
1

Anomaly Detection in Gamma Ray Spectra: A

Machine Learning Perspective
Shiven Sharma, Colin Bellinger and Nathalie Japkowicz

School of Electrical Engineering and Computer Science

University of Ottawa

Email: {sshar009, cbell052, nat}@uottawa.ca

Rodney Berg and Kurt Ungar

Radiation Protection Bureau Health Canada

Email: {rodney.berg, kurt.ungar }@hc-sc.gc.ca

Abstract—With Canadian security and the safety of the general
public in mind, physicists at Health Canada (HC) have begun
to develop techniques to identify persons concealing radioactive
material that may represent a threat to attendees at public
gatherings, such as political proceedings and sporting events.
To this end, Health Canada has initiated field trials that include
the deployment of gamma-ray spectrometers. In particular, a
series of these detectors, which take measurements every minute
and produce 1,024 channel gamma-ray spectrum, were deployed
during the Vancouver 2010 olympics. Simple computerized statis-
tics and human expertise were used as the primary line of
defence. More specifically, if a measured spectrum deviated
significantly from the background, an internal alarm was sounded
and an HC physicist undertook further analysis into the nature
of the alarming spectrum. This strategy, however, lead to a
significant number of costly and time consuming false positives.
This research applies sophisticated machine learning algorithms
to reduce the number of false positives to an acceptable level,
the results of which are detailed in this paper. In addition,
we emphasize the primary findings of our work and highlight
avenues available to further improve upon our current results.

I. INTRODUCTION

Health Canada’s role in monitoring the levels of radiation

in the atmosphere surrounding nuclear power plants is long

standing. More recently, their involvement, with respect to

the health and safety of Canadians, has been expanded into

monitoring public events, the objective being to undertake

research into automating the identification of concealed ra-

dioactive materials that have a potential to pose a significant

threat to attendees at large public gatherings.

Machine learning is a vast and ever expanding area of

artificial intelligence that presents considerable potential in the

domain of radioactive threat detection. In order to facilitate

the development and testing of algorithms for this purpose,

the NARNIA (New Algorithms for Radiological Network

Inferential Alarming) project was created by Health Canada.

NARNIA involved the deployment of a series of gamma-ray

spectrometers around the various venues at the Vancouver

2010 Olympics for the duration of the games. The result

was a repository of datasets that continue to be used in the

development of a multi-categorical alarm system. We have

subsequently been collaborating on the development of such

a system.

Our research into the applicability of Machine Learning

solutions to the problem of anomaly detection in gamma-

ray spectra led to the observation that spectral readings taken

during heavy rain events arise from a probability distribution

that is distinct from those coming during the absence of rain,

or light to moderate rainfall. As a result, we propose a two-

tier system that first separates spectra based on rain and non-

rain events using a standard binary classification algorithm,

and then detects anomalous readings using the Mahalanobis

Distance as an anomaly detection algorithm.

The subsequent sections elaborate on our research and

the resulting architecture along with the results. Specifically,

Section II provides insight into the datasets used during our

research, along with our procedures for converting them into a

form suitable for use by Machine Learning algorithms, and the

subsequent analysis of the data. In Section III, we discuss the

various machine learning paradigms, the challenges posed by

their nature with respect to the machine learning algorithms,

and with the implications of heavy rain events, as heavy rain

elevates levels of radiation due to radon daughter washout

from it. Given that Anomaly Detection is at the core of this

research, we present the algorithms considered for inclusion in

the system in Section IV. The resulting system is discussed in

Section V. The experiments undertaken to validate the system

are presented in Section VI, and their results are discussed in

Section VII. Finally, we conclude the report in Section VIII,

with a discussion of possible avenues for future research within

this problem domain.

II. GAMMA-RAY SPECTROMETER DATA

A gamma-ray spectrometer is an instrument that measures

the distribution of the intensity of gamma radiation versus the

energy of each photon. The resulting measurements can be

plotted as in Fig. 1.

This realization of the data is in log form, which is the

standard method for viewing and analyzing such data. Fig. 1

(i) and Fig. 1 (ii) correspond to a pure background measure-

ment and background plus Technicium, respectively. Energy

is represented in terms of channels on the x-axis and the

counts, which indicate the intensity, are recorded on the y-

axis. The lower channels in the plots correspond with lower
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Fig. 1. These figures contain randomly selected examples from the HC dataset. Plotted on the log-scale, sub-figure (i) depicts a background instance and
sub-figure (ii) depicts and instance containing the medical isotope Technicium.

energy photons; the energy increases with the channels. The

isotopes of interest in our experiments all peak well below

channel 600, and thus, to minimize the affects of the so-called

‘curse-of-dimensionality’ our algorithms only utilize the first

600 channels (which corresponds to 1800keV).

Health Canada deployed NaI detectors during the Vancouver

Winter Olympic Games in 2010 thereby producing a catalogue

dataset that can be used for the development and testing of

Machine Learning approaches to multi-category alarm sys-

tems. The data was collected in one-minute intervals during the

one-month period surrounding the games, thereby producing

a dataset of 708,480 spectra readings. Upon installation, the

detectors provided the means to collect spectral data which

could then be utilized for detecting radioactive isotopes of

interest.

Data from three stations was utilized in the experiments

described below. Apart from the plethora of background mea-

surements recorded at these sites, the readings contained spec-

tra from three medical isotopes, namely Iodine, Thallium and

Technicium (one of the stations also had readings for Caesium,

which were the result of a check-source). In addition to the

medical isotopes that were measured and identified as a result

of people passing by the gamma-ray spectrometers, artificial

Cobalt spectra at varying signal strengths was generated for

use in the development of the system. These were subsequently

incorporated into the data.

Finally, to aid in the development of a strong classification

system, the data was labelled as belonging to a rain or non-

rain class. This weather information was acquired from the

Environment Canada website for the period of the Vancouver

Olympic Games, and by observing the increase in radiation

by examining the spectra.

III. MACHINE LEARNING ALGORITHMS

Given that the crux of our work involves the utilization of

machine learning tools to improve the detection capabilities

of the system employed by Health Canada, it is prudent

to provide a comprehensive overview of machine learning

with respect to past work done in related fields, the various

paradigms and their associated algorithms and the algorithms

chosen for the final system, along with the challenges pre-

sented by the given spectral data.

A. Related Work

Machine learning algorithms first appeared in the context of

spectral analysis in the early 1990s. These initial studies were,

in essence, laboratory experiments aimed at determining the

effectiveness of machine learning algorithms at identifying the

presence of a single isotope of interest in test spectra, based

on models learned from training data.

Olmos et al., in [1] and [2], for example, applied a linear

associative memory neural network to identify the presence

of 133Ba and 57Co in spectra recorded during laboratory

experiments, and found that the results represented an im-

provement over traditional ‘peak fitting’ strategies. Abdel-

Aal and Al-Haddad reported improved results in [3], when

applying abductive machine learning to identify a small set

of radioisotopes in gamma-ray spectroscopy. More recently,

Kangas et al. reported the results of applying multilayer

perceptron neural networks in [4] to analyze the shape of

low resolution polyvinyl toluene spectra data acquired from

port monitoring technology. Multilayer perceptrons were also

applied by Vignerson et al., in [5], to determine 235U/Utotal

ratios, and Yoshida et al. for radionuclide detection in uranium

ore [6].

While this study suggest that machine learning algorithms

offer the possibility of improved efficiency and detection, the

studies are far from comprehensive, and generally rely on
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TABLE I
AUC VALUES FOR ALL STATIONS, OVER ALL BINARY CLASSIFIERS, FOR BOTH RAIN AND NON-RAIN ANOMALY DETECTION SYSTEMS.

Results over Rain Classifications from Phase I

Station 6 Station 12 Station 13

IBK J48 NBC IBK J48 NBC IBK J48 NBC

0.993 0.991 0.994 0.998 0.998 0.998 0.999 0.999 0.999

Results over Non-Rain Classifications from Phase I

Station 6 Station 12 Station 13

IBK J48 NBC IBK J48 NBC IBK J48 NBC

0.992 0.993 0.994 0.999 0.999 1.000 1.000 0.999 1.000

C. Phase II: Isotope/Anomaly Detection

Subsequent to rain classification, the instance is passed to

the appropriate rain or non-rain model, where it is assessed for

its normality. Specifically, is this another background instance,

or is it deserving of further consideration?

Pursuant to our previous discussion regarding the imbalance

resulting from the scarcity of spectra of isotopes of interest,

this phase relies solely on an anomaly detection algorithm.

We have thus far described four different algorithms worthy

of consideration. Our initial experiments on obtaining rankings

from each of these algorithms have led us to conclude that the

Mahalanobis Distance (MD) offers the best results, as opposed

to either the Autoassociator (AA), support vector machine

(SVM) or the Variance in Angle Spectrum (VAS). Both the AA

and VAS have extremely long training times, which increase

drastically, proportional to the dimensionality of the data being

trained. But perhaps crucially the greatest advantage that the

MD has over AA and VAS is the near-Gaussian nature of the

spectral data. MD calculates the distance explicitly assuming

a Gaussian distribution; given the nature of the data provided,

this allows MD to be remarkably accurate, thereby giving

rankings that are as close to being probabilistically accurate.

It is for this reason that we chose the MD over the others for

the second phase of our system.

VI. EXPERIMENTS

This section details the experimental framework undertaken

to validate the performance of our two-tier system for anomaly

detection. We begin by providing a detailed description of data

pre-processing, followed by the training and testing procedures

used for validating the system.

A. Data Pre-processing

The initial phases of pre-processing have been described

in Section II. Data from the measuring stations was split

into two parts, namely background data and medical isotope

data. Health Canada had also provided us with artificially

generated Cobalt data, which was divided into two parts,

rain and non-rain. Each of these contained Cobalt spectra of

varying intensities, ranging from 50 (i.e. the weakest strength)

to 500 (i.e. the strongest strength). In accordance with our

discussions with the experts at Health Canada, we augmented

this data with the medical isotope data from each of the three

stations; it was made clear to us that the Cobalt data was

station independent, and thus could be used in conjunction

with the medical isotopes from all stations.

The issue of high dimensionality was resolved by consider-

ing only the energy ranges from 0 to 1800keV, as the isotopes

that interest Health Canada all lie below 1800keV.

The background data from each station is further divided

into two sets, one for rain events and one for non-rain events.

The labelling of the background data into rain and non-

rain events is done based on information provided by Health

Canada, and the weather information for Vancouver provided

by Environment Canada. The purpose of this explicit labelling

is to facilitate binary learning for Phase I. Both sets are

combined, and then divided into 10 folds, each fold being 90%

of the cardinality of the combined set. The remainder of the

set is used for validation purposes. This process is called 10-

fold cross-validation. The validation set from the background

data is augmented with the medical isotope data to produce

our final testing set.

B. Training and Testing Procedures

As detailed in previous sections, our system is a two-tiered

model. Phase I is comprised of a binary learning algorithm,

which aims to induce a discriminant function that can separate

normal spectra from spectra observed during heavy rain events.

We use three different binary learning algorithms, namely De-

cision Trees, Naı̈ve Bayes and an Instance Based Learner. The

training set extracted from the background data, as described

in the aforementioned sub-section, is passed on to the binary

learner of Phase I. Once the classifier has been induced, we

can label the testing data, comprised of the remainder of the

background data along with the medical isotope data, and

proceed to Phase II.

Phase II consists of two anomaly detection systems, one

for rain events and another for non-rain events. Specifically,

we use the Mahalanobis Distance (MD). The Mahalanobis

distance relies on the calculation of a mean and a covariance

matrix. These are calculated using the training data; the

matrices for the rain system are calculated using the rain events

from the background training set, and conversely, the matrices

for the non-rain system are calculated using the non-rain events

from the background training data. Note that we only use

the background data for calculating the matrices, since the

anomalies we expect to find are relative to the background.

Once we have our matrices, the rain and non-rain datasets

of the testing data resulting from Phase I are passed to the

appropriate anomaly detection system, and once the MD has

been calculated, we obtain our final rankings. It is expected

that the spectra displaying the greatest anomaly to the mean

would have the largest distances, and vice versa.
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Fig. 4. This illustrates the complete experimental framework undertaken to
validate our proposed architecture.

Fig. 4 graphically illustrates the entire experimental frame-

work. The following section will present the results obtained

based on this framework.

VII. RESULTS

The results obtained from the experiments conducted, as

described in the previous section, are presented here. We first

produce the Area Under the ROC Curve (AUC) values for

each of the three binary classifiers, for each station. This is

followed by the ROC plot for NBC on station 6. In the interest

of brevity, we have included only the ROC plot for the best

classifier on the most difficult station, station 6.

In order to verify whether the classifier induced during

Phase I does indeed provide an improvement over the final

rankings obtained from Phase II, we also present the AUC

values obtained in the absence of Phase I. Specifically, we

build the matrices for MD using both rain and non-rain

background data, and produce distance rankings using a testing

set comprised of both rain and non-rain background and med-

ical isotope data. We conclude the section with a discussion

elaborating on the conclusions derived from these results.

A. Results from the Two-Tier Anomaly Detection System

Table I presents the AUC values obtained from the rankings

produced by the system over all stations, using each of the

three binary classifiers, during Phase I.

The ROC curve for the results obtained by Health Canada

for station 6 is given in Fig. 5. For our architecture, in all

cases, the Naı̈ve Bayes Classifier (NBC) produces the best

results, and thus, we display the associated ROC curve for

ROC curve for Station 6
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Fig. 5. The ROC plot for Station 6. This plot was generated using the results
obtained by utilizing the techniques employed at Health Canada.

NBC at stations 6, for both rain and non-rain events in Fig. 6.

It can clearly be seen that incorporating Machine Learning

for anomaly detection results in a marked improvement in

performance. Moreover, this is, indeed, the case for the data

collected at the other stations as well.

B. Results from no rain separation

Here we display the results obtained when no binary clas-

sifier is induced in order to separate rain spectra from non-

rain spectra and pass it to the appropriate anomaly detection

system. Consequently, only a single anomaly detection system

is used. Table II shows the AUC values for this system.

TABLE II
AUC VALUES FROM NO RAIN SEPARATION.

Station AUC Value

Station 6 0.991

Station 12 0.999

Station 13 0.999

C. Discussion

The AUC values for NBC in Table I demonstrate the

spectacular performance of the two-tier system. Indeed, an

AUC value of 1 is one that is the ultimate goal of every

classifier; it implies a perfect ranking, devoid of any classi-

fication errors. This can be attributed primarily to the nature

of the probabilistic distribution of the individual channels of

the spectral data, a fact alluded to in Section V-C. The near-

Gaussian distribution of each channel makes the feature space

of the domain exceptionally conducive to the application of

the Mahalanobis Distance (MD). This in turn produces the

results that we see here.

It is interesting to note that even without using a binary

classifier to split testing data into rain and non-rain classes, the

MD based anomaly detection system still produces exceptional

AUC values, as seen in Table II. In comparison with results

from Table I, however, we note that the two-tier system outper-

forms the single-tiered system over all stations. Even though

the differences in the results may appear to be minuscule, it

is prudent to be wary of the fact that a minute difference
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ROC Curve for Station 6 with Rain (NB)
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ROC Curve for Station 6 without Rain (NB)
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Fig. 6. The ROC curves for Station 6 for both rain and non-rain events, using the Naı̈ve Bayes Classifier and the Mahalanobis Distance..

TABLE III
TOTAL NUMBER OF TRUE POSITIVES (TPS) AND FALSE POSITIVES (FPS)

INCURRED WITH (2-TIER) AND WITHOUT (1-TIER) RAIN SEPARATION.

Station 6

1-Tier 2-Tier

TPs FPs TPs FPs

3758 336 3950 144

Station 12

1-Tier 2-Tier

TPs FPs TPs FPs

3856 98 3918 36

Station 13

1-Tier 2-Tier

TPs FPs TPs FPs

3900 24 3914 10

in AUC values can still imply a large difference in correct

classifications. In other words, the single-tiered system ranks

more background instances over medical isotopes, and vice

versa, as compared to the two-tier system. This is illustrated

in Table III, where we can see that without inducing a rain

separating classifier, the single-tier system gives more than

twice as many false alarms as the two-tier system. Note that the

true positive and false positive values are given for the Naı̈ve

Bayes classifier based two-tier system, since this classifier

provided the best AUC values overall.

VIII. CONCLUSION AND FUTURE WORK

The primary objective of the project undertaken was to

devise an automated system that could identify and alarm

appropriately on anomalous gamma-ray spectral readings, with

little, if any, intervention on the part of the human personnel

involved. Machine Learning tools were considered in order

to achieve the stated objectives, and the result was a two-tier

system for spectral anomaly detection. The two-tier design

was devised based on the observation that spectral readings

acquired during heavy rain events had been identified as

being detrimental to effective anomaly detection, and therefore

would need to be filtered out a priori. Thus, in Phase I

of the two-tier system, we induce a binary classifier that

learns to discriminate between spectral readings occurring

during heavy rain events, and readings occurring during all

other conditions. Spectra passed to this classifier would be

classified into either case, and passed on to the appropriate

anomaly detection systems (i.e. one for either rain or non-

rain events), which comprise Phase II of the two-tier design.

The Mahalanobis Distance is used as the anomaly detector

in this phase, as the Gaussian assumption inherent in its

calculations conforms exceedingly well with the probability

distributions of the individual energy channels of the data. The

final product of the system is a ranking of spectral readings

based on their Mahalanobis Distance from the appropriate

background means, with higher values indicating a larger

anomalous nature.

The results obtained from our experiments validate the

employment of a two-tier design for automating anomaly

detection. AUC values obtained by using the Naı̈ve Bayes clas-

sifier during Phase I indicate that an overwhelming majority

of medical isotope spectra are ranked above the background

spectra. Of particular importance is the fact that the spectra

for Cobalt, specifically spectra with weak signal strengths,

are also ranked above the background spectra. This is a vast

improvement over the systems employed at Health Canada, as

we were informed that their systems could not identify spectra

with strengths below 200 (the strengths ranged from 500, being

the strongest, to 50, being the weakest). This further attests to

the strength and accuracy of our anomaly detection system.

However, there still remains scope for further research

into improving the efficiency of our system. The output of

the system, as of now, is a list of rankings based on the

Mahalanobis distance. Ideally, what would be required is a

threshold on the distance that would split the output into two

separate classes, one on which an alarm would be required,

and the other which is benign. The selection of an appropriate

threshold, then, is an area that we will further look into.

A major limiting factor in Machine Learning research,

especially in domains similar to spectral anomaly detection, is

the scarcity of data from particular classes, which, ironically,

tend to be classes we are most interested in identifying. This

has been alluded to previously in this paper. Specifically,

the isotopes we are most interested in identifying have no
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representative spectra in the data provided. This naturally

complicates accurate identification of said isotopes. One pos-

sible method to alleviate the problem of data scarcity is to

generate artificial data that would best reflect real data, if

it were available. However, as can be expected, the quality

of artificial data would greatly affect the resulting classifier

induced through it. We are currently working with the experts

at Health Canada in obtaining data relating to isotopes of

major interest that reflects genuine spectra as accurately as

possible. Upon obtaining these spectra, we will conduct further

experiments, using them in conjunction with the isotopes

already available, and evaluate the efficiency of our system,

modifying it appropriately to conform with the new data.

To conclude, we have developed a two-tier system for

ranking spectra based on how anomalous they are from the

background spectra. The rankings produced are significantly

better than those produced by manual inspection, particularly

in the case for Cobalt. Furthermore, the inclusion of a classi-

fier, prior to anomaly detection, to separate spectra based on

whether or not they were obtained during heavy rain events or

not, greatly reduces the number of false positives, as opposed

to the case where a-priori separation is not undertaken. We

have identified several areas which are deemed worthy of

future research that have the potential to lead to further

improvements within our spectral anomaly detection system.
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