is to minimise the
square errors E, as given by:

E =
N∑

i=1

||xi − yi||2 (2)

The neural network’s weights were iteratively updated until convergence was achieved.
Once training was completed, cluster barriers were created to separate adjacent clusters.
This was achieved by comparing a predetermined threshold value to the resultant RE ei

produced by the difference between the alert vector xi and the “new” alert vector yi.
This difference is given by:

ei = ||xi − yi|| (3)

for each input vector xi. The predetermined threshold value was set experimentally. By
varying the cluster barrier and recording the errors, we concluded that the best cluster
barrier to use would be 0.0017. Equation 3 essentially reduced a 42-dimensional vector
into a 1-dimensional threshold metric e used for clustering. The result of the clustering
was multiple alert groups that have similar or closely similar attributes.

Note that an important difference between this algorithm and other more traditional
ones is its reliance on imperfection. Indeed, we are exploiting the fact that the autoas-
sociator is not able to fully reconstruct the input layer at the output level, to cluster
the data, and that it will make different kinds of reconstruction “errors” on different
categories of data, thus, allowing us to cluster them accurately. This kind of reasoning
worked well in the case of novelty detection and we wanted to test whether this result
would extend to the case of clustering.

There were three other reasons underlying our decision to explore the performance
of the AA rather than content ourselves exclusively with off-the shelf algorithms. First,
unlike other clustering algorithms like the EM algorithm or SOMs, the AA does not
require knowledge of the number of output clusters in advance. It determines it through
a self-optimisation process in the training algorithm. Second, unlike SOMs and tradi-
tional uses of the EM algorithm, the AA naturally performs soft-clustering that is then
interpreted by the simple cluster barrier setting algorithm just discussed into hard clus-
ters. More specifically, the AA can assign a number to each data point—the RE—such
that data points corresponding to the same alert are roughly assigned similar numbers.
This feature corresponds loosely to the notion of a ranking classifier in the supervised
case. We believed that such flexibility could enhance clustering performance. Last but
not least, we noticed that the RE of an alert was quite stable in that it is mostly inde-
pendent of the data set that contains it. This is particularly important in our application

given that we separated the first correlation stage data into windows in order to make the
results more manageable for the clustering algorithm as well as to include a rough form
of correlation based on alert generation time. This means that the same alert appears
surrounded by different alerts in various training scenarios and that its outcome should
remain the same from one scenario to the next. Through its RE, initial experiments re-
vealed that AA appears to obtain similar REs for the same alert in different context, a
feature that the other algorithms do not provide.

4 Experiments Set-Up and Results

As previously mentioned, a large experimental study was performed prior to settling on
the model presented in the previous section. It will be impossible for us to discuss the
entire study in this paper. Therefore, we had to focus on a subset of our experiments.
We chose to present the experiments which allowed us to select an optimal clustering
approach for the first stage of correlation since these experiments highlight the use-
fulness of our new clustering algorithm, at least on one type of practical problem. Our
other experiments were designed to select an optimal clustering approach for the second
stage of correlation, to select the best parameters for all clustering algorithms (beyond
the few results that are presented here), to choose an optimal cluster barrier setting ap-
proach for the AA (the one described above is the best one we identified), to select the
best attribute sets for both stages of correlation, and to select an optimal method for
scaling our attribute values in both stages (the optimal scale we settled on was [−1, 1]).
These experiments are all detailed in [6, 7].

In order to validate our system’s overall utility, we conclude this section by pre-
senting the results obtained by our final model and by comparing them to a simple
rule-based algorithm similar to those usually employed in real-world settings. The sec-
tion starts with a presentation of the data sets used in both the development and testing
parts of our study.

4.1 Data Sources

The system was tested using two alert data sets. We tested our system with Snort [14]
alerts from incidents.org. We also used labelled alerts from the 1999 DARPA [15]
IDS evaluation data. Since the labelled DARPA data was in packet form, we ran the
data through Snort using commonly used configuration filters. We developed some Perl
scripts to read the text-based Snort alerts into numeric data for use with our system.

In the incidents.org data set, we selected a training set of 10,000 alerts and a val-
idation set of 500 alerts. In the DARPA data set, we selected a training set of 10,000
alerts, a validation set of 100 alerts and a testing set of 500 alerts. The incidents.org
data set did not require a testing set since it was only used during the development of
our system. We chose to develop our system using the incidents.org data set because
it contains real and complex sets of attacks in contrast with the DARPA data which is
simulated and, thus, of lesser value for the development stage. The DARPA data was
set aside for formal testing of the completed system.

The data in the validation and testing sets of both domains were manually labeled
for our task: based on our knowledge and experience, we placed alerts into clusters, each
representing an attack step and super-clusters, each representing an attack attempt. This
was a tedious and time consumming process, which is why the size of our labeled data
sets is quite small.

4.2 Clustering Algorithm Selection Experiments

We examined three algorithms: the autoassociator introduced in the previous section,
self-organization maps and the EM algorithm. All the experiments reported in this sec-
tion were conducted on the incidents.org data set since they are part of the design of
our system. The results obtained by each clustering method were compared against the
benchmark clusters to determine performance. As mentioned above, we only report on
the selection process in the first stage of correlation because of lack of space in the
paper. The selection of a clustering system for the second stage of correlation was con-
ducted in a similar fashion (see [6, 7]).

For the first stage of correlation, rather than training SOMs and the autoassociator
with 10,000 training examples, we trained the two algorithms with only 1,017. This is
because there were difficulties in training SOMS on the 10,000 alert set and we wanted
the two algorithms to be trained on the same data for fair comparison purposes. EM was
not trained at all, since it is not designed to be trained with unlabelled data. Rather, it
builds clusters directly on the testing data. 1,017 training alerts comprises roughly the
first 10% of each type of alert available from the 10,000 alert training set. We tested the
system on the 500 alerts from the validation set.

The results of these experiments are presented in Figures 2, 3 and 4. In Figure 2, we

0

10

20

30

40

50

60

70

80

90

100

25 500 975 1450 1925 2400 2875 3350 3825 4300 4775

Training epochs

P
e

rc
e

n
ta

g
e

e
rr

o
rs

8 hidden units

16 hidden units

32 hidden units

64 hidden units

Fig. 2. First stage performance with the autoassociator

tested the AA by simultaneously varying the number of hidden units and the number of
epochs. The learning rate was fixed and set at 0.4. From the graph, it is clear that the
autoassociator attains the best performance if constructed with 64 hidden units and if
trained for between 500 and 1000 epochs. Its error rate, in this region, falls below the

0

10

20

30

40

50

60

70

80

90

100

1 5 10 15 20 25 30 35 40 45 50 55 60

Number of clusters

P
e

rc
e

n
ta

g
e

e
rr

o
rs

Fig. 3. First stage performance with the EM algorithm

20% mark. For the performance graph of the EM algorithm in Figure 3, we varied the
number of clusters. We can see that if the number of clusters chosen is 10 or more, the
performance results are consistently in the range of 30% to 40% errors. The best per-
formance for the EM algorithm is reached at 30 clusters where it obtains a 30% error
rate, or a 10% worse error rate than the AA. In Figure 4, we present the results of the

0

10

20

30

40

50

60

70

80

90

100

25 500 975 1450 1925 2400 2875 3350 3825 4300 4775

Epochs

P
e

rc
e

n
ta

g
e

e
rr

o
rs

4x6 SOM lattice

5x7 SOM lattice

6x8 SOM lattice

Fig. 4. First stage performance with the SOM algorithm

self-organizing maps for which we varied the lattice configuration and epochs simulta-
neously. The results for the SOM algorithm are noticeably worse than the results with
the autoassociator and the EM algorithm. The results for all three lattice configurations
vary significantly with no discernable range of best performance. From this we see that
the performance of SOMs is universally poor on our problem, especially if compared
with the autoassociator, which does not generate an error percentage greater than 40%
in this evaluation.

We, thus, conclude that the autoassociator performs better than the EM algorithm
and SOMs for this dataset against the incidents.org benchmark evaluation dataset.

4.3 Testing the Overall System

We conducted our final tests on the fresh data set provided by DARPA. It is important to
note, though, that although we did not use the DARPA data to design the system, we still
needed to tune and train the autoassociator on the 10,000 training and 100 validation
alerts, respectively, prior to testing the overall system on the 500 testing alerts.

The system clustered the DARPA data set into 21 clusters, i.e., 21 attacks. From
the benchmark labels, however, only 13 attacks were expected. This suggests that our
system produced a number of “separation errors”, in which alerts of the same kind were
clustered into different groups. Indeed, we found that 54 out of 500 alerts were separated
from the cluster they should have been in, but were nonetheless clustered along with
similar alerts. Conversely, we found that very few “clustering errors” took place since
we found that only 4 out of 500 alerts were clustered along with unrelated alerts. This
is quite encouraging since separation errors are much less serious than clustering errors
which may cause and IDS analyst to miss important events. Please see [6, 7] for tables
and more complete descriptions of our results.

If considering both kinds of errors together, we can conclude that our system ob-
tained an accuracy of 88.4%. On its own, this figure is not terribly meaningful, so we
compared the results to those obtained using a simple rule-based correlation system
based on the correlation descriptions of Northcutt [16] and the web-based ACID alert
console [2]. Such a correlation algorithm is quite often used in practice. Using the Sim-
ple Correlator system, we obtained an accuracy of 79.4% on the DARPA data set. This
means that our system achieved a 9% improvement.4

5 Concluding Remarks

In this work, we designed and implemented a two-stage alert correlation model and
demonstrated how this model was able to cluster similar alerts with better accuracy
than what we achieved with a simple rule-based correlation algorithm of the type often
used in practice. The model we created is of a purely unsupervised nature and does not
require any maintenance, once all the initial parameters are determined. This should
provide intrusion analysts with a simple and effective solution to their alert flooding
problem.

The paper also introduced a new clustering algorithm based on a neural network
architecture called an autoassociator (AA). The main advantages of this algorithm is
that it does not require knowledge of the number of output clusters in advance, that
it performs soft-clustering and that its output remains stable in various contexts. Of
particular interest here, the AA was also shown to be quite accurate on the first of our
two clustering tasks.

Many avenues for future work stem from this study. First, we would like our re-
sults to be examined by a seasoned IDS analyst who could give us feedback on how

4 Out of curiosity, we compared the two systems on the incidents.org domain. Our approach
obtained an accuracy of 67.4% while the simple Correlator only reached an accuracy of 41.6%.
This result, however, is optimistically biased given its reliance on the validation data set as well
as the fact that it is based on internal, rather than external validation (i.e., testing within the
same data set rather than on a separate one.)

to improve the system. Second, we recognize that our system still requires a lot of tun-
ing, both in terms of algorithm and feature selection. In particular, we would like to
experiment with other clustering algorithms and new features. Finally, we would like to
examine the AA more carefully to establish its strengths and weaknesses.

References

1. Northcutt, S., et al: SHADOW: Second heuristic analysis for defensive online warfare
2. Danyliw, R.: ACID: Analysis console for intrusion detections
3. Haines, J., Ryder, D.K., Tinnel, L., Taylor, S.: Validation of sensor alert correlators. IEEE

Security and Privacy (2003) 46–56
4. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Proceedings of the 4th Interna-

tional Symposium on Recent Advances in Intrusion Detection (RAID 2001), LNCS #2212,
Davis, CA, Springer-Verlag (2001) 54–68

5. Hätälä, A., Särs, C., Addams-Moring, R., Virtanen, T.: Event data exchange and intrusion
alert correlation in heterogeneous networks. In: Proceedings of the 8th Colloquium for In-
formation Systems Security Education (CISSE), Westpoint, NY, CISSE (June 2004 2004)
84–92

6. Smith, R., Japkowicz, N., Dondo, M.: Clustering using an autoassociator: A case study in
network event correlation. In: Proceedings of the 17th IASTED International Conference
on Parallel and Distributed Computing and Systems, Phoenix, AZ, ACTA Press (November
2005) 613–618

7. Japkowicz, N., Smith, R.: Autocorrel ii: Unsupervised network event correlation using neural
networks. Contractor Report CR 2005-155, DRDC Ottawa, Ottawa, ON (October 2005)

8. Julisch, K., Dacier, M.: Mining intrusion detection alarms for actionable knowledge. In:
Proceedings of SIGKDD ’02, the 8th International Conference on Knowledge Discovery
and Data Mining, Edmonton, Alberta, Canada, ACM Press (July 2002 2002) 366–375

9. Dain, O., Cunningham, R.K.: Fusing a heterogeneous alert stream into scenarios. In: Pro-
ceedings of the 2001 ACM Workshop on Data Mining for Security Applications, Philadel-
phia, PA, ACM Press (November 2001 2001) 1–13

10. Zanero, S., Savaresi, S.M.: Unsupervised learning techniques for an intrusion detection
system. In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia,
Cyprus, ACM (2004) 412–419

11. P. Laskov, P. Dussel, C.S., Rieck, K.: Learning intrusion detection: Supervised or unsuper-
vised? In: Proceedings of the International Conference on Image Anaylsis and Processing
(ICIAP 2005). 13th International Conference, Cagliari, Italy, Springer (2005) 50–57

12. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incoming data via the EM
algorithm. J. Royal Stat. Soc., Series B 39(1) (1977) 1–36

13. Kohonen, T.: Self-Organizing Maps. Volume 30 of Springer Series in Information Sciences.
Springer-Verlag, Berlin, Germany (1995) (Second Extended Edition 1997).

14. Roesch, M.: Snort—lightweight intrusion detection for networks. In: Proceedings of LISA
’99: 13th Systems Administration Conference, Seattle, Washington, The USENIX Associa-
tion (November 7–12 1999) 229–238

15. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 darpa off-line intrusion
detection evaluation. Computer Networks 34(4) (2000) 579–595

16. Northcutt, S.: Network Intrusion Detection: An Analyst’s Handbook. New Riders Publish-
ing, Indianapolis, IN (1999)

