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Abstract

Classifier performance evaluation typically gives rise to
vast numbers of results that are difficult to interpret. On the
one hand, a variety of different performance metrics can be
applied; and on the other hand, evaluation must be con-
ducted on multiple domains to get a clear view of the clas-
sifier’s general behaviour. In this paper, we present a vi-
sualization technique that allows a user to study the results
from a domain point of view and from a classifier point of
view. We argue that classifier evaluation should be done on
an exploratory basis. In particular, we suggest that, rather
than pre-selecting a few metrics and domains to conduct
our evaluation on, we should use as many metrics and do-
mains as possible and mine the results of this study to draw
valid and relevant knowledge about the behaviour of our al-
gorithms. The technique presented in this paper will enable
such a process.

1 Introduction.

Classifier performance evaluation is a crucial stage in de-
veloping machine learning techniques. It typically gives
rise to a multitude of results that are difficult to interpret.
On the one hand, a variety of different performance metrics
can be applied, each adding a little bit more information
about the classifiers than the others; and on the other hand,
evaluation must be conducted on multiple domains to get a
clear view of the classifier’s general behaviour.

Caruana et al. [2] studied the issue of selecting appropri-
ate metrics through a visualization method. In their work,
the evaluation metrics are classified into three categories
and a new metric, SAR, is constructed, that combines the
properties found in each of these properties.

In addition to their performance being judged with re-
spect to various metrics, classifiers are often evaluated on
several domains that present different characteristics such
as dimensionality, types of features, classification diffi-
culty. Japkowicz et al. [4] studied the issue of aggregat-
ing the results obtained by different classifiers on several
domains. They too use a visualization approach to imple-
ment a component-wise aggregation method that allows for
a more precise combination of results than the usual aver-
aging or win/loss/tie approaches.

In this research, we take the view that classifier evalua-
tion should be done on an exploratory basis. This can be
done manually, though it quickly becomes difficult (if not
impossible) to analyze the results manually due to the mul-
titude of metrics and domains considered. Visualization, on
the other hand, may be a great aid in this process. Here,
we investigate the general issues of visualization and how
to adapt existing methods to suit our purpose. This work
extends a short paper [1] by illustrating the insights we gain
when adopting this approach.

More specifically, we assume that classifier evaluation
requires two stages. In the first stage, the researcher com-
putes the results obtained by the various classifiers with re-
spect to several representative metrics on several domains,
in order to make the comparison as general as possible.
This, of course, will create a considerable amount of data,
which will, in turn, need to be analyzed, in a second stage,
in order to draw valid and useful conclusions about the al-
gorithms under study. We can say that this second stage is
a data mining process in and of itself.

The aim of this paper is to illustrate and motivate the
use of graphical methods as a simple alternative approach
for the comparison of classifiers. We present a visualization
technique (in two dimensions) based on the combination of
the above two techniques [2, 4] that allows for analyses with



respect to both a variety of metrics and domains. Note that
single scalar metrics can be seen as projections to one di-
mension. Such projections, however, only allow to show
where a classifier stands in relation to one other classifier,
which usually is the ideal classifier. We will show that our
system, based on a projection to two dimensions, allows to
study a number of questions that can not be answered with
traditional evaluation techniques. Moreover, it provides a
way to select candidates for an ensemble of classifiers and
enables an analysis from either a classifier point of view
or a domain point of view. We illustrate our approach on a
study of 15 domains over three representative metrics as per
Caruana et al. [2].

The remainder of this article is organized as follows.
Sect. 2 discusses the visual approach to analyzing classifier
performance, Sect. 3 describes a typical empirical study.
Sect. 4 illustrates the benefits of visual data mining in clas-
sifier evaluation and Sect. 5 concludes with a summary and
suggestions for future work.

2 Visualizing the Classifier Performance

In general terms, classifier performance evaluation in-
volves generating large amounts of performance data and
trying to reduce this data to meaningful descriptors of per-
formance. Thus, classifier performance evaluation implies
discarding information and data reduction. In this sense,
performance evaluation can be approached as a problem of
how to project the large amounts of data to a lower dimen-
sional space. Note that in this process, it is desirable to re-
tain as much of the information as possible, discarding only
what may be regarded as irrelevant.

In the extreme case, all the performance data gets turned
into a single number (projection to one dimension) and the
classifiers get compared on the basis of a single quantity,
i.e., a scalar metric. However, this involves the maximum
amount of information loss and single value indicators of
classifier performance are most likely to be unsatisfactory
in conveying information about classifier performance. This
may be the reason why several single metrics are required
to describe different aspects of performance.

In general, the volume of data we need to retain is such
that listing numerical values in tables is inadequate and pre-
senting the remaining data in visual form is desirable. Sci-
entific Visualization is a great aid: (a) to carry out data re-
duction and therefore, communicate what we believe is sig-
nificant about the performance results and (b) to allow a hu-
man observer to easily discover meaningful patterns in the
performance results.

In order to compare classifiers on an exploratory basis
rather than through standard evaluation, different tools may
be useful depending of the amount of data available. They
vary from simple approaches to plotting the results in a

convenient way (such as histograms, spider graphs, scat-
ter graphs) to dimensionality reduction techniques such as
Multidimensional Dimensional Scaling (MDS) [3] or Self
Organizing Maps [5]. Although simple graphs are helpful
for the analysis, they have limitations as the number of di-
mensions increases. In this case, a dimensionality reduction
technique that preserves the original data structure as much
as possible, seems more convenient. Next, we illustrate our
approach with a typical empirical study.

3 Typical Experimental Study

Consider a standard empirical study where L classifiers
are evaluated on D domains. Consider also that a set of K
representative metrics are recorded for each pair of domain-
classifier, so that the results can be organized in K tables
with elements m

(k)
ij where k is the metric evaluated, i =

1, . . . , L and j = 1, . . . , D.
In this section a typical experiment is conducted in or-

der to assess nine classifiers (k-Nearest neighbor with k=1
and k=10 (Ib1, Ib10), Naive Bayes,C 4.5 Decision Tree,
Bagged Decision Trees, Boosted Decision Trees, Random
Forest, SVM and JRip) on several domains based on three
metrics of interest. Evaluation was carried out by 10-fold
cross-validation in the WEKA environment [6] with param-
eters set as default. Fifteen binary classification problems
from the UCI repository were assessed in this work (Sonar,
Heart-v, Heart-c, Breast-y, Voting, Breast-w, Credits-g,
Heart-s, Sick, Hepatitis, Credits-a, Horse-colic, Heart-h,
Labor and Krkp). In the following, D1 will refer to Sonar,
D2 to Heart-v, and so on.

Different metrics reflect different properties that may be
desirable for a classifier. From the three categories es-
tablished in [2], we chose the most representative ones:
RMSE that reflects the classifier’s ability to estimate poste-
rior probabilities, AUC with information about its ranking
capabilities and the Error Rate metric as a threshold met-
ric. Tables 1, 2 and 3 show the Error rate, RMSE and AUC,
respectively for the 15 UCI domains evaluated here.

4 Performance Analysis

Typical questions we would like to answer after the clas-
sifier performance analysis is performed are related to simi-
larities/dissimilarities between classifiers: (a) Which classi-
fiers perform similarly so that they can be considered equiv-
alent? (b) Which classifiers could be worth selecting for a
classifier ensemble? (c) Does the relative performance of
the classifiers change as a function of data dimensionality?
(d) Does it change for different domain difficulties?

A first attempt at answering these questions could be to
analyze directly the data gathered in Tables 1, 2 and 3. How-
ever, such an analysis does not seem straightforward given



Table 1. Error rate for different classifiers on several domains
ERROR RATE

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.1342 0.2957 0.2378 0.2757 0.0986 0.0486 0.2800 0.2481 0.0381 0.1937 0.1884 0.1873 0.2317 0.1733 0.0372
Ib10 0.2402 0.2160 0.1753 0.2699 0.1077 0.0357 0.2600 0.1851 0.0384 0.1737 0.1405 0.1686 0.1660 0.0833 0.0494
NB 0.3211 0.2360 0.1652 0.2830 0.1284 0.0400 0.2460 0.1629 0.0739 0.1554 0.2231 0.2200 0.1629 0.1000 0.1210
C4.5 0.2883 0.2663 0.2248 0.2445 0.0917 0.0544 0.2950 0.2333 0.0119 0.1620 0.1391 0.1470 0.1893 0.2633 0.0056
Bagging 0.2545 0.2513 0.2080 0.2656 0.0895 0.0415 0.2600 0.2000 0.0127 0.1683 0.1463 0.1442 0.2105 0.1533 0.0056
Boosting 0.2219 0.2965 0.1786 0.3035 0.1010 0.0429 0.3040 0.1963 0.0082 0.1420 0.1579 0.1659 0.2142 0.1000 0.0050
RF 0.1926 0.2460 0.1850 0.3144 0.0965 0.0372 0.2730 0.2185 0.0188 0.2008 0.1492 0.1524 0.2177 0.1200 0.0122
SVM 0.2404 0.2463 0.1588 0.3036 0.0827 0.0300 0.2490 0.1592 0.0615 0.1483 0.1507 0.1740 0.1726 0.1033 0.0456
JRip 0.2692 0.2660 0.1854 0.2905 0.0986 0.0457 0.2830 0.2111 0.0177 0.2200 0.1420 0.1306 0.2104 0.2300 0.0081

Table 2. RMSE for different classifiers on several domains
RMSE

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.3512 0.5342 0.3045 0.5042 0.2956 0.1860 0.5278 0.4848 0.1936 0.4252 0.4295 0.4261 0.2950 0.3197 0.1936
Ib10 0.3931 0.4277 0.2179 0.4305 0.2649 0.1519 0.4193 0.3700 0.1699 0.3406 0.3298 0.3587 0.2192 0.3213 0.2458
NB 0.5263 0.4164 0.2256 0.4480 0.3310 0.1945 0.4186 0.3542 0.2285 0.3409 0.4346 0.4179 0.2238 0.1997 0.3018
C4.5 0.5172 0.4531 0.2689 0.4311 0.2760 0.2105 0.4790 0.4526 0.1035 0.3565 0.3290 0.3521 0.2461 0.4209 0.0638
Bagging 0.3926 0.4177 0.2359 0.4335 0.2564 0.1769 0.4201 0.3768 0.0902 0.3388 0.3186 0.3440 0.2290 0.3412 0.0634
Boosting 0.4366 0.4700 0.2497 0.5105 0.2875 0.1864 0.5054 0.4294 0.0757 0.3507 0.3671 0.3690 0.2579 0.2281 0.0603
RF 0.3530 0.4166 0.2295 0.4686 0.2607 0.1615 0.4223 0.3912 0.1156 0.3512 0.3323 0.3376 0.2405 0.2962 0.1116
SVM 0.4837 0.4942 0.2872 0.5470 0.2667 0.1520 0.4979 0.3934 0.2479 0.3606 0.3837 0.4105 0.2885 0.2249 0.2110
JRip 0.4647 0.4360 0.2385 0.4475 0.2828 0.1932 0.44637 0.40846 0.1189 0.4075 0.3419 0.336 0.2574 0.3776 0.0782

Table 3. AUC* (1-AUC) for different classifiers on several domains
AUC* (1-AUC)

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Ideal 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ib1 0.1361 0.4635 0.2403 0.3687 0.0622 0.0256 0.3400 0.2500 0.1912 0.3362 0.1917 0.2035 0.2512 0.1750 0.0105
Ib10 0.1373 0.4102 0.0920 0.3201 0.0325 0.0759 0.2553 0.1244 0.0672 0.1890 0.0911 0.1366 0.1138 0.0500 0.0094
NB 0.2000 0.2826 0.0955 0.2845 0.0483 0.0120 0.2122 0.0994 0.0747 0.1408 0.1040 0.1501 0.1009 0.0125 0.0479
C4.5 0.2653 0.3983 0.2032 0.3719 0.0629 0.0515 0.3534 0.2450 0.0505 0.3034 0.1064 0.1507 0.2341 0.2666 0.0012
Bagging 0.1478 0.2869 0.1296 0.3518 0.0362 0.0105 0.2469 0.1291 0.0050 0.1769 0.0771 0.1237 0.1178 0.1583 0.0007
Boosting 0.0938 0.3055 0.1187 0.3569 0.0370 0.0176 0.2770 0.1166 0.0123 0.2003 0.0945 0.1118 0.1389 0.0625 0.0007
RF 0.0889 0.2914 0.1215 0.3537 0.0376 0.0137 0.2499 0.1386 0.0072 0.1599 0.0886 0.1023 0.1444 0.0916 0.0012
SVM 0.2418 0.4335 0.1639 0.4072 0.0869 0.0316 0.3292 0.1633 0.5001 0.2487 0.1434 0.1912 0.2033 0.1250 0.0457
JRip 0.2631 0.4366 0.1591 0.3877 0.0839 0.0368 0.3871 0.2041 0.0579 0.3960 0.1285 0.1562 0.2427 0.2416 0.0055

the quantity of results recorded (and there could be worse
instances of this).

As an alternative, metrics like SAR try to summarize
all the gathered information with a point estimation. Thus,
SAR carries out the projection

SAR∗ = 1− SAR = RMSE + Error + AUC∗ (1)

where AUC∗ = 1 − AUC. The closer to zero the SAR1

values (and all its components) are, the better the classifier
performs. Tables 4 shows the classifiers’ performance val-
ues according to the SAR metric and the individual metrics
involved in its definition computed as the average over all
the domains. Based on these metrics, a ranking can be es-
tablished among classifiers (see Table 5). This ranking sug-
gests, for instance, that two classifiers that are close enough
to each other may be considered equivalent or related by

1Note that this metric lies in the interval [0,1].

similar performance properties. However, such conclusions
are sometimes misleading and it is more beneficial to ex-
tract more information by exploring the results visually.

4.1 Visualization and exploration based on a MDS
projection

In this section, we demonstrate the use of MDS (Multi-
Dimensional Scaling) [3], to visualize either the classifiers
or the domains in a graph, so that interpoint distances in the
high dimensional space are preserved as much as possible
in the 2D space.

Let us now study what information may be extracted
from a graph in which the information provided in Tables
1, 2 and 3 is not simply averaged (over domains and over
different metrics) but is projected using MDS. The distance
between two points is calculated as the Euclidean distance
and the stress criterion is normalized by the sum of squares
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Figure 1. metric MDS projection from 45 dimensions to 2 dimensions based on the RMSE, AUC* and
Error rate gathered over 15 domains.

Table 4. Classifier evaluation according to dif-
ferent performance metrics according to the
averages over all the domains.

CLASSIFIER EVALUATION METRICS

AUC* RMSE Error Rate SAR*

(1-SAR)
Ideal 0.0000 0.0000 0.0000 0.0000
Ib1 0.2164 0.3647 0.1779 0.2530
Ib10 0.1358 0.3107 0.1539 0.2001
NB 0.1244 0.3375 0.1759 0.2126
C4.5 0.2043 0.3307 0.1744 0.2365
Bagging 0.1332 0.2957 0.1607 0.1965
Boosting 0.1296 0.3190 0.1625 0.2037
RF 0.1260 0.2992 0.1623 0.1958
SVM 0.2210 0.3499 0.1551 0.2420
JRip 0.2125 0.3224 0.1739 0.2362

Table 5. Classifier ranking according to differ-
ent performance metrics.

CLASSIFIER RANKING

AUC* RMSE Error Rate SAR*

(1-SAR)
1 Ideal Ideal Ideal Ideal
2 NB Bagging Ib10 RF
3 RF RF SVM Bagging
4 Boosting Ib10 Bagging Ib10
5 Bagging Boosting RF Boosting
6 Ib10 JRip Boosting NB
7 C45 C4.5 JRip JRip
8 JRip NB C4.5 C4.5
9 Ib1 SVM NB SVM
10 SVM Ib1 Ib1 Ib1

of the interpoint distances.
Before starting to explore the graphical representation, it

is interesting to assess the stress criterion. In other words, it
is important to know how much of the original data structure
is preserved after projecting the data to two dimensions. We

can then have an idea of the information gained when mov-
ing from one dimensional representation to two dimensions.
In our example the stress becomes 0.08 for two dimensions
(not much loss of information), but it increases to 0.22 when
considering only one dimension.

Each classifier-i is originally described by a vector with
components m

(k)
ij , where k = 1, . . . , K and j = 1, . . . , D.

(D = 15 and K = 3, which leads to a 45 dimensional
space). After projecting to 2 dimensions with MDS, each
classifier-i is described by a point (xi, yi) and the simi-
larities/dissimilarities among classifiers can be analyzed in
Fig.1, which gives a clearer view of the relative perfor-
mance between classifiers. The ideal classifier is also in-
cluded, which allows us to compare classifiers by their pro-
jected distance to the ideal classifier as well as their relative
position to other classifiers.

Next, we will show that our system allows us to study
a number of other questions that cannot normally be an-
swered with traditional evaluation tools. These may refer to
an analysis from a classifier point of view or from a domain
point of view. In the former, the objects are the classifiers
(domains are reduced when projecting) and in the latter the
objects are the domains (classifiers are are the attributes pro-
jected).

• Classifier-Centric Questions:

– Can the classifiers be organized into equivalence
classes that perform similarly on a variety of do-
mains?

– In what way are the classifiers similar or different
from one another?

– Which classifiers would it be beneficial to com-
bine in an ensemble of classifiers? Which com-
binations would not improve the results?

• Domain-Centric Questions:



– Can domains be organized into equivalence
classes within which various classes of classifiers
behave predictably?

– What domain characteristics influence the be-
haviour of different domains (e.g., domain diffi-
culty, dimensionality, etc.)?

4.1.1 Classifier similarity/dissimilarity

In this section we analyze the data performance from a
classifier point of view.

Classifier clustering
From the point metric SAR (see Table 4), we can easily
draw the conclusion that C4.5 and SVM performance are
very similar. The same applies to C4.5 and JRip and also to
Boosting and NB.

However, in the projection that SAR represents (from
45 dimensions to 1), we lose a lot of information about
the similarities between classifiers. Keeping more infor-
mation (projecting to 2 dimensions) allow us to identify
several clusters of classifiers whose performance are very
close or equivalent across the fifteen domains in terms of
the three metrics considered (RMSE, AUC and Error rate).
With the aid of Fig. 1 the two following classifier clus-
ters with equivalent performance can be identified: {C4.5,
JRip} and {Bagging, RF, Boosting}.

If we now go back to Tables 1, 2 and 3, we would be
able to confirm the similarities among the classifiers within
the cluster. Nonetheless, finding the similarities directly
from the information gathered in these tables does not seem
straightforward.

Recalling the similarities found by analyzing the SAR
metric, we are able to conclude that: (i) C4.5 and JRip’s
performance are very close (this corroborates SAR-based
analysis) , (ii) C4.5 and SVM’s performance are divergent
(although their difference to the ideal classifier seems
to be approximately equal) and (iii) Boosting and NB’s
behaviours are not as close as the information in Table 4
suggests. While this clarifies the results, it also suggests
a whole series of new questions: In which way are these
classifiers different? Where do these differences among
classifiers come from? Do they arise, for example, because
of different capabilities to estimate posterior probabilities?
Can we impute them to the domain characteristics? In
that case, which characteristics of the domain make these
differences appear?. Next, we analyze these in more detail.

Classifier dissimilarities
We will now explore whether the dissimilarities between
various classifiers are due to differences in certain aspects of
performance (ranking properties, posterior probability esti-
mation, accuracy). Let us focus, again, on the two pairs

of classifiers which the SAR-based analysis found similar
but which the general MDS projection showed to be quite
different: Boosting/NB, C4.5/SVM.

We consider a specific metric k = kl and a pair of
classifiers. Each classifier-i is described by a vector with
components m

(kl)
ij , where j = 1, . . . , D. (space with 15

dimensions since D = 15). Fig.2 shows the similari-
ties/dissimilarities among the classifiers in terms of AUC,
RMSE and Error. We can analyze whether or not they are
similar in any of the properties that these metrics reflect.

• C4.5 vs. SVM.
Fig.2(a) shows that the absolute difference in terms
of AUC with respect to the ideal classifier is approx-
imately equal for both classifiers. However, C4.5’s
performance is quite far from that of SVM. The same
applies to the analysis in terms of RMSE (Fig.2(b))
and accuracy (Fig.2(c)). Therefore, both classifiers are
very different in all the aspects of performance ana-
lyzed here. This leads us to conclude that the domain
characteristics play an important role. There may be
certain domains for which C4.5 clearly outperforms
SVM and viceversa.

• Boosting vs. NB. The plots as a function of the individ-
ual metrics do not show closeness between classifiers
for any of them.

From this analysis we can conclude that these two
pairs of classifiers are not similar in any of the relevant
performance characteristics we are evaluating. They show
very different behaviour across domains, although in
absolute terms (with respect to the ideal classifier) they
give the same overall performance. An analysis from the
domain point of view will probably provide information
about the origin of the differences (see Section 4.1.2).

Ensembles of classifiers
The aim of the classifier ensembles is to take advantage
of the individual classifiers’ capabilities by selecting or
weighting their individual decisions. Here, we analyze
performance across domains and therefore, the discussion
about possible combinations is taken with regard to the do-
main the ensemble has to classify instances from. Nonethe-
less, this analysis can be carried out at the instance level as
well and be used to evaluate possible combinations of clas-
sifiers to classify test examples of a given domain.

If, given a domain, we could predict which classifier
from a set of decision machines gives the best performance,
or how to combine them in order to exploit the individual
decisions, we would be able to develop a general classifier
with better general performance.

Our tool helps us see what possible combinations we
may explore. The dotted lines in Fig.1 can be viewed
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Figure 2. metric MDS projection from 15 di-
mensions to 2 dimensions: (a) based on AUC.
(b) based on RMSE. (c) based on Error rate.

as iso-absolute-performance curves. Their points, though,
have very different relative performance. We consider as
possibly good combinations those classifiers that are in
the same iso-absolute-performance curve and are far from
each other. Note that this tool allows to identify combi-
nations like {Boosting, NB, Ib10} or {C4.5, Ib1, SVM}
that could be worth exploring. Developing combination
schemes, though, is beyond the scope of this work and will
be considered in future research.

4.1.2 Classifier relative performance across domains

When using performance metrics to look at how classifiers
A and B perform on different domains, we can treat each
domain as a point in a higher dimensional space. For each
performance metric, we evaluate the metric with respect to
classifier A and with respect to classifier B and then, take
the difference. Thus, each domain-j is represented by a vec-
tor with components (m(k)

Aj − m
(k)
Bj ) where k = 1, . . . ,K.

For instance, if we are using 3 performance metrics, AUC,
RMSE and Error, we get 3 attribute values for each domain.
We can then use MDS to project this to 2 dimensions. This
way, we will be able to observe the domains distributed ac-
cording to how close/different they are with regard to the
relative performance between the classifiers. Two domains
will be plotted close to one another, if the relative perfor-
mance between the classifiers is close in these domains.

We illustrate this study in Fig.3 with the classifiers
C4.5/SVM that were previously found to have similar ab-
solute performance but turned out to be quite different from
one another. For example, we can observe that in Domains
D9 and D14 the relative performance of these two classi-
fiers is very different (in D9, C4.5 clearly outperforms SVM
whereas SVM outperforms C4.5 in D14). In the group {D4,
D15}, C4.5 is also preferred to SVM, but the relative dif-
ference changes in domain D9. In other groups, however,
the differences may be blurred, but there are still domains
where the classifiers have the same relative performance.
Thus, in {D3, D10, D7, D13}, SVM is better in terms of
Error and AUC but it is worse when assessed for RMSE.

Identifying to which group a domain belongs to, could
allows us to predict which classifier of the two would be
preferred for that problem.

4.1.3 Domain similarity/dissimilarity

Apart from a general study about classifiers, our tool pro-
vides a simple way to analyze classifier performance ac-
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Figure 3. MDS projection with relative per-
formance information (AUC, RMSE, Error dif-
ferences) between SVM and C4.5 across do-
mains (projection from 3 to 2 dimensions).



cording to the domain characteristics.
As previously mentioned, we can regard each domain

as an object with attributes representing a measure of how
several classifiers have performed on that domain. Note
that the attributes are classifier performance measures and
the classifier dimensions are the ones reduced.

Domain clustering based on task difficulty
It is possible to identify groups of domains according to how
the classifiers behave on these. In this analysis, each object-
j is a domain defined by a vector with components m

(kl)
ij

with metric k = kl and classifiers i = 1, . . . , L.
For instance, let us focus on the classifier ranking prop-

erties (measured by the AUC metric). Our original space
has 16 objects (15 domains plus an ideal one, D0, for which
all classifiers get the maximum AUC) and has 9 dimensions
(as many as classifiers; L=9). There are domains for which
ranking becomes easier and others for which it is a more
difficult task. We argue that the classifier performance may
differ according to the domain difficulty.

In Fig.4(a) where the domains are represented, we can
see that for domains such as D6, D5, D15 the ranking is
easier than in others like D7, D4 and D2.

Fig.4(b), Fig.4(c) and Fig.4(d) show the classifier rela-
tion based on AUC for simple, medium and high difficulty
domains, respectively. These graphs may allow us to ex-
tract information with regard to domain difficulty and draw
conclusions such as the following: ”As domain difficulty
increases, classifier A becomes less competitive than classi-
fier B...”

For example, from Fig.4 we can reach the following con-
clusions in terms of classifier ranking capabilities:

1. NB tends to improve as difficulty increases. In fact,
it appears as the best alternative for scenarios where
ranking is difficult.

2. Differences between Bagging and Boosting seem to
widen as difficulty increases. As a result, in difficult
domains Boosting performance is much worse than
Bagging.

3. The classifier with best general performance across
difficulty is RF.

While the ranking established in Table 5 identifies NB as
the the best paradigm for ranking purposes, this tool allows
us to see that great improvements can be achieved choosing
the decision system depending on the domain difficulty.

Domain clustering based on the Input Space Dimen-
sionality

Another important aspect in classification is the dimen-
sionality of the input space. Next, we explore the classifier

ranking properties according to the dimensionality of the
input space. We focus on a set of domains that fulfill cer-
tain restrictions and describe them by the components m

(kl)
ij

with metric k = kl and classifiers i = 1, . . . , L (each object
is described in a L = 9 dimensional space).

Fig.5 shows the classifier proximity in terms of AUC for
domains with low dimension (lower than 20) and higher di-
mensionality. It is straightforward to see that the relative
distances between the classifiers change as well as their dis-
tance to the ideal solution.

We can see that for low dimension domains, RF, Bag-
ging and Boosting are relatively close to one another, but
that they are outperformed by the NB classifier. However,
as dimensionality increases, RF outperforms the remaining
classifiers. In this case, the analysis reveals the optimality
of the classifier depending on the size of the input feature
space.

5 Conclusions and further research

In this work, we take the view that classifier comparison
should be done on an exploratory basis rather than through
standard evaluation. This means that as long as the per-
formance analysis progresses, we will discover tendencies,
similarities, dissimilarities or outliers. There is no need to
know what we want to find in advance.

We provide a technique based on visualization that takes
this very general view and transforms it into a practical en-
deavour. We show that visual data mining is a powerful
tool for discovering data patterns, a task that is quite diffi-
cult when simply looking at the results organized in tables,
and inaccurate when summarized by a SAR-like measure.
Moreover, it allows us to analyze the performance data not
only from a classifier point of view, but also from a domain
point of view.

In this work we began by illustrating how to combine
several metrics that are recorded for several scenarios. We
found out that the conclusions drawn based on point met-
rics are sometimes misleading and too simplistic. A deeper
analysis allowed us to understand the underlying relation
between classifiers and domains.

There are many more avenues to explore in model selec-
tion and combination tasks. Assessing the benefits of this
tool to select classifiers in an ensemble is our immediate
future research.
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Figure 4. Based on AUC.(a) Domain Complex-
ity. (b) Simple domains (5, 6 15). (c) Domains
(14 11 12 3 8 13 1 9).(d). Complex domains (10
7 4 2).
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Figure 5. MDS based on AUC (from 15 to 2
dimensions).(a) Low dimensionality of the in-
put space (lower than 20) (b) Higher dimen-
sionality of the input space


