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Abstract—Verification of the Comprehensive Test-Ban-Treaty
(CTBT), as a Pattern Recognition (PR) problem, has been
proposed based on four radioxenon features. It has been noted,
however, that in many cases this limited feature set is insufficient
to distinguish radioxenon levels effected by an explosion from
those that are solely products of industrial activities. As a means
of improving the detectability of low-yield clandestine nuclear
explosions, this paper motivates the inclusion of meteorological
indicators in the CTBT feature-space, promotes further research
into which meteorological indicators are most informative, and
how they may be acquired. In doing so, we present classification
results from four simulated scenarios. These results demonstrate
that the inclusion of a simple wind direction feature can signifi-
cantly increase the prospect of classifying challenging detonation
events, and suggests the predictive power of meteorological
features in general.

I. INTRODUCTION

The verification of the Comprehensive Test-Ban-Treaty
(CTBT) poses both an extremely interesting and a challenging
Pattern Recognition (PR) problem. When viewed in its stan-
dard form, and as a “black box”, the PR system is trained to
classify vectors quantifying four radioxenon isotopes to either
the explosion or the non-explosion class.

Feature vectors belonging to the non-explosion class are
assumed to be the results of the combined impact of one or
more regional, and to a lesser extent global, industrial nuclear
activities, such as those at Medical Isotope Production Facil-
ities (MIPF) and Nuclear Power Plants (NPP). Alternatively,
the feature vectors associated with the explosion class, are
assumed to be the combined results of a low-yield clandestine
nuclear test, which occurs randomly in time and space, and a
set of industrial emitters.

By definition, the initiator of a clandestine test goes to great
lengths to conceal the nuclear test. Thus, tests are likely to
be contained in underground or underwater facilities. These
containment facilities are expected to subdue the majority
of the isotopes produced in the detonation. Therefore, the
occurrence of a significant increase in atmospheric levels of
radioxenon cannot be assumed after a test. Moreover, it has
been observed that due to radioactive decay and chaining,
the indicative “fingerprint” formed by the four radioxenon
isotopes, 131Xe, 133Xe, 133mXe and 135Xe, after the detona-
tion, degrades and becomes indistinguishable from the MIPF

emissions, which are the most influential [1]. Together, these
factors work to conceal the source (industrial or detonation) of
the measured radioxenon, when considered within the standard
feature-space. This fact was specifically demonstrated in [2],
where a significant number of detonations were shown to
reside well within the background distribution. As a result,
these instances could only be classified as explosions at the
expense of a higher False Negative Rate (FNR).

There exists, however, a promising opportunity in this other-
wise challenging task, in particular, the possibility to expand
the CTBT feature-space, thereby improving the accuracy of
the derived PR systems. More specifically, the fundamental
role of meteorology in determining the portion of the released
radioxenon that is ultimately measured in the atmosphere
at the International Monitoring Station (IMS) indicates that
meteorology likely contains information that can aid in the
discrimination process. Indeed, when knowledge, or estimates,
of the atmospheric processes that transport and disperse pol-
lutants are combined with a strong understanding of the emis-
sions source (specifically global positioning, emitted species,
and rates of decay), a great deal of information becomes
available about the sources of the background radioxenon
levels at particular points. Importantly, this includes under
which atmospheric conditions the background concentrations
are at their highest and lowest.

The remainder of this paper is organized as follows. In
the subsequent section, Section II, we motivate the expansion
of the CTBT feature-space. Section III demonstrates our
hypothesis, and why it is expected to increase the classification
results. The details about our data procurement process are
included in Section IV. In Section V, issues pertinent to the
experimental design are considered. The experimental results,
and a subsequent discussion, are contained in Section VI and
Section VII, respectively. Finally, our concluding remarks are
organized in Section VIII.

II. MOTIVATION

As a result of the considerable challenge of classifying
detonations based on the four radioxenon measurements, we
propose that, in general, expanding the feature-space will
improve the classification results. More specifically, we rec-
ognize the significant role held by meteorology in effecting



the amount of radioxenon that is witnessed at each IMS.
Atmospheric flows are specifically responsible for transporting
the emitted radioxenon from the source to the IMS. Together,
the set of atmospheric flows that effect the radioxenon levels
at a point, over a particular period of time can be thought of
as an airshed.

Similar to a watershed, which specifies the area over which
melt- and rain-waters migrate downhill into increasingly large
river systems (effecting the downstream content of minerals,
pollutants, etc.), an airshed can be viewed as a set of air
flows that merge to effect the pollution levels at a particular
downwind site (see [3] for a further discussion of airsheds).
Therefore, by inferring the airshed that effected a particular
measurement, a considerable amount of information about
the source(s) of radioxenon at the receptor is obtained. This
is valuable information that can assist in the classification,
particularly if the measured levels are anomalous for the
detected airshed.

The value in an airshed estimate resides in the fact that
measurements that appear normal in the standard feature-
space, may be exceptional when considered with respect to an
airshed with only marginal, or no, industrial emitters. Thus,
when radioxenon levels are considered in conjunction with the
history of the particular airshed that transported them, stronger
predictions can be made. Indeed, similar techniques utilizing
background radioxenon statistics and inverse modelling are
applied to manually assess the likelihood of a detonation and
its probable location [4].

Fig. 1. A hypothetical decision boundary inferred by a simple one-class
learner on the background data.

While [2] demonstrated that a wind direction feature in-
dicating the direction to the emission source could greatly
improve the classification of clandestine nuclear explosions, it
did not provide an in-depth exploration of how such estimates
might be acquired, or the type of error that may be involved
in “real world” estimates. Based on a series of simulations,
this work comprehensively demonstrates that knowledge of the
source airshed can improve classification results, thus serving

to motivate further research into a) the estimation of airsheds
within the CTBT domain of problems, b) how such estimates
can be quantified, and c) their ideal form within the feature-
space.

III. JUSTIFICATION FOR AN EXPANDED CTBT
FEATURE-SPACE

In this section, we assume that airsheds can be associated
with each IMS measurement, and proceed to demonstrate how
its inclusion in the CTBT feature-space aids in creating, or
increasing, the separability of the explosion data from the
background data.

Conceptually, adding an extra dimension to the CTBT
feature-space, specifically an airshed or wind direction indica-
tor, facilitates the separation of radioxenon measurements that
would otherwise be indistinguishable to a trained classifier.0.0 0.5 1.0 1.5 2.0 2.50.00.51.01.5 Density of Non−Explosion ReadingsConcentration of xe131(in Bq)0.0 0.5 1.0 1.5 2.0 2.50.00.20.40.60.81.01.21.4 Density of Explosion ReadingsConcentration of xe131(in Bq)(i)

(ii)

Fig. 2. This figure illustrates the strong similarity between the background
and explosion distributions when considered with respect to the radioxenon
concentration.

Take, for example, the simple two-dimensional case pre-
sented in Figure 1. This plot depicts a hypothetical scenario
in which a one-class (OC) classifier has been trained on the
background data (specified by the blue circles), and inferred
the discriminant function represented by the dashed line.
During testing, a significant number of explosions (marked
as red crosses) are erroneously classified according to the de-
cision boundary. A similarly challenging scenario was, indeed,
discussed based on simulated CTBT data in [2].

In Plot (i) and Plot (ii) of Figure 2, the distributions of the
background and explosion data from a single experiment in
[2] are respectively displayed. These figures illustrate that the
majority of background and explosion instances (specifically
the 131Xe measurements) were quantified as being between
0 Bq m−3 and 0.5 Bq m−3. Similar scenarios were found
for the three remaining radioxenon isotopes. Thus, there is a
strong similarity in the multi-variate background and explosion
distributions. As a result, classification, and particularly one-
class classification (OCC)1 is extremely challenging. This is

1From the standpoint of PR, verification of the CTBT is conceptually an
OCC problem (for more details see [2])



demonstrated by the relatively poor Area Under the ROC
Curve (AUC) results produced on the data, which ranged from
0.505 to 0.621. By adding an estimate of the direction to
the airshed, however, many explosion instances, which were
previously indistinguishable from the background class, can
be correctly classified.

The benefit of the expanded feature-space is emphasized
by the two-dimensional histogram plotted in Figure 3. In
this figure, the wind direction is plotted in radians along
the x-axis, and the radioxenon concentration is plotted along
the y-axis. The yellow areas indicate a high frequency of
instances, and the dark red areas specify lower frequencies
of instances. Finally, the white implies that no such instance
occurred in the dataset. No instances, for example, occurred
with a wind direction of 3 radians and a concentration
around 0.75131Xe Bq m−3. Indeed, the wind was only rarely
between 2 radians and 4 radians. Similarly, the radioxenon
concentration was rarely above 0.5 Bq m−3.

If the two-dimensional histogram is assumed to repre-
sent the training set (in accordance with OCC, this data
is drawn entirely from the background class), it is clear
that during application, nearly any radioxenon concentration
should be considered suspect when the wind is between
2 radians and 4 radians. Similarly, concentrations roughly
above 0.5 Bq m−3 are suspicious when the wind is between
0.9 radians and 5.5 radians. Without the wind direction fea-
ture, these instances fit neatly into the background distribution,
and thus, could only be classified as explosions at the expense
of a higher FPR.
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Fig. 3. This figure contains a two-dimensional histogram with the background
concentration of 131Xe plotted on the y-axis, and the direction to the airshed
plotted on the x-axis. The areas of lighter yellow specify regions of high
density.

IV. DATA PROCUREMENT

Due to the absence of a completely satisfactory set of
background and explosion data drawn from the CTBT domain,
this work relies on the simulation framework of Bellinger
and Oommen [5] for the acquisition of experimental datasets.
In addition, the utilization of simulated data facilitates our
consideration of particular industrial and detonation scenarios
in our exploration of the benefits of the expanded feature-
space.

In our initial exploration of this PR task, four simulation
scenarios were considered. Each scenario considered the affect
of one, or more, industrial emitters on a single IMS.

The simulations framework applied is composed of two
modules; the first module calculates the combined hourly

impact of the set of industrial emission sources on the IMS
over a user-defined time period. In accordance with the CTBT
domain, the degree to which each source influences the total
radioxenon concentration during a particular hour is dependent
upon the atmospheric conditions that advected pollutants from
the source. These conditions fluctuate over time based on
user-defined statistics. Subsequently, the instances of the back-
ground class (labelled 0), measured over hour i, are written to
a dataset in the following form:

xi,0 = 131Xei,0,
133Xei,0,

133mXei,0,
135Xei,0, 0. (1)

The second phase generates the data for the detonation class
(labelled 1). This is done by generating random (in time, space
and magnitude) low yield explosions and measuring their
impact on the IMS. The affect of the detonation is combined
with that of the background source over the appropriate period
of time, and written to the dataset with the detonation label.
Therefore, a detonation instance measured over hour j, takes
the following form:

xj,1 = xj,0 +
{131

Xej,1,
133 Xej,1,

133m Xej,1,
135 Xej,1, 1

}
. (2)

Similar to the Experiments in [2], an incremental detonation
scenario was applied. This process highlights the affect of
the distance between the IMS and the detonation on the
overall classification results. Twenty-three incremental deto-
nation ranges were defined with explosions beginning at a
radial distance of 500km from the IMS, and extending out an
additional 500km. For each incremental experiment, where
0 > i > 24, the radial range about the IMS is defined as
500× i : 500× i+ 500. Thus, during the second iteration, all
detonations occurred in a radial range between 1, 000km and
1, 500km.

V. EXPERIMENTAL DESIGN

In this section, we discuss both the details of our four
simulated environments, and some issues pertinent to the
classification experiments. The former topics are covered in
Section V-A, and the latter are included in Section V-B.

A. Simulation Scenarios

Each of the four simulation scenarios were designed to
explore the benefits of the expanded feature-space under a
diverse set of atmospheric conditions. We hypothesize that the
fundamental strength of the airshed indicator on classification
is an increased ability to detect explosions. In particular,
we surmise that a detonation’s radioxenon signature, which
appears to have resulted from an industrial source, but arrived
at the IMS via an alternate airshed, becomes more easily
identifiable.

As a result, the experiments focus on four wind environ-
ments, with the fundamental difference being the distribution
of the wind directions. The four wind roses in Figure 4 illus-
trate the various wind environments. Experiment 1 (E1) and
Experiment 2 (E2) describe simple wind environments with
uni-modal Gaussian distributions, in which the mean winds
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Fig. 4. This figure displays the wind roses for each of the four simulations.

are from the West and North, respectively. In both of these
experiments the single industrial emitter is positioned due
North of the IMS. Therefore, the background concentrations
are generally much higher in E2, where the predominant wind
was from the North, than in E1, where it was from the West.

Experiment 3 (E3) is, in essence, a combination of E1 and
E2. In particular, E3 has two periods. During the first period,
the mean wind is from the West, and in the second period, the
mean wind is from the North. This explores the benefit of the
airshed feature in a slightly more complex wind environment.
The complexity is increased as a direct result of the affect
of the wind on the background distribution. Specifically, the
greater the number of possible wind events, the greater the
range of radioxenon concentrations measured over time. Thus,
the set of low-yield nuclear tests is more likely to be concealed
by the background distribution.

Finally, the fourth experiment (E4) contains a single period,
however, the distribution of the wind takes a multi-modal
Gaussian form. In addition, this experiment includes three
industrial sources (S1, S2, and S3). The simulation scenario
for E4 is depicted in Figure 5. This figure illustrates that
the fourth experiment includes a significantly more complex
environment, one in which both very high and low radioxenon
concentrations can be found. In particular, a large portion
of the wind is from the South-East, and a smaller portion
is from the West. Under these circumstances the majority
of the radioxenon emitted from the three industrial sources
is dispersed away from the IMS. However, the simulation
also includes a northerly wind, which transmits the emissions
from S1 and S2, towards the IMS, thus, causing elevated
concentrations.

B. Classification Details

From the standpoint of PR, verification of the CTBT is
conceptually an OCC problem (for more details see [2]).
However, in light of the fact that the verification of the treaty
has generally been explored as a standard binary problem,
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Fig. 5. This figure corresponds to the fourth experiment. It depicts the wind
rose superimposed on the relative positions of the IMS and the three industrial
sources.

this paper explores the affect of the expanded feature-space in
terms of both binary and OCC. Moreover, this work does not
aim to provide a comprehensive analysis of all the possible
PR strategies. Indeed, such an exhaustive attempt would be
overly burdensome. Alternatively, we have selected five binary
classifiers, which encompass the wide range of possibilities,
and three OCC approaches in order to provide a concise, yet
general, assessment.

Each classification algorithm included in this research has
been implemented in the Weka machine learning environment
[6]. In the interest of brevity, and due to the fact that the details
of the binary learners are widely available in the literature, we
merely mention the binary classifiers. Specifically, the Multi-
layer Perceptron (MLP), the Support Vector Machine (SVM),
the Nearest Neighbour (NN), the Naı̈ve Bayes (NB) and the
Decision Tree (J48) algorithms were utilized.

OCC is dissimilar to binary classification, as it does not
assume the availability of a representative set of data drawn
from both the positive and negative class. More specifically,
it is assumed that a representative set can only be acquired
from the positive class. Thus, in OCC, the learner must rely
on instances drawn from a single class in the derivation of a
discriminant function. Due to the fact that the OCC techniques
applied in this study have received less consideration, we
provide a few details in the following paragraphs.

Hempstalk et al., in [7], converted the one-class classifica-
tion problem into binary tasks by estimating the distribution of
the concept class and generating instances of the non-concept,
accordingly. Finally, a standard binary classifier is trained.
This process has been denoted the Combined Probability and
Density Estimator (PDEN).

Alternatively, the one-class Nearest Neighbour (ocNN) al-
gorithm [8] learns a target rejection rate, τ , where τ is



the distance between the two nearest neighbours with the
greatest separation in the training data. Subsequently, all novel
instances whose nearest neighbours are at greater distances
than τ are classified as outliers. We have additionally utilized
a modified version of the ocNN in Weka, and denoted it as the
scaled ocNN (socNN) [2]. Contrary to the ocNN, the socNN
classifier is capable of learning a model that accounts for noise
in the training set, based on a user-defined parameter, ε.

In each of the following experiments, we rely on the AUC
in our performance assessments. A total of 230 datasets were
produced for each experiment, which are sub-categorized into
ten sets for each detonation range. This sub-categorization
enables the consideration of performance as a function of
distance, which resulted in Figure 6, for example. In addition,
we consider the overall performance levels of each classifier
according to the ensemble mean AUC over the twenty-three
detonation ranges.

VI. EXPERIMENTAL RESULTS

A. Overview

The results included in this paper can be divided into four
categories. Each category relates to a specific wind scenario,
as described in Section V-A. The combined objective of these
experiments is to a) motivate an expansion of the standard
CTBT feature-space to include atmospheric indicators, such
as a source airshed estimate, b) witness the affect of increas-
ingly complex environments on classification in the expanded
feature-space, and c) explore some possible forms of the new
feature, with a consideration of how noise might influence the
results.

In the following sub-sections, we, therefore, present similar
results for each of the four experiments. In particular, each
section includes a results table that specifies the ensemble
mean AUC for each classifier over the twenty-three radial
detonation ranges, based on the standard feature-space and
the expanded feature space.

In terms of the expanded feature-space, we explore three
scenarios. In the first scenario, the new feature can take any
value between 0 and 2π. This continuous range of values
specifies the direction, in radians, to the source airshed. In
addition, the experiments were executed with the new feature
taking on one of eight discrete values. Therefore, each discrete
value specifies a continuous range of possible directions to the
source airshed. The discretization process applied to transform
the continuous airshed feature to a discrete form is commonly
referred to as Equal weight interval (EWI) binning. Finally,
we recognized the risk of error when estimating the source
airshed. Therefore, we report the classification results based
on training sets in which thirty percent of the instance in the
new feature were randomized.

Our assessment of these results is later discussed in Section
VII.

B. Experiment 1

As previously indicated, the first experiment was charac-
terized by a low background concentration of radioxenon. In

TABLE I
THIS TABLE DISPLAYS THE ENSEMBLE MEAN AUC RESULTS FOR THE

FIRST EXPERIMENT. THE RESULTS IN THE FIRST COLUMN CORRESPOND
TO CLASSIFIER PERFORMANCE IN THE STANDARD CTBT FEATURE-SPACE.

FURTHER DETAILS ABOUT THE ENTRIES IS INCLUDED IN THE TEXT.

Standard Continuous Discrete Noisy
NB 0.885 0.880 0.878 0.867

MLP 0.948 0.936 0.878 0.840
NN 0.896 0.858 0.924 0.931

SVM 0.553 0.691 0.682 0.562
J48 0.839 0.934 0.924 0.896

PDEN 0.702 0.837 0.827 0.822
ocNN 0.539 0.549 0.596 0.544
socNN 0.792 0.891 0.884 0.848

particular, the background concentration of 131Xe at the IMS
was 0.049Bqm−3, with a standard deviations of 0.178. This
was specific due to the fact that the mean wind direction was
perpendicular to the industrial source and IMS. As a result, the
wind was seldomly oriented such that any of the emitted ra-
dioxenon dispersed passed the IMS. Consequently, most low-
yield detonations that affected the IMS were distinguishable
from the background levels.

This is confirmed by the results reported in Table VI-B and
Figure 6. Table VI-B demonstrates that, with the exception of
SVM and ocNN, all of the classifiers achieved strong AUC
results within the standard four-dimensional feature-space.

Even with the strong results produced within the standard
feature-space, however, six of the eight classifiers improved
with the expanded feature-space. Furthermore, each of SVM,
PDEN, J48 and socNN classifiers improved by at least 0.1.
Finally, when noise was added to the airshed feature in the
training set, the overall results still represented an improve-
ment. 0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN(i)

(ii)

Fig. 6. Classifier performance as a function of Distance, on the first
experiment, with the standard (i), and expanded (ii) CTBT feature-space.

The functions in Plot (i) of Figure 6 can be subdivided



TABLE II
THIS TABLE DISPLAYS THE ENSEMBLE MEAN AUC RESULTS FOR THE

SECOND EXPERIMENT. THE RESULTS IN THE FIRST COLUMN CORRESPOND
TO CLASSIFIER PERFORMANCE IN THE STANDARD CTBT FEATURE-SPACE.

FURTHER DETAILS ABOUT THE ENTRIES ARE INCLUDED IN THE TEXT.

Standard Continuous Discrete Noisy
NB 0.753 0.779 0.797 0.780

MLP 0.822 0.861 0.819 0.807
NN 0.714 0.806 0.820 0.751

SVM 0.521 0.583 0.601 0.523
J48 0.617 0.879 0.797 0.611

PDEN 0.431 0.432 0.656 0.621
ocNN 0.532 0.556 0.603 0.531
socNN 0.614 0.716 0.722 0.677

into two categories of varying clarity. The NB, PDEN, SVM,
ocNN and socNN classifiers have strong AUC scores for
detonations that occur relatively close to the IMS. However,
the results for PDEN, SVM, ocNN and socNN degrade sharply
with distance. Alternatively, in Plot (ii), where the continuous
airshed estimate feature was included, the degradations of
PDEN, SVM and socNN are noticeably less, NB remains
consistent, and ocNN improves slightly.

The plotted functions for the remaining classifiers all dis-
play a hull in their performances for detonations occurring
approximately 4, 500km away, with J48’s hull being extremely
accentuated. In the expanded feature-space, however, J48
demonstrates a significant improvement. The MLP classifier
improves as well, however, the increase is only slight due
to its admirable performance in the standard feature-space.
Alternatively, NN appears slightly worse. However, based on
the results reported in Table VI-B, it would likely improve if
we were to plot the results for the discretized airshed feature
as a function of distance.

C. Experiment 2

Although the industrial source is positioned at a significant
distance from the IMS, the fact that in E2 the mean wind
blows directly from it to the IMS causes elevated radioxenon
concentrations. In particular, the mean 131Xe at the IMS was
0.264Bqm−3, with a standard deviation of 0.368.

The high mean and larger standard deviation suggest that
when considered based on the radioxenon levels alone, more
simulated detonations will be misclassified. This is, indeed,
depicted by the lower results in Table VI-C, and the deeper
performance hulls in Plot (i) of Figure 7.

In addition, Table VI-C illustrates the benefits of the con-
tinuous airshed feature when utilized in more challenging
environments. Specifically, all eight classifiers are improved
within the expanded feature-space, with NN, J48, PDEN,
ocNN and socNN improving by at least 0.1.

Based on the noisy training set, five of the eight classifiers
maintain their superiority in the expanded feature-space, and
the remaining three degrade only slightly. It is, of course,
worth recalling that thirty percent of the airshed estimates
in the noisy training sets were randomly reassigned. This
is, indeed, a high error rate, thus, the performance gains are
impressive.

0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN(i)

(ii)

Fig. 7. Classifier performance as a function of Distance, on the second
experiment, with the standard (i), and expanded (ii) CTBT feature-space.

TABLE III
THIS TABLE DISPLAYS THE ENSEMBLE MEAN AUC RESULTS FOR THE

THIRD EXPERIMENT. THE RESULTS IN THE FIRST COLUMN CORRESPOND
TO CLASSIFIER PERFORMANCE IN THE STANDARD CTBT FEATURE-SPACE.

FURTHER DETAILS ABOUT THE ENTRIES IS INCLUDED IN THE TEXT.

Standard Continuous Discrete Noisy
NB 0.792 0.786 0.786 0.781

MLP 0.881 0.891 0.805 0.789
NN 0.791 0.809 0.843 0.833

SVM 0.527 0.572 0.569 0.528
J48 0.682 0.892 0.886 0.723

PDEN 0.465 0.564 0.651 0.630
ocNN 0.534 0.556 0.576 0.534
socNN 0.679 0.774 0.770 0.735

Similar to E1, and according to Figure 7, J48 and socNN
benefit most from the new feature, but with significantly more
impressive increases. Indeed, both of these classifiers become
comparable with MLP, the top classifier. Alternatively, PDEN,
ocNN and SVM remain well below the other classifiers.

D. Experiment 3

In order to explore the affect of a more diverse set of
wind directions on the classification results, E3 simulated
an environment with two periods. During the first period,
the meteorological conditions were similar to those in E1.
Alternatively, the conditions during the second period were
similar to those in E2. Thus, half of the time the wind travelled
perpendicular to the industrial source and IMS, and during the
other half, it travelled from the source to the IMS.

These simulation parameters produced a mean 131Xe con-
centration of 0.172Bqm−3, with a standard deviation only
slightly lower than that in E2 of 0.329.

The benefits of the extended feature-space are similar in this
experiment to those in E2. With the exception that NB stands
out as it does not improve as a result of the airshed feature.



In addition, fewer of the classifiers perform better with the
discretized airshed feature, and six out of the eight maintain
their superiority to the standard feature-space when trained on
the noisy data.0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN(i)

(ii)

Fig. 8. Classifier performance as a function of Distance, on the third
experiment, with the standard (i), and expanded (ii) CTBT feature-space.

As in E2, J48 demonstrates impressive performance when
the feature-space is expanded. Likewise, MLP improves sig-
nificantly. However, their performance curves are not as flat,
nor as close to an AUC of 1.0 in the previous experiment.
Similarly, socNN follows previous trends and improves from
the expanded feature-space, and NB and NN classifiers remain
strong, however, their plots increase only slightly.

E. Experiment 4

This fourth and final experiment represents the most diverse
of the set. While the simulation only involves a single period,
its winds were characterized by a multi-modal Gaussian dis-
tribution, creating a diverse set of background scenarios at
the IMS. During the most extreme of cases, emissions from
two of the three industrial sources were advected towards the
IMS. However, through much of the simulation, the majority
of the emissions were dispersed away from the IMS. As
a result, the mean and standard deviations are, respectively,
quite high. Specifically, the mean concentration of 131Xe was
1.871Bqm−3, with a standard deviation of 0.352.

The ensemble mean AUC results for this experiment are
listed in Table VI-E. These results indicate that the classifiers,
when operating within the standard feature-space, are signifi-
cantly weakened by the challenging wind scenario detailed in
this experiment.

However, substantial improvements in the ensemble mean
AUC metric are obtained when the airshed estimate feature is
included. Indeed, all eight classifiers achieve superior results in
the expanded feature-space, with NB, SVM and J48 improving
by nearly 0.2, and the remainder improving by at least 0.1.

TABLE IV
THIS TABLE DISPLAYS THE ENSEMBLE MEAN AUC RESULTS FOR THE

FOURTH EXPERIMENT. THE RESULTS IN THE FIRST COLUMN CORRESPOND
TO CLASSIFIER PERFORMANCE IN THE STANDARD CTBT FEATURE-SPACE.

FURTHER DETAILS ABOUT THE ENTRIES IS INCLUDED IN THE TEXT.

Standard Continuous Discrete Noisy
NB 0.588 0.731 0.775 0.746

MLP 0.690 0.798 0.856 0.807
NN 0.660 0.831 0.831 0.704

SVM 0.527 0.727 0.725 0.531
J48 0.577 0.865 0.809 0.543

PDEN 0.579 0.576 0.747 0.707
ocNN 0.557 0.600 0.696 0.549
socNN 0.607 0.676 0.708 0.668

Moreover, six of the eight classifiers maintain their superiority
when learning is performed on the noisy training set. The
degradation of SVM and ocNN, the two classifiers that fail
to maintain their superiority, is only slight in comparison to
their original results. Performance in this category is, once
again, of significant interest, given the exceptional degree to
which the airshed feature has been randomized in the noisy
training set.0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN0.00.40.8 Minimum Detonation Range (in 100 Kilometres)AUC 5 22 39 56 73 90 107 124 NBMLPNNJ48SVMocNNPDENsocNN(i)

(ii)

Fig. 9. Classifier performance as a function of Distance, on the fourth
experiment, with the standard (i), and expanded (ii) CTBT feature-space.

When performance is plotted as a function of distance
in Figure 9, the trend of the top classifiers is contrary to
the results we have previously seen. In particular, all of the
classifiers have similar performance curves, which are initially
strong, but degrade quickly as the radial detonation range is
pushed farther from the IMS. Beyond the 4, 000km mark,
performance generally flattens out. However, J48 and NN
regain some of their losses.

Consistent with our previous results, adding the airshed
estimate leads to significant improvements in the AUC. Indeed,
MLP, J48 and NN maintain an AUC at or above 0.8. In general,
J48 and NN are respectively the top classifiers, surpassing
MLP in the expanded feature-space. Furthermore, their AUC



scores improve slightly with distance. Finally, socNN, NB and
SVM improve to near 0.7.

VII. DISCUSSION

Based on the above experiments, the possible improvements
offered by the expansion of the CTBT feature-space to include
an estimate of the source airshed looks promising. A general
examination of these results reveals that the AUC metric was
increased in 29 of the 32 classification experiments when the
feature-space was extended. Moreover, the benefits of the new
feature persisted even when a considerable amount of error
was infused into the training set. In particular, 23 of the 32
classifications results maintained their superiority when trained
on the noisy data.

When the results are explored as a function of distance, it
becomes clear that the J48 decision tree classifier benefited
the most from the additional feature. Figure 7, for example,
illustrates that the new feature facilitated the mitigation of
the performance hull present in the results produced on the
standard feature-space. In general, the figures demonstrate that
the most significant improvements are achieved on the more
challenging experiments, E2 and E4. This is a likely result as
there is more space for improvement on these tasks.

Interestingly, unlike the other classifiers, J48 consistently
improves the most when the continuous airshed feature is
added. In considering this point, we note that being a decision
tree, J48 has a discretization procedure incorporated in the
algorithm [9], thus suggesting that the discretization process
applied by J48 is superior to the simple EIW binning that
we have applied. Indeed, it has been observed that the EIW
process is vulnerable to outliers that skew the range [10].
Moreover, it is probable that valuable information is lost when
putting instances that are strongly related to different classes
into the same bin [11]. Therefore, further consideration of the
most appropriate discretization process is required in order to
maximize the classification results.

Alternatively, ocNN, NN and NB achieve more success with
the discretized airshed feature. This raises further questions
about how significantly they may be improved with a sophis-
ticated discretization process.

Nonetheless, the overall results of this experiment are very
favourable. Indeed, they indicated that further, and more
empirical, research on the incorporation of meteorological
indicators into the CTBT domain, may produce further im-
provements in the detection of low-yield nuclear tests.

VIII. CONCLUSION

Verification of the Comprehensive Test-Ban-Treaty (CTBT),
as a Pattern Recognition (PR) problem, has been proposed
based on four radioxenon features. It has been noted, however,
that in many cases this limited feature set is insufficient
to distinguish radioxenon levels affected by an explosion
from those that are exclusively the byproducts of industrial
activities. As a means of improving the detectability of low-
yield clandestine nuclear explosions, this paper has motivated

the inclusion of meteorological indicators in the CTBT feature-
space, and promoted further research into which meteorologi-
cal indicators are the most informative, and how they may be
acquired.

In doing so, we have contrasted classification results pro-
duced in the standard feature-space with those produced in
an expanded feature-space, based on four simulated scenarios.
Our results demonstrated that the inclusion of an airshed esti-
mate feature significantly increases the prospect of classifying
challenging detonation events, thus, suggesting the predictive
power of meteorological features in general. More specifically,
in 26 of the 32 classification experiments, better ensemble
mean AUC results were produced in the expanded feature-
space. Moreover, even in scenarios where a significant amount
of error was added to the new feature, its inclusion was highly
favourable.

While questions remaining about the exact form that an air-
shed estimate feature should take, and how best to acquire the
estimate, this paper clearly demonstrates the rich possibility
for the CTBT verification, offered by meteorological features,
in general, and airshed estimates in particular.
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