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Abstract. Monitoring the levels of radioxenon isotopes in the atmo-
sphere has been proposed as a means of verifying the Comprehensive
Nuclear-Test-Ban Treaty (CTBT). This translates into a classification
problem, whereby the measured concentrations either belong to an ex-
plosion class or a background class. Instances drawn from the explo-
sions class are extremely rare, if not non-existent. Therefore, the result-
ing dataset is extremely imbalanced, and inherently suited for one-class
classification. Further exacerbating the problem is the fact that the back-
ground distribution can be extremely complex, and thus, modelling it us-
ing one-class learning is difficult. In order to improve upon the previous
classification results, we investigate the augmentation of one-class learn-
ing methods with clustering. The purpose of clustering is to convert a
complex distribution into simpler distributions, the clusters, over which
more effective models can be built. The resulting model, built from one-
class learners trained over the clusters, performs more effectively than a
model that is built over the original distribution. This thesis is empiri-
cally tested on three different data domains; in particular, a number of
artificial datasets, datasets from the UCI repository, and data modelled
after the extremely challenging CTBT. The results offer credence to the
fact that there is an improvement in performance when clustering is used
with one-class classification on complex distributions.

1 Introduction

Compliance verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT)
provides a challenging and an interesting domain for classification. Amongst the
technologies used for compliance verification, namely hydro acoustic, infrasound,
seismic and radionuclide monitoring [15], the latter provides the only means for
unambiguously discriminating a low-yield, clandestine nuclear explosion from
other, background events. Thus, in support of the CTBT, monitoring stations
with the capability of sampling and measuring the active concentration of four
radioxenon isotopes, namely 3™ Xe, 133 Xe, 133 Xe, and 13°Xe by SPALAX
technology [14,4], have been installed at numerous sites across the globe.
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The verification challenge lies in discriminating background measurements
from those derived from anthropogenic nuclear explosions. The problem is fur-
ther exacerbated by the fact that measurements from explosions are, in essence,
non-existent. Thus, the resulting datasets are, at best, highly imbalanced.

Traditional classification algorithms, which are discriminatory in nature since
they rely on discriminating between all data classes to build models, are known
to suffer when presented with imbalance [10]. As a result, one-class (OC) clas-
sifiers become more appealing. These methods use data from a single class to
build a model, and are based on recognition, since they learn to recognise data
from a particular class, and reject data from all other classes.

For the purposes of compliance verification, OC classifiers aim to learn a de-
scription of background data. However, this data comes from a highly complex
distribution, and modelling all the various nuances in order to correctly recog-
nise/reject future instances becomes increasingly difficult. This inevitably leads
to ineffective performance. A remedy to this problem is to cluster the complex
distribution into simpler distributions, and build OC classifiers on these clus-
ters. The resulting combined model should perform more effectively than if we
had trained OC classifiers on the original distribution. This idea is illustrated in
Figure 1.

In order to examine the effects of clustering for simplifying complex distribu-
tions, we conduct experiments using two different OC classifiers, an autoassoci-
ator (AA) [8] and a probability density estimator (PDEN) [6], on three different
types of datasets: two artificial datasets, seven datasets from the UCI reposi-
tory, and data modelled after the challenging CTBT domain. The results offer
evidence in support of the fact that clustering increases the performance of OC
classifiers when dealing with complex distributions.

A Complex Multimodal Distribution

— A A

Cluster into simpler
distributions

Build one-class | | | 1 | | | |

model over each
cluster

Final classifier composed of all models

Fig. 1. Framework for One-class classification using Clustering



Clustering Based One-Class Classification 3

The remainder of the paper is structured as follows. Section 2 contains an
overview of previous work in the field of OC classification, and the use of classifi-
cation for the verification of the CTBT. A description of the basic framework of
the system and how classification is done within it, along with a mathematical
formulation and analysis of the framework are presented in Section 3. The ar-
tificial dataset, the UCI datasets and the CTBT data are described in detail in
Section 4. The experimental framework is described in detail in Section 5. The
results of the experiments are presented and discussed in detail in Section 6.
Finally, we provide concluding remarks and possible directions for further work
in Section 7.

2 Related Work

This section is divided into two parts. In the first part, we provide an overview
of OC classification. This is followed by an overview of classification based veri-
fication of the CTBT.

2.1 One-Class Classification

Many real-world situations are such that it is only possible to have data from one
class, the target class; data from other classes, the outlier classes, are either very
difficult or impossible to obtain. Examples of such domains include those in which
there are almost an infinite number of instances from the outlier classes, such
as in typist recognition, or those in which obtaining instances from the outlier
classes is dependent upon the occurrence of a rare event!, such as the detection of
oil spills [9], the inclusion of journal articles for systematic reviews [12], or, as in
our particular case, the verification of the CTBT by measuring concentration of
radioxenon isotopes. A traditional approach to OC classification is to use density
estimation. This is performed by attempting to fit a statistical distribution to the
data from a single class (the target data), and using the learnt density function to
classify instances as belonging either to the target class (high density values), or
to the outlier class (low density values). Parametric approaches rely on reliably
estimating the distribution of the data beforehand, a challenging and impractical
task given that most real-world data takes a complex distribution. An alternative
approach to parametric techniques would be to use non-parametric techniques,
such as Parzen Windows. But, as the dimensionality of the data increases, these
methods suffer from the well known curse-of-dimensionality problem, whereby
the computational complexity for density estimation increases drastically.
There are algorithms designed specifically for OC classification. An example
of a OC classifier is the AA, which can be thought of as a compression neural
network, where the aim is to try to recreate the input at the output, with the
compression taking place at the hidden layers. Hempstalk et al., in [6], describe a

! It is likely that the outlier class for classification is the target class in reality. However,
we use the term target class to denote the majority class, and it may or may not be
the intuitive target class.
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method, PDEN, for estimating the probability density function of a single class
by first obtaining a rough estimate of the density of target class, generating
an artificial class based on it and then performing binary learning. Yet another
example of a OC classifier is the OC Support Vector Machine (OCSVM) [11].
OCSVMs assume the origin in the kernel space to be the second class, and,
subsequently, learn a boundary that separates the target class from the origin.

3 Framework: Description and Analysis

The framework consists of two parts: the OC classifier used to model the data,
and the clustering algorithm which clusters the data. Training is a two step
process; cluster the given data using the clustering method, and then build a
model using a OC classifier on each cluster. The final classifier is an ensemble
of all the various classifiers built on the clusters. Classification is done by a
simple method: If a datum is positively classified by at least one of the models,
then it is assigned to the target class; otherwise, it is classified as an outlier.
A mathematical formalization of this framework is presented in the following
subsection.

3.1 Mathematical Analysis

Let X represent the set of instances under consideration, and w be the class to
which they belong. What we are interested in obtaining is P(X|w), the actual
posterior probability density function (pdf). Knowing this can allow for OC
classification by imposing a threshold 7 on the value of this function, i.e.,

target, if P(z € X|w) > 7

Classification(z € X) = ) . (1)
outlier, otherwise

However, in practice, the best we can do is obtain an estimate P(X|w) of P(X |w).
Given this estimate, and the classifier formulation given in Eq. (1), there are two
sources of error that can occur when using P(X|w):

€;: The probability that we classify a target instance as an outlier instance (a
false negative).

€,: The probability that we classify an outlier instance as a target instance (a
false positive).

Now, we cluster X to obtain c¢ clusters X;, where X = U;::l X;. The clusters
may or may not be disjoint. We treat each cluster i as belonging its own unique
class w;, having its unique pdf P(X;|w;). Performing OC classification on these
clusters is equivalent to obtaining an estimate P(X;|w;) of P(X;|w;). As before,
each P(X;|w;) will have its own two sources of error, namely €/ and €. Let eM
and €M denote the error of the combined model, composed of the various models
built over the clusters.
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Since each cluster represents a simpler distribution as compared to the origi-
nal distribution, a OC learner should be able to model a cluster more efficiently
than the original distribution?. In other words, Vi € [1,¢], (€} < &) A (€} < €,),
and consequently, €M < ¢ and € < e,.

We will now attempt to derive a relationship between the combined model
errors, €M and €| and the error of the single model over X, ¢; and ¢,, for both

cases of error, using the assumption stated in the previous paragraph.

— Error of False Negatives: For the combined model, this will occur when a
target instance is rejected by all of the cluster models. Since the probability
of a single cluster model i rejecting a target instance is €!, and each € is a
mutually independent event, the probability of the combined model rejecting
a target instance is [[;_, €;. Based on the aforementioned hypothesis, since
€l <€, we have [[;_, € = eM <¢.

— Error of False Positives: For the combined model, this will occur when an
outlier instance is incorrectly accepted by any one of the cluster models.
Since the probability of a single cluster model i accepting an outlier is €,
and each €’ is a mutually independent event, the probability of the combined
model accepting an outlier instance is > ;_, €i. In order for € to be less
than or equal to €,, in the simplest case, if we assume all €} to be equal, a
necessary condition is that each e < 2. However, given that the distribution
of instances represented by the clusters is far simpler than the original, more
complex distribution, we assume that all € will have values to ensure that

c
D ie1 €0 < €o-

A theoretical proof of the aforementioned statement will be impossible to
obtain, since the error probabilities are dependent on the original distribution,
the clusters, the various thresholds and the learning model, all of which are highly
variable in practice. Thus, in the subsequent sections, we will conduct a series
of experiments in order to obtain evidence that would support the clustering
approach.

4 Description of the Data Sets

This section provides a description the various data sets used in the experiments.
We begin by describing the artificial datasets, followed by the UCI datasets and
finally, the CTBT dataset.

Artificial Data: The purpose of using artificial data is to create an idealized data
distribution on which we can test the clustering approach to OC classification. By the
very fact that it is artificial, we make no attempt to use the results from these datasets
to generalize over to practical, real-world problems. However, using artificial data is
an important step since it provides a starting point towards more practical, empirical
evaluation; it is but a means to an end.

2 Tt should be noted that since the cluster models are built only over their correspond-
ing clusters, the distribution of instances that they represent is not the original
distribution, but one represented by the corresponding clusters.
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There are 20,000 target instances and 125 outlier instances, all part of a bivariate,
multimodal distribution consisting of four Gaussian distributions for the target class,
and five Gaussian distributions for the outlier class. The high level of imbalance re-
sults in the dataset being conducive for OC classification. The standard deviation for
both dimensions for the target class is 3. The target class has the following mean vec-
tor: {(5,5), (25,5), (5,25), (25,25)}. The outlier distribution has following mean vector:
{(15,2.5), (15, 15), (15, 27.5), (2.5, 15), (27.5,15) }, and a standard deviation of 2.

Clustering should improve performance in multimodal distributions, but what of
unimodal, or simple distributions? In order to investigate this, we use a second artificial
dataset. The target class is a unimodal, bivariate Gaussian, having a mean of (15, 15),
and a standard deviation of 2.75. The outlier class is modelled by four bivariate Gaus-
sians, with {(5,15), (25, 15), (15, 5), (15,25)} as the mean vector. Both distributions are
illustrated in Fig. 2.

¥ Outlier ¥ Outlier
Multimodal Data | O Target Unimodal Data | O Target

Y - Axis
Y - Axis
5
L

(i) (ii)

Fig. 2. The two artificial datasets. The larger, denser clusters represent the target
classes, whereas the smaller, sparse clusters are the outliers.

UCI Datasets: Although data from the UCI repository does not display the sort
of class imbalance that is ideal for OC classification, we have included the following six
datasets for completeness; a) diabetes, b) heart disease, ¢) hepatitis, d) ionosphere, €)
thyroid disease, f) sonar, and g) WBCD.

CTBT Dataset: Finally, the CTBT data, which we have presented as our pri-
mary domain, is the result of a series of simulated industrial radioxenon emitters and
random clandestine tests [2]. The simulation is required here as no “real” clandes-
tine test data exists. The modelling and simulation framework operates in two phases.
With respect to the CTBT domain, the initial phase models the affect of industrial
sources of radioxenon on the surrounding environment, and accounts for rates of re-
lease and variables within atmospheric environment. The second phase models the SE
event, in particular, the release of a radioxenon from low-yield, clandestine nuclear
test. Alternatively, earthquakes, tsunami waves or unpredicted releases of industrial
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pollutants might be modelled as SE events. In this application, the framework models
background noise-like non-SE pollutants as Gaussian plumes, and SE contaminants as
Gaussian puffs. Both of these Gaussian models have been extensively studied in the
literature, and, thus, their strengths and weaknesses are well understood (see [1,13],
for example).

5 Experimental Framework

The experiments are aimed at evaluating the performance of two OC classifiers, AA and
PDEN, and their clustered versions®. However, we use several binary classifiers (Mul-
tilayer Perceptron, the Naive Bayes classifier, C4.5 Decision Trees, AdaBoost, Bagging
and Support Vector Machines) in the experiments conducted on the multimodal ar-
tificial dataset, simply to illustrate their performance on highly imbalanced datasets.
All classifiers run with their default settings. This is done so as to prevent any bias
resulting from the fine tuning the parameters in order to obtain optimal results from
specific datasets.

PDEN has also been implemented in WEKA [5], and we use the Gaussian Estimator
as the density estimator, and AdaBoost with Decision Stumps as the class probability
estimator. Both of these were used with default settings. The binary classifiers have
also been used in WEKA.

The experiments with the AA were implemented using the AMORE?* R package,
and run in R®. One hidden layer was used for the AA in all the experiments, and the
number of training iterations was set to 50. The momentum value was set to 0.99, and
the learning rate to 0.01. The number of hidden units for the artificial datasets were
set to 4. For all other datasets, they varied from 1 to the number of dimensions of the
particular dataset.

The number of clusters for the multimodal artificial dataset was set to 4, given
the nature of the dataset. For the unimodal artificial dataset, the number of clusters
ranged from 2 to 10. For all other datasets, they varied from 2 to 20.

The performance measure we use is the geometric mean of the per-class accuracies.
It is given by g — mean = y/acc1 X accz, where acc; is the accuracy of the classifier on
instances belonging to class i. By definition, the metric is immune to class imbalances,
and sensitive to the per-class accuracies. It is for these reasons that we selected it for
our experiments. Evaluation is done using stratified 10-fold cross validation.

The threshold value for the AA is selected from the set of reconstruction errors
over the target training set which maximises the g-mean over the target and outlier
training sets. Note that the outlier training set is used only for this purpose; it has no
effect on learning.

3 We present the results graphically and omit the actual g-mean values, as the em-
phasis is more on the performance trends rather than on the values.

4 AMORE: A MORE flexible neural network package, http://cran.r-project.org/
web/packages/AMORE/index . html

® The R Project for Statistical Computing, http://www.r-project.org/
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6 Experimental Results

6.1 Results on Artificial Data:

For the multimodal dataset, the results presented are from running a single AA, a
single PDEN, clustered versions of both and a number of binary learning algorithms,
and are shown in Figure 3(i). For the unimodal dataset, the results presented are from
running only the non-clustered and clustered versions of the OC classifiers®, and are
shown in Figure 3(ii).

Results over the Multimodal Distribution

Autoassociator: Clusters vs. Normal
3 - | Normalw
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@ 4
% o] M
g ° © w | Clusters
LI: 2 a4 6 8 10
3 Number of Clusters
o PDEN: Clusters vs. Normal
o | Normal —\
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@ & & s : \ \ \
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Fig. 3. The left figure shows the results of various classifiers over the multimodal
dataset. The right figure compares the results of the clustered and normal versions of
the OC learners over the unimodal dataset.

We stressed earlier that the results over these toy datasets should not be interpreted
as a generalization of our method over all domains, and we reiterate that fact here.
These datasets merely serve as an illustration of the proposed approach. The multi-
modal dataset represents a scenario that has a high likelihood of being encountered in
practice, i.e., a complex, multimodal target distribution along with a high imbalance
ratio between the targets and outliers (in our case, an imbalance ratio of 160:1). The
results demonstrate a marked improvement in performance of the OC classifiers when
clustering is used, especially in the case of the AA, thus offering evidence in support
for the use of clustering. The inherent imbalance of the dataset also demonstrates the
failure of the binary classifiers. However, if the distribution is relatively simple, clus-
tering will have a detrimental affect. This can be attributed to the fact that training
recognition models on clusters of simple distributions leads to a model that overfits
the training data; the simple distribution contains all the information needed to build

5 Tests on binary classifiers are omitted as the purpose of these tests are only to
observe the effect clustering has on simpler distributions.
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the model, and clustering reduces that, thereby, leading to over-generalisation over
sub-regions of the distribution. This in turn causes a higher rate of misclassification of
unseen instances.

6.2 Results on UCI Datasets

Although none of these datasets are ideal for OC classification, the target classes have
complex distributions, and, as a result, we hypothesize that the a-prior: clustering will
improved the performance of the OC classifiers. Indeed, our experiments confirmed
our expectation. In particular, the clustered version of PDEN performs better than the
regular version on all datasets, whereas the clustered version of AA performs better on
four out of the seven datasets.

6.3 Results on the CTBT Data

We use three CTBT datasets, different only with respect to the level of imbalance
between the target (background) and outlier (explosion) classes. The results of the OC
classifiers over the dataset with an imbalance ratio of 10 : 1 are presented in Figure 4
(i), over the dataset with an imbalance ratio of 100 : 1 are presented in Figure 4 (ii),
and over 250 : 1 are presented in Figure 5.

Clustered vs. Normal over 5000/500 Clustered vs. Normal over 5000/50

I Clusters I Clusters
e B Normal e W Normal

G-Mean
G-Mean

Autoassociator PDEN Autoassociator PDEN

(i) (i)

Fig. 4. Results of the clustered and non-clustered (normal) autoassociator and PDEN
over the CTBT datasets.

In conducting this research, our domain of primary interest has been that of the
CTBT. This is specifically a result of the fact that previous attempts at appropriately
applying OC classification methods to the problem have fallen short. We attribute
this to the significant degree of complexity present within the background class of the
CTBT domain, which inhibits the development of a strong model for recognition-based
classification.

With the above in mind, we hypothesized that the utilization of clustering to di-
vide this complex, multimodal distribution into a series of simpler distributions would
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Clustered vs. Normal over 5000/ 20
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Fig. 5. Results of the clustered and non-clustered (normal) autoassociator and PDEN
over the CTBT datasets.

facilitate the development of a superior classification model for the verification of the
CTBT. The results presented in the previous section confirm this hypothesis. In par-
ticular, both of the explored OC classifiers perform significantly better when they are
assisted by an a-priori clustering phase. It is further encouraging to note that the
most significant gains were made on the dataset with an imbalance ratio of 100 : 1 and
250 : 1, which are both more challenging and realistic. This is particularly apparent in
the case of PDEN.

6.4 Statistical Analysis

We perform a statistical test on the results obtained on all the datasets (the multimodal
artificial, the UCI datasets and the three CTBT datasets) with AA, PDEN and their
clustered versions using a one-sided Wilcoxon Signed Rank Test. This test is more
powerful than the paired t-test, as it does not assume normal distributions, assumes
commensurability of differences and is less affected by outliers [3, 7]. A significance level
of 0.05 was selected. The results are presented in Table 1

Table 1. Results of the Wilcoxon Signed Ranks test for the clustered and regular
versions of the OC Classifiers. RT represents the minimum sum of ranks, which is
taken for those with a positive difference. The minimum sum of ranks should be less
than or equal to 10, for N = 11.

Classifier R™ p-value a-value Significant?

Autoassociator 8 0.0122 0.05 yes
PDEN 0 0.0004 0.05 yes
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The results support the fact that for both OC classifiers, the clustered versions
outperform the non-clustered classifiers. It is inherently obvious for PDEN;, since the
clustered version outperforms the non-clustered PDEN over all datasets, thereby giving
a minimum sum of ranks as 0.

7 Conclusion and Directions for the Future

Data from many real-world domains come from highly complex distributions, along
with high ratios of imbalance between the various classes, presenting ideal scenarios
for OC classification. For it to be effective, a OC classifier must be able to model
the data from the target class as precisely as possible. In our particular case, we were
interested in modelling the background data for the purposes of compliance verification
of the CTBT. In order to facilitate this, we investigated the use of clustering for dividing
the complex distribution into simpler distributions, which can be modelled more easily
by the OC classifiers. We tested the clustering method not just on our own problem
domain, but on artificial datasets and datasets from the UCI Repository. The results
showed that there is, indeed, an improvement in performance of the OC classifiers, and
this was reaffirmed by statistical analysis done using the Wilcoxon Signed Ranks Test.

There are several interesting directions for future research into the use of clustering
for OC classification. For the experiments presented here, we used a single cluster-
ing algorithm, the k-means algorithm, a simple yet relatively effective algorithm for
clustering. With respect to the OC classifiers, we only used AA and PDEN. In future
experiments, we will explore the use of clustering algorithms apart from k-means, such
as k-medoids or the EM algorithm, different OC classifiers, such as OCSVM and OC
nearest-neighbour. It is also likely that, depending on the problem domain, an ensem-
ble of OC classifiers can be used on the clusters, where a different classifier is trained
on each cluster.

Research into the detection of anomalous concentrations of radioneuclides in the
atmosphere has implications beyond the compliance verification of the CTBT; the
recent nuclear crisis in Japan is a stark reminder of the perils of reactor malfunctions.
Although this crisis was caused by a natural event and was therefore inherently obvious,
in more subtle cases, efficient systems for anomaly detection can act as early warning
signlas of impending reactor malfunctions, thereby allowing for timely intervention for
rectification and preclusion of large scale, possibly catastrophic, damage.
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