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Abstract— Tracking moving objects is a task of the utmost 
importance to the defence community. As this task requires high 
accuracy, rather than employing a single detector, it has become 
common to use multiple ones. In such cases, the tracks produced 
by these detectors need to be correlated (if they belong to the 
same sensing modality) or associated (if they were produced by 
different sensing modalities). In this work, we introduce 
Computational-Intelligence-based methods for correlating and 
associating various contacts and tracks pertaining to maritime 
vessels in an area of interest. Fuzzy k-Nearest Neighbours will 
be used to conduct track correlation and Fuzzy C-Means 
clustering will be applied for association.  In that way, the 
uncertainty of the track correlation and association is handled 
through fuzzy logic. To better model the state of the moving 
target, the traditional Kalman Filter will be extended using an 
Echo State Network. Experimental results on five different 
types of sensing systems will be discussed to justify the choices 
made in the development of our approach. In particular, we will 
demonstrate the judiciousness of using Fuzzy k-Nearest 
Neighbours and Fuzzy C-Means on our tracking system and 
show how the extension of the traditional Kalman Filter by a 
recurrent neural network is superior to its extension by other 
methods.  
 

Keywords— Computational Intelligence; Track Correlation; 
Track Association; Data Fusion; Defence and Security; Neural 
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I. INTRODUCTION 
racking moving targets is an important task in defence 
and security. Such a task can be performed with the help 

of various kinds of sensors, such as Radar, Global Positioning 
System (GPS) or Ground Moving Target Indicator (GMTI).  

Two tasks involved in the moving target tracking problem 
are track correlation and association. Track correlation is the 
generation of tracks based on different contact reports from 
the same sensor that are believed to describe the same object. 
When there are multiple types of sensors in the tracking 
system, if various tracks from different sensors are deemed to 
represent the same object, such tracks can be associated into 
one single track. The goal of track association is to develop 
tracks based on contact reports obtained from multiple types 
of sensors. Track correlation is typically done first. Based on 
the correlation results, track association then follows. The 
tracks could remain correlated even if an association could 
not be performed among them.  

As traditional and widely used tracking systems, 

Automatic Radar Plotting Aid (ARPA) radars [1] and the later 
developed Automatic Identification System (AIS) [2] have 
been applied in tracking endeavours. Recently, a new 
tracking format called Ground Moving Target Indicator 
(GMTI) [3] has been developed. This research will conduct 
track correlation and association on contact reports from 
these three types of sensors as well as the Global Positioning 
System (GPS).  

Our work makes the following three contributions:  
• We perform track correlation with Fuzzy k-Nearest 

Neighbours (Fuzzy k-NN) and apply Fuzzy C-Means 
(FCM) clustering for association. The advantage of 
using fuzzy logic for these tasks is that the membership 
grades to different concepts can help model the certainty 
of the correlation and association tasks.  

• We extend the traditional Kalman Filter (KF) using an 
Echo State Network (ESN), a particular type of 
recurrent neural network, to better model the state of the 
moving target.  

• We associate GMTI tracks with ARPA- and AIS- 
generated tracks. The novelty here lies in the fact that 
the GMTI technology was never used before within a 
Computational Intelligence (CI-) based framework, in 
conjunction with the older ARPA and AIS technologies. 

Additionally, we associate Synthetic Aperture Radar (SAR) 
contacts from Canada’s RADARSAT-2 system with AIS 
tracks. We will demonstrate the judiciousness of using Fuzzy 
k-NN and FCM within our tracking system and show how the 
extension of the traditional KF by a recurrent neural network 
is superior to its extension by other methods. 

The rest of the article is structured as follows. Section II 
briefly reviews relevant work whereas Section III introduces 
the new CI-based track correlation and association 
methodology. The empirical evaluation is unfolded in Section 
IV and some concluding remarks are given in Section V. 

II. RELEVANT WORKS 
The existing track correlation/association algorithms can 

be divided into CI-based and non-CI-based methods.  

A. Non-CI-based Track Correlation and Association 
The track correlation problem has been studied since the 

1970s. Kanyuch and Singer [4] used a simple 
computer-controlled gate technique where two tracks 
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consecutively falling within these gates, as verified by a 
number of statistical tests, will be declared as correlated. This 
simple method, however, was found to degenerate seriously 
in high-track-density environments. Later on, Bar-Shalom 
and Tse [5, 6] introduced two types of filters called the 
Probabilistic Data Association filter (PDA) and the Joint 
Probabilistic Data Association filter (JPDA) to perform track 
correlation and association. For these methods, a probability 
density function has to be estimated to express the uncertainty 
of the data. Unfortunately, these methods were sensitive to 
noise and they suffer from large computational complexity as 
the number of targets increases [7]. It would be 
computationally intractable when there are too many targets. 

The nearest neighbor (NN) algorithm is a well-known, 
simple and effective non-CI based method that can be used 
for track correlation/association purposes. The idea is that 
tracks that are closest to each other will be associated. S. Mori 
et al. [8] and C-Y. Chong et al. [9] use the Mahalanobis 
distance as the track association metric. In [8], several other 
track association metrics and fusion algorithms are compared 
using the linear Gaussian-Poisson model. However, these 
comparisons are restricted only to the simplest two-track 
scenario. It was shown that the NN method, though efficient 
in low-density cases, is not reliable in high-density scenarios.  

Previous works have also produced a number of 
Maximum- Likelihood-based methods. L. M. Kaplan et al. 
[10] defined a cost function derived from the Infinite Prior 
Likelihood (IPL) for multi-sensor track-to-track association. 
The disadvantage of this method is that in order to calculate 
the IPL, the prior has to be Gaussian which might not be true 
in all applications. Another approach by Bar-Shalom and 
Chen [11] assumed dependency of the estimation error of 
different sensors on the same target for track-to-track 
association and derived the track association likelihood from 
this assumption. From there, a likelihood ratio cost function 
used in a multidimensional assignment algorithm was 
proposed.  

Furthermore, as a well-known non-CI method, the Kalman 
Filter (KF) [12, 13] can also be used in the track 
correlation/association problem. In the KF framework, a state 
space representation has to be established first. Then, the KF 
is able to estimate the future state of the target’s movement 
based on current measurement and previous state estimations. 
Usually, the KF is used to analyze linear Gaussian systems; 
however, the movement of the target is not linear in most 
cases. There are many improved versions that were 
subsequently developed [14], such as the Extended KF and 
the Unscented KF, which mainly deal with nonlinear cases. In 
such methods, the nonlinear estimation is approximated by 
first-order and second-order Taylor expansions or sampling 
techniques. However, such modifications are much harder to 
solve. They will inevitably increase the computational 
complexity of the original KF. 

The M-out-of-N method was also designed for a number of 
specific sensors and platforms [15, 16]. In the M-out-of-N 
method, a cost function is first defined. A pair of tracks that 
have the minimal cost for M samples out of the last N 
associations will be fused into a single track. In this method, 
the measurements are assumed to be Gaussian and the cost 

function largely depends on the covariance of the state 
estimation. However, there is no criterion to decide the 
optimal value of M and N. For example, in [15] M seems to be 
arbitrarily set to 3 and N is arbitrarily chosen to be 4. 

In addition, other non-CI methods such as 
signal-processing-based techniques [17] and the Distributed 
Multi-Hypothesis Tracker [18] are also valid in track 
correlation/association. Such methods have been successfully 
applied to these types of problems. In [17], the track 
trajectory is considered to be “a signal in a certain period of 
time” and it is only able to conduct association. In [18], no 
evaluation of the fusion is provided.  

B. CI-based Track Correlation and Association  
A few CI-based approaches that lean on artificial neural 

networks [19] and fuzzy logic [20] were also used for track 
correlation and association. The track association problem 
can be viewed as a multi-dimensional classical assignment 
problem which could be solved by a Hopfield neural network 
[21]. Also, the same assignment problem can be solved by a 
Boltzmann machine [22]. However, such methods depend on 
an accurate weighted distance matrix which may be hard to 
get in some cases. 

The Multi-Layer Perceptron (MLP) can also be applied to 
track association [23]. The absolute value of the difference of 
course, speed, distance and bearing between two vessel tracks 
can be selected as the input vector. This method is based on 
the assumption that the smaller the difference, the higher the 
probability that the tracks belong to the same object. There is 
also a work combining General Regression Neural Network 
(GRNN) and the KF [24]. The GRNN is used to perform 
maneuver detection when the target is changing its speed. The 
output of the GRNN (i.e., the movement vector) is used in the 
KF’s state updates. The GRNN can only work well on 
maneuver patterns which are similar to the ones it has seen 
before. In such cases, the GRNN may need to memorize a 
large number of patterns, thus slowing down its performance.  

The correlation and association performance of classical 
systems can also be improved using fuzzy logic methods. 
Previous studies have found that by including properly 
defined fuzzy sets, Fuzzy Data Association renders better 
performance than the JPDA filter in certain cases [20]. The 
FCM clustering algorithm has also been used for the 
association task [25]. However, the method has to know the 
number of clusters in advance and is quite sensitive to this 
parameter. Besides, multi-factor fuzzy integration decision 
making can also be employed to judge the relevance degree of 
two tracks [26], but the algorithm is very complex as the 
fuzzy factor set, judgment matrix and integration evaluation 
rules have to all be defined. In [27], based on the precision of 
the data, different association equations are defined for the 
latitude, longitude, course and speed, and fuzzy association is 
performed based on the equations. This scheme, though 
simple and effective, is sensitive to the membership function 
parameters and thresholds needed to craft the fuzzy rule base.  

In this work, the tracking problem is divided into 
correlation, synchronization, association and filtering. 
Unfortunately, the existing approaches only solve part of the 
tracking problems in our system.  For example, MLPs [23] 
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can only let you know which tracks should be associated, but 
it is unable to fuse multiple tracks. M-out-of-N [15, 16] can 
only deal with association and GRNN and KF [24] are unable 
to conduct track correlation. Our contribution consists in 
filling in the missing parts. In addition, we employ a 
Recurrent Neural Network (RNN) under the KF framework 
to model the target movement in presence of nonlinearity. 
This is a novel algorithm which is shown to be effective and 
efficient. 

III. THE NEW CI-BASED METHOD 
In this section, a new CI-based correlation and association 

method is introduced. This method involves several steps 
including correlation, synchronization, association and 
filtering. It is worth mentioning that we are not building an 
entirely new approach. The novelty of this work is a practical 
and suitable amalgamation of existing methods to solve the 
correlation and association tasks.  

Fuzzy methods will be applied to both track correlation and 
association in order to gain insight into the certainty of these 
tasks. The track correlation relies upon the Fuzzy k-NN [28] 
method except for AIS messages, which are correlated via the 
Maritime Mobile Service Identity (MMSI) field, which is a 
serial number of nine digits used to uniquely identify a vessel. 
We are aware that in the real world a vessel’s MMSI may be 
incorrectly transmitted or intentionally spoofed. In such cases, 
we can use Fuzzy k-NN to correlate the AIS track, but in our 
experiment, we assume that all the MMSIs are reliable as 
most of the data used are synthetic.  

Different sensing systems may have different sampling 
periods and frequencies. They may also have different 
coordinate systems. Therefore, data from different sensors 
have to be synchronized before fusion is attempted. After 
synchronization, the tracks can be associated by FCM [29]. A 
joint KF and Recurrent Neural Network (RNN) approach is 
applied to the associated tracks. As in real-world applications, 
there will always be a certain amount of noise in the sensor 
measurements which is why the step of filtering is necessary. 

The KF is a well-known method that copes well with linear 
Gaussian systems. In the real world, however, the movement 
of the vessel is usually nonlinear. Although there are other KF 
extensions for nonlinear systems, they inevitably increase the 
computational complexity of the KF. Moreover, the reason 
for the nonlinear movement is that there is an additional 
parameter of the moving target that makes the speed change 
happen. Usually, such a parameter cannot be directly 
measured by the sensor, so we need to find a way to model it.  
RNNs are a good option for dynamic systems. Compared 
with other KF extensions, we are not making it more complex 
by introducing nonlinear state transition or measurement 
matrix. We tackle the problem from its original source of 
nonlinearity through the learning of the additional input 
parameter. 

 The workflow of the proposed CI-based correlation and 
association method is illustrated in Figure 1. The red block is 
the filtering component. The rest of this section elaborates on 
the different building blocks of the proposed scheme. 

 

 
Fig. 1. The proposed CI-based track correlation/association method 

 

A. Track Correlation with Fuzzy k-Nearest-Neighbour 
In the proposed CI-based method, the correlation, except in 

the case of AIS messages, is realized through Fuzzy k-NN, 
the fuzzy version of the well-known k-Nearest-Neighbour 
(k-NN) algorithm. In k-NN, each of the k neighbours of the 
test data sample to classify is assigned equal importance (i.e. 
weight) in the decision making process whereas in Fuzzy 
k-NN, based on the similarities between the k neighbours and 
test data sample, they may have different weights. Therefore, 
in Fuzzy k-NN, the data points that are more similar to the test 
sample are then more likely to affect the final classification.  

The traditional k-NN only makes hard classifications, i.e., 
no information about the certainty of the classification is 
provided. The fuzzy version introduces the concept of class 
memberships which shed light on how confident Fuzzy k-NN 
is about the particular classification.  

Given n data samples X={x1, x2,…, xn} and their labels uij 
�{0,1}, where uij=1 indicates that data vector xj belongs to 
class i and uij=0 indicates that it does not belong to class i, the 
membership of a test vector z being assigned to class i can be 
calculated by: 
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where m is the fuzzifier parameter (typically set to 2). The 
membership grades have to satisfy the following constraint: 

1

( ) 1
c

i
i

u
=

=∑ z          (2) 

Fuzzy k-NN will assign the test data sample to the class 
with the maximum membership value, as shown below: 

 
Algorithm 1. Fuzzy k- Nearest-Neighbour   
Input: Labeled Data xj, uij, i=1,2,..,c, j=1,2,…,n (c is the number of classes 
and n is the number of samples), k (0≤k≤n ), fuzzifier m, test sample z 
Output: Class membership ui(z) 
Begin 
1:  Initialize the k-NN set with the first k data vectors 
2:  for i = k+1 to n 
3:      if xi is closer to z than the farthest of the k-nearest-neighbour 
4:          Replace the farthest neighbour with xi  
5:      end if 
6:   end for 
7:  for i=1 to c 
8:     Compute ui(z) using (1) 
9: end for 
10: return argmaxi ui(z)  
End 
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B. Track Association with Fuzzy C-Means Clustering 
As previously discussed, the association step will attempt to 

fuse the correlated tracks, which were obtained through the 
application of Fuzzy k-NN to different sensing modalities. In 
our framework, the association is realized by FCM clustering.  

1) Synchronization 
Note that due to the different coordinate systems and 

sampling frequencies, it is necessary to conduct space and 
time synchronization ahead of multi-sensor fusion [27]. The 
latitude/longitude coordinate system can be transformed to 
the Cartesian coordinate system via the Universal Transverse 
Mercator (UTM) projection [30]. The tracks from different 
sensors will also need to be synchronized in time before 
association takes place.  

2) Fuzzy C-Means Clustering 
FCM also deals with the concept of membership when 

assigning data samples to clusters. That is, the data sample 
could be assigned to more than one cluster, which is different 
from hard clustering where each data vector can be associated 
to only one cluster at a time.  

Given n data samples x1, x2,…xn, the number of clusters c 
and initial membership values uij, 0≤uij≤1, the objective 
function of FCM clustering can be written as: 

2

1 2
1 1
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where U is a matrix whose elements are uij, c is the number of 
clusters and dij=||ci-xj|| is the Euclidean distance between the 
i-th cluster prototype and the j-th data vector.  

Through a Lagrange reformulation, we can calculate the 
cluster prototypes by equation (4): 
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The membership grade uij  can be calculated as in (5): 
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The FCM clustering algorithm can be described as follows: 
 

Algorithm 2. Fuzzy C-Means clustering 
Input: Data samples xj, uij, i=1,2,..,c, j=1,2,…,n (c is the number of classes 
and n is the number of samples), number of clusters c, matrix U, fuzzifier m 
Output: Clustering centers c1, c2, …,cc and membership U 
Begin 
1:  Set i = 1 
2:  while ΔL(U, c1,…,cc) < ε and i < max number of iterations 
3:      calculate c1, c2,…, cc using (4) 
4:      calculate uij using (5) 
5:      calculate L(U, c1,…,cc) using (3) 
6:      Set i = i + 1 
7: end while 
End 

 

In the track association algorithm, the number of cluster 
prototypes c is set to be the number of unique MMSIs within 
the AIS tracks. In a real maritime application, if there is a 
dark target, i.e. a vessel that does not advertise itself on AIS 
but is detected by another sensor, for example radar, the latter 
track will not be associated with the existing AIS tracks. It 
will remain as a correlated radar track. In other cases, 
wherever we are provided with no AIS tracks (for instance, 
we are associating only radar tracks and GPS tracks), the 
value c can be set to either the number of radar tracks or GPS 
tracks. To make full use of correlated track features f, the 
initial uij is calculated by: 
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The feature set f used in this work represents a 9-dimensional 
vector that includes: track starting position, ending position, 
duration, maximum latitudinal/longitudinal position, 
minimum latitudinal/longitudinal position, standard deviation 
of latitudinal/longitudinal position, maximum velocity, 
minimum velocity and standard deviation of the velocity. 

C. Track State Estimation with a Kalman Filter 
KF is a quite popular method to model linear Gaussian 

systems, i.e. those in which the state transition and 
measurement equations are all linear and the noise processes 
are assumed to be Gaussian. When modeling the movement 
of a vessel with KFs, its location and speed are usually set as 
the state space variables. The discrete state transition model 
can be written as follows [15, 24]: 

1k k k−= +x Fx w         (7) 

where x is the state vector and wk ~ N(0, Qk) is the noise 
process. The transition matrix F can be decided by the 
physical laws of motion. Typically, speed is considered to be 
constant within one sample period (interval between two 
measurements).  

When the movement of the target is uniformly rectilinear, 
the transition model in (7) is suitable. However, resulting 
from additional control inputs, the vessel movement is 
nonlinear during maneuvers when the speed is changing. The 
speed estimation based on the above model will be inaccurate, 
hence leading to further errors in the target position 
estimation. It is necessary to include the additional input u 
into (7),  

1k k k k−= + +x Fx Bu w        (8) 
where B is the control input matrix. The observation model 
can now be expressed as: 

1 , ~ ( , )k k k k kN−= + 0z Hx v v R    (9) 

where H is the observation matrix, zk is the measurement and 
vk is the measurement noise.  
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 Fig. 2. The traditional Kalman Filter 
 

Figure 2 shows the KF and the system defined by (8). The 
Z-1 is the discrete time delay operator. The formulators 
involved in the Kalman Filter can be listed as follows [27]: 

| 1 1| 1 -1
ˆ ˆ

k k k k k− − −= +x Fx Bu      (10) 
T

| 1 1| 1k k k k k− − −= +P FP F Q      (11) 

| 1
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k k k k −= −y z Hx         (12) 
T

| 1k k k k−= +S HP H R       (13) 
T 1

| 1k k k k k

−

−=K P H S        (14) 

| | 1
ˆ ˆ ˆ

k k k k k k−= +x x K y        (15) 

| | 1( )k k k k k k −= −P I K H P      (16) 
where P is the covariance matrix of the state estimation error 
and P0|0=cov(x0-x0|0). y is the residual, S is the covariance of 
residual, K is the Kalman gain and I is the identity matrix.  

Equations (10) and (11) model the prediction step in Figure 
2 and (12) - (16) describe the correction step where the new 
measurement zk is used to update the state estimation. It is 
noticed from (9) that the control input u cannot be measured 
by z, therefore, we need to find a method to estimate its value. 
This is where another CI-based method using a recurrent 
neural network (RNN) comes into play.  

D. Echo State Network 
In a static network such as MLP or GRNN, the network input 
could be unrelated to the previous input/state of the network. 
To model a dynamic system, RNNs are a better choice than 
static networks. An Echo State Network (ESN) is a type of 
RNN [32, 33] whose architecture is given in Figure 3. Notice 
that the ESN topology contains feedback connections.  
 

 
Fig. 3. Echo State Network 

 

Like other networks, the only visible neurons in an ESN 
are the input and output neurons. The internal neurons form a 
large dynamic reservoir. The neurons inside the reservoir are 
sparsely connected.  Given the input vector in and the 
corresponding label ti, the state update of ESN can be 
expressed as 

1 ( , , , )

( )
k k k x in

x k in k

f+ =

= ⋅ + ⋅tansig

x in x W W

W x W in
   (17) 

 
where xk is the state vector of the reservoir, Win is the input 
weights and Wx are the inner connection weights. Since the 
reservoir in an ESN is random, the Win and Wx are randomly 
assigned and do not need training. To ensure stability, the 
spectral radius of Wx is usually set to a number slightly less 
than 1. The neuron activation function is defined as: 
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x x

x x

e e
x

e e

−

−

−
=

+
      (18) 

The output of ESN can thus be written as: 

k out k= ⋅y W x        (19) 

where Wout is the readout weights.  After feeding all of the n 
input data samples into the ESN, the state of the network x1, 
x2,,…, xn can be stored in the state matrix  X=[x1, x2,…, xn]T. 
The output weights Wout can be calculated by 

T 1 T( )out λ −= +W X X I X T     (20) 

where T=[t1,t2,…,tn]T are the labels. In the above equation, the 
parameter λ is added to prevent the matrix inverse from being 
ill-conditioned.   

The ESN learning steps can be summarized as follows: 
 

Algorithm 3. Echo State Network 
Input: Data vectors (ini, ti), i=1,2,..,n, L reservoir neurons 
Output: Echo State Network 
Begin 
1:  initialize weight matrix Win  
2:  initialize the interconnection matrix Wx 

3:  initialize the state matrix X 
4:  for i = 1 to n 
5:      update the state of the reservoir using  (17) 
6:      update the state matrix X 
7:   end for 
8: calculate Wout using (20) 
End 
 

The role of the ESN in our approach is to estimate the 
additional input parameter uk in the KF. The input vector of 
the ESN is (Δposition, Δvelocity) and uk-1 (here u refers to the 
variable in section III-C) and the output is the estimated uk.  

As previously mentioned, there exist nonlinear KF 
versions such as the Unscented KF and Extended KF. Such 
methods achieve nonlinearity using Taylor expansion or 
sampling techniques. Consequently, more computational 
complexity is introduced to the KF. The source of vessel 
maneuver is the additional control input u which cannot be 
usually measured by the sensors. In our approach, the ESN is 
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used to directly model and predict this control input. Neither 
Unscented KF nor Extended KF has the ability to predict this 
parameter.  

Notice that after filtering the final correlated/associated 
tracks, it is necessary to apply the reverse UTM projection to 
transform the tracks back to the latitude/longitude coordinate 
system. The steps involved in the proposed CI-based method 
can be summarized as follows: 

1. Use Fuzzy k-NN to conduct correlation on 
Radar/GPS/GMTI contacts. Conduct AIS correlation 
based on a vessel’s MMSI; 

2. Use UTM projection to convert latitude/longitude 
coordinates to Cartesian coordinates and perform 
synchronization; 

3. Apply FCM Clustering to associate the 
AIS/GPS/Radar/GMTI tracks 

4. Use ESN to predict the input parameter for the KF; 
5. Execute the KF with the output of the ESN to estimate 

the true state of target movement on associated tracks.   
6. Apply reverse UTM projection to convert from 

Cartesian coordinates back to the latitude/longitude 
coordinates. 

Note that steps 4 and 5 are also valid for correlated tracks. 
In the real world, there are cases where contacts a certain 
sensor are very sparse that no correlated tracks can be 
produced. Such contacts can be directly associated with 
existing tracks, which is the case in our second experiment. 

IV. EXPERIMENTAL RESULTS 
The new CI-based correlation/association method was 

tested on synthetic AIS, ARPA Radar, GPS, SAR and GMTI 
data. The Area of Interest (AOI) is shown in Figure 4. There 
are 14 vessels in total in the simulation scenario. For 
AIS/Radar/GPS, the start and end times were 170000 and 
215851, respectively (i.e. 5:00.00 PM and 9:58.51 PM) on 
January 24th, 2013.  

 

 
Fig. 4. Area of Interest defined by four (lat, lon) corners: 

(40.723469,-75.435744), (40.723469, -70.982369), 
(37.525305, -70.982369), (37.525305, -75435744) 

 
As previously mentioned, the correlation for AIS is 

conducted via matching of the vessel MMSIs. The GPS, 
Radar and GMTI correlation is performed with the proposed 
CI-based method. The correlation results are shown in 

Figures 5 to 8. The correlation method is able to correctly 
form tracks from discrete contacts from the contacts of 
various sensors. The correlated tracks clearly show the path 
of each vessel. Note that for the GMTI tracks, the air 
platforms used to perform the detections could only see a 
small part of the track, so the correlated GMTI tracks are very 
short. The GMTI tracks are first associated to AIS tracks and 
then the AIS, Radar and GPS tracks are brought in. The final 
associated tracks are shown in Figure 9 after applying KF and 
ESN. It is found that the association algorithm is able to fuse 
multiple tracks from different sensors representing the same 
vessel into a single associated track. Multiple tracks are 
shown in different colours in Figures 5 to 9. Each track is 
made up of many contacts represented by discrete points in 
the figures.   

We also calculate the average value of the maximum 
membership grades in Fuzzy k-NN when the Radar or GPS 
contact reports correlated to any of the tracks. The average 
maximum membership grade for both Radar and GPS 
correlation is 0.9988. In association, the average value of the 
maximum membership in FCM clustering is 0.9999. 
Therefore, the two fuzzy methods demonstrate a high 
certainty. It is worth pointing out that non-fuzzy correlation 
and association methods are unable to provide such 
information.  

 

 
Fig. 5. Correlated AIS Tracks 

 

 
Fig. 6. Correlated Radar Tracks 
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Fig. 7. Correlated GPS Tracks 

 

 
Fig. 8. Correlated GMTI Tracks 

 

 
Fig. 9.  Associated Tracks 

 
TABLE I. PERFORMANCE COMPARISON OF ESN, GRNN AND NARX  

ON KF-BASED CONTROL INPUT ESTIMATION 
Model RMSE (std.) Total Time(s) 
ESN 
NARX 
GRNN 

0.1649 (0.00759)  
0.4180 (0.2390) 
0.1410 (0.0755) 

53.87 
31.49 
4306.19 

 
We also compared the performance of ESN on the KF 

control input estimation to those of two other neural network 
models, namely General Regression Neural Network (GRNN) 
[34] and Nonlinear Auto-Regressive eXogenous model 
(NARX) [35]. GRNN is a four-layer feedforward network 
that does not have a free parameter to define the architecture 
of GRNN. The first layer is the input layer and pattern 
neurons in the second layer store the input patterns, so the 
number of the nodes in the second layer is equal to the 
number of training instances. The third layer has two 
summation neurons that compute the numerator and 
denominator for the final output layer. The NARX is type of 
recurrent network where there are feedback connections 
between the output layer and the input layer. The number of 
hidden nodes is optimized from [5, 10, 15,…, 100], and the 

best results are reported in Table 1 (where 5 hidden nodes are 
used). ESN is not sensitive to the network size. The number of 
nodes in the reservoir is set to 100 without optimization. All 
the networks are trained on the first 20 minutes of the 
associated tracks and tested on the remaining part of the 
tracks. The results are shown in Table I. The Root Mean 
Square Error (RMSE) and its standard deviation are reported. 
The time recorded in the table includes both training and 
testing time. From Table 1, we could see that the NARX 
displays the worst performance (largest RMSE) and the large 
standard deviation indicates that its performance is unstable. 
Since the network size of NARX is small, it is the fastest. 
GRNN has the lowest RMSE. Unfortunately, it stores all the 
input data in the second layer, making it every slow to run, 
especially on large dataset. ESN has a performance close to 
GRNN while being much faster than GRNN. ESN is the best 
choice in the real application where we often deal with large 
datasets.   

 
Fig. 10. Associated SAR-AIS Tracks 

 
In addition, the new CI-based method was also tested on 

AIS and Synthetic Aperture Radar (SAR) track association. 
As there were few SAR contact reports, no correlated tracks 
were developed; instead, the SAR contacts were directly 
associated to AIS tracks using Fuzzy k-NN. The results are 
portrayed in Figure 10, with the white circles denoting the 
SAR-contact-to-AIS-track associations. All SAR contacts 
were correctly associated with their respective AIS tracks.  
Since this involved real-world data, dark targets (i.e. SAR 
contacts that could not be associated with an AIS track) could 
not be found within the available datasets. 

V. CONCLUSION AND FUTURE WORK 
This work proposed a new CI-based method for track 
correlation and association. For AIS contacts, the correlation 
was done via MMSI, while for other contacts the correlation 
was performed by Fuzzy k-NN. After synchronization, FCM 
clustering was applied for track association. Finally, the KF 
was aided by an ESN to help model the nonlinear movement 
of maritime vessels. ESN turned out to be more efficient than 
GRNN and more accurate than NARX given that RNNs are 
more suitable to model dynamic systems. Experimental 
results show that the new CI-based method is valid and 
effective in correlating and associating AIS, Radar, GPS, 
SAR and GMTI tracks. The two fuzzy logic methods, viz. 
Fuzzy k-NN and FCM clustering, demonstrated a high 
certainty in track correlation and association. Additionally, 
the ESN is able to provide fast and effective parameter 
estimation under the KF framework. When the number of 
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vessels increases and the size of the data scales up, the 
correlation complexity can be manually controlled by 
limiting the value of k in Fuzzy k-NN. Regarding association 
and filtering, they will grow linearly with the number of 
tracks. 

As a future work, we will improve Fuzzy k-NN with an 
adaptive scheme to calculate the optimal number of potential 
tracks a new contact may belong to. Another future direction 
could be track normalcy modeling. In this way, vessels with 
anomalous behaviour could be detected and reported to the 
corresponding maritime authorities.  
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