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Abstract—In this paper, a novel learning method is 
introduced that borrows simultaneously from the principles of 
kernel methods and multi-layer perceptron. Specifically, the 
method implements the feature mapping idea of kernel methods 
into a multi-layer perceptron. Unlike in kernel learning where 
the feature space is usually invisible and inaccessible, the multi-
layer perceptron based mapping is explicit. Therefore, the 
proposed model can be learned directly in feature space. 
Together with the inherent sparse representation, the proposed 
approach will thus be much faster and easier to train even in the 
event of a large network size. The proposed approach is applied 
in the context of an Autonomous Underwater Vehicle Mine-Like 
Objects detection task. The results show that the proposed 
approach is able to improve upon the generalization performance 
of neural network based methods. Its prediction results are also 
close to or better than those obtained by kernel machines. Its 
learning and classification speed is shown to far surpass those of 
kernel machines. These results are confirmed on a number of 
experiments involving benchmarking UCI domains. 

Keywords— Machine learning; Feature mapping; Neural 
networks; Kernel learning; Target detection.  

I. INTRODUCTION  
Kernel machines represent a large family of machine 

learning methods that has been successfully applied to a wide 
variety of pattern recognition problems [1]. The non-linear 
kernel machines usually proceed via two steps. The first step 
projects the data from the input space to another feature space. 
The second step learns a model in this new feature space using 
certain optimization techniques. In this fashion, the nonlinear 
hyper-surface in the original input space, or decision boundary 
in classification, can be approximated by a linear hyper-plane 
in another feature space, usually with a higher dimensionality. 
In most cases, the feature mapping has to be non-linear in order 
to perform the non-linear to linear transformation.  

Even though the feature space is visible for some kernels, 
for instance the linear kernel, the kernel machines can process 
without having access to the feature space. In this way, the 
curse of dimensionality can be avoided by transferring the 
feature space computation back to the original input space, 
making it possible to work with a feature space having a 
considerable high dimensionality. In kernel machines, the 
feature mapping is usually implicit. Therefore, kernel machines 
work without knowing the higher dimensional feature space. 

The training process of the kernel machine is to solve for 
the coefficients associated with the some training points 
(known as support points in SVMs), based on which the 
decision boundary is truly built [2]. Since the kernel feature 
space can be invisible, in the training stage, the higher 
dimensional computation has to be realized by pair-wise 
evaluation of the kernel function on the N training data points, 
where N is the number of training instances. Consequently, an 
N square sized kernel matrix, also known as Gram matrix is 
built. The training process can be slow or even virtually 
impossible if learning is conducted on a large scale dataset 
where N becomes very large. Unfortunately in many real life 
applications, it is necessary to deal with the cases where the 
number of training samples is very large. Therefore, a lot of 
work has focused on how to speed up kernel learning, 
especially on the large scale datasets.   

When making predictions, the testing data is classified in 
the same feature space where the decision boundary is learned. 
As a result of kernel feature mapping, a part of the training data 
points need to be kept to mathematically express the decision 
boundary. For non-sparse kernel machines, such as LS-SVMs, 
the whole dataset has to be stored. Apart from the training 
points, the same amount of coefficients associated with the 
support points has to be solved and stored as well. When a new 
testing point comes, the classification process will compare it 
with such points via the kernel function and then evaluated 
with the corresponding coefficients For non-sparse kernel 
machines, such operation is conducted between the testing 
point and every training point one by one. Altogether, this 
makes for a slow classification process.  

However, it is important to note that kernel methods are not 
the only way to perform feature mapping. In certain cases, we 
might benefit from making the feature mapping explicit where 
the feature space become visible and accessible. Therefore, 
directly solving the classifier in such a feature space becomes 
computationally feasible and, sometimes, even more efficient. 
Furthermore, since prediction is performed in the same visible 
space, no training data has to be kept for the testing stage. This 
work will show how to properly perform explicit feature 
mapping via building Multi-Layer Perceptron (MLP). Some 
inherent property of MLP feature mapping is property 
discussed and addressed in this work. A robust maximum 
margin classifier is built in the feature space with a high 
efficiency and competitive generalization performance.  
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II. RELATED WORK 
 Due to the slow speed of kernel learning on large scale 
datasets, previous research resorted to better or more efficient 
optimization techniques, such as decomposition methods, to 
solve kernel machines [3-5]. Another approach is to use data 
dependent low-rank approximation to reduce the size of kernel 
matrix [6, 7]. This way, the feature mapping can be regarded as 
explicit. When making the feature mapping explicit, no 
decomposition techniques are needed. The projection 
coefficients can be directly copied from the subset of the 
original training data. The subset selection can be either 
conducted by certain optimization criteria [8] or simply by 
sampling [9]. 

Vedaldi et al. [10] have also discussed the limitation of 
non-linear kernel mapping on large scale datasets. Explicit 
feature mapping is used in order to approximate a family of 
addictive kernels, such as the intersection kernels and χ2 
kernels. A closed-form expression of the mapping function is 
derived for such kernels. The analysis of the approximation 
error is also presented.  

Some random mapping methods can be viewed as another 
kind of explicit feature mapping. In such methods, the feature 
projection is random. Rahimi et al. [11] proposed to use 
Fourier and Binning features to transform the data to a low 
dimensional random feature space. A regression model is built 
after the random feature mapping is completed.  

Two neural network based methods, Extreme Learning 
Machine (ELM) [12] and Echo State Networks (ESN) [13] are 
also examples of random feature mapping learning. The 
mapping in such random methods will be independent of the 
data. Both methods contain a random reservoir which consists 
of many hidden neurons, and the only trainable part is the 
weights in the linear output layer. ELM is often used in static 
problems. However, as a recurrent neural network, ESN is 
often applied to solve dynamic problems. The neurons inside 
the ESN reservoir are sparsely connected. If the sparsity of the 
internal connection is reduced to 0 and all the feedback weights 
are removed, ESN will share the same network architecture as 
ELM. It is worth mentioning that ELM is proven to be a 
universal approximator with random hidden layer. 

It worth mentioning that the combination of MLP and 
margin maximization is not new. There are also similar works 
using MLP and max margin classifier (like SVMs) in joint. An 
example of such work can be found in digit recognition [14]. 
MLP is first used to classify the digits, then SVMs is trained on 
the classification outputs produced by the MLP. In this 
approach, both the MLP and SVM are used as classifiers and 
SVM is used to distinguish the results of the MLP, which is 
much different from the proposed approach. In another MLP-
SVM classifier [15], the model training is also divided into two 
stage. Firstly, the MLP is trained to minimized the relative 
entropy between the output distribution and the true label 
distribution. Secondly, SVMs is trained on the outputs of MLP. 
The first stage MLP training is independent of the SVM.  
Moreover, either from the objective function or the 
optimization method, the proposed approach is different from 
such works. More importantly, the norm of MLP weights will 
be addressed in the proposed approach.  

III. THE PROPOSED APPROACH 
As mentioned above, some neural network based methods 

can be viewed as a good case of explicit feature mapping. 
Therefore, we can perform the mapping via building such 
networks. In this work, we will show how to implement 
explicit mapping via building one of the most widely applied 
neural networks, the MLP. The feature space will be defined 
by the parameters and activation function of the MLP hidden 
layer(s).  

However, the proposed approach does not belong to the 
family of random mapping networks such as ELM or ESN. 
The proposed approach will not use random and data-
independent feature mapping. A relationship between the 
training points and the mapping parameters will be built, as we 
will later see the impact of such parameters on the final 
learning model.  

Furthermore, it is worth mentioning that unlike some of the 
related works, from the starting point, we are not using explicit 
feature mapping to approximate any kernels, nor is it any kind 
of speed-up version of kernel learning, since no kernel will be 
used in the proposed approach at all. The proposed method in 
this work is neural network based and it will show how to 
properly implement the explicit feature mapping via building 
MLP. We are not approximating any kernels, so the MLP-
based explicit feature mapping enjoys more flexibility. MLP is 
picked in this work because the architecture of MLP is well-
known and straightforward, making the proposed model easy 
to understand. However, the explicit feature mapping idea is 
not limited to MLP cases.  

In this research, we will focus on binary classification 
problems, but it can be easily extended to multi-class or one 
class classifications. It is worth pointing out that the explicit 
feature mapping is also ready and easy to be applied to most of 
the learning tasks where kernel learning is valid, such as 
regression analysis and Principal Component Analysis (PCA), 
etc.  

While implementing the explicit feature mapping via 
building MLP, we cannot ignore certain properties of MLP. 
The generalization ability of MLP is closely related to the 
norm of the weights. The main parameters in MLP are its 
weights. Thus, it will be beneficial to take into account the 
impact of the weights on the final  network. Moreover, the 
dimensionality of the feature space is expected to be large. As a 
result, another property of the MLP used in this work is that it 
has a large hidden layer, which differs from the traditional 
MLP. The proposed method will seek to produce a maximum 
margin classifier, which maximizes the separation space 
between the positive class and the negative class. Furthermore, 
a sparse and robust solution will be obtained. The decision 
boundary will only be built on a part of the training points, 
which will speed up the training process. The sigmoid neurons, 
the most common neuron in the MLP will be used in the 
hidden layer. We will begin by building MLP with single 
hidden layer, and the proposed approach will be extended to 
deep networks with ease where multiple hidden layers are 
included in the architecture. 
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A. Explicit feature mapping via Multi-Layer Perceptron 
For simplicity, we can begin with the case of MLP with 

single hidden layer. Given N training instances (xi, ti), xi∈RM, 
ti∈{-1, 1}, (i=1,2,…, N), where xi are the attributes, M is the 
number of attributes and ti is the class label, using a linear 
output layer, the output yj of a MLP with L hidden nodes is 

1

( , ), 1, 2, ..., (1)
L

j i i j
i

y w g j N
=

= =∑ a x  

The input weights connected to the ith hidden neuron are ai 
(the hidden bias can be included in the input weights), wi is the 
output weights and g(a, x) is the hidden layer activation 
function, which is set to be the sigmoid function in this study. 
The definition of sigmoid is 

T

1
( , ) (2)

1 exp( )
g =

+ −
a x

a x
 

Similarly to SVMs, the objective function is defined to 
penalize the wrongly classified points and those lying inside 
the separating margin. Weight decay is applied as a form of 
regularization. 

2 2

1 2
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where λ1 and λ2 are the regularization parameters, M is the 
number of input neurons w=[w1,w2,…,wL]T. As we can see, the 
proposed approach has included both the training error and the 
norm of weights in the objective function. Minimizing the 
weights w is equivalent to maximizing the separating margin 
between the positive and negative class in the hidden layer 
feature space, and the proposed approach will result in a 
maximum margin classifier.  

 The input weights aij will directly impact on the 
nonlinearity of the hidden layer feature mapping, which will be 
discussed later. Considering the large noise of the data in our 
application domain, the error function is chosen to be a robust 
one-side Huber function [16] defined as 

20.5 ,

2( ) 0.5 , 0

0 , 0

(4)
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ξ ξ ξ

ξ

− >

= ≤ ≤

<

⎧
⎪
⎪
⎨
⎪
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It can be learned from Fig. 1 that the one-side Huber will only 
penalized part of the training points. Furthermore, we define 
the matrix H, 
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Fig. 1. one-side Huber. One benefit of one-side huber is that it is continous 
and differentiable everywhere. 
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where ( , )a xφ  is the hidden layer feature mapping, the weights 
a are the mapping parameters. Let y=[y1,…, yN]T, therefore, 
equation (1) can be compactly written as 

= Hy w    (6) 

With proper reformulation, equation (3) can be rewritten 
as 

2 2 2

1 2

1
( , ) [|| ( ) || || || ] (7)

2
L λ λ= − + +W H Tw a w || w || a  

where, resulting from the one-side Huber loss, W is a 
diagonal weighting matrix whose diagonal elements Wi can 
be defined as 

/ ,

W 1 , 0 (8)
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i i
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Since the feature space is accessible, no dual transformation is 
necessary when solving for the weights w. The weights w can 
be directly learned in the hidden layer feature space. The input 
weights a and output weights w can be trained alternatively, 
which means we first fix either a (or w), and train the other,  
then fix w (or a)and train the other, and repeat the cycle. 

 For simplicity, considering ||a||2 to be fixed and setting the 
derivative of L(w, a) to zero with respect to w, the output 
weights w can be solved by Iterative Reweighted Least Square 
(IRLS). 

1 T 1 T

1( ) (9)t t tλ+ −= +H W H I H W Tw  
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As previously stated, we do not want to use random feature 
mapping, so the mapping parameters aij need to be trained. 
There are many valid methods to train such parameters. In this 
work, we pick one of the most well-known methods, error 
backpropagation (BP) [17]. The only difference is that since 
the error function is not quadratic anymore and aij is included 
in the objective function, the delta term of the output layer has 
to be weighted according to (8) before backpropagated. Also 
the aij have to be decayed according to their regularization 
parameter λ2. The rest deriving process and learning formulas 
will  remain the same to traditional error backpropagation.  

B. Insight into the impact of the norm of weights 
The property of the MLP-based explicit feature mapping is 

directly related to the norm of MLP weights. It has been 
pointed out that when reaching small training errors, MLP with 
a smaller norm of weights is more likely to generalize well 
[18]. In this case, if the norm of input weights is large, the 
sigmoid function in the hidden layer will be saturated, and it 
will produce an output either too close to 0 or 1. Any variation 
in the input data will be magnified by the weights and cause 
the output hidden neurons to alternate between 0 and 1, leading 
to a great variation in the output. Such network is very likely to 
memorize and overfit, as any source of noise and error will be 
heavily magnified.   

 In this work, a large MLP is built to implement the explicit 
feature mapping. As a result of the learning ability of such 
large network, it is easy to reach small training error after a 
very few cycles of weights training. At this point, keep tuning 
the input weights to minimize the training error is not 
necessary because of the danger of overfitting. We keep the 
input weights small at the moment and directly compute w via 
(9), so the learning speed of the proposed approach can be very 
fast. 

 From another perspective, the impact of a is more obvious 
in regression problems. Given a testing point x*, with the same 
feature mapping defined by (5), the predicted output can be 
written as 

* T *( , )y = w a xφ     (10) 
 
Solving w with ridge regression, equation (10) can be 
rewritten as 

* * T T 1 *

1
1 1

( , ) ( ) ( , ) ( , ) (11)
N N

i i i i
i i

y t k tλ −

= =

+ =∑ ∑H H I= a x a x x xφ φ

 
where * T T 1

1( , ) ( ) ( , )i itλ −+H H Ia x a xφ φ is known as the 
equivalent kernel [19]. It is interesting to find from (11) that 
the predictive output y* is in fact a linear combination of ti, the 
labels of the training instances. The shape of k(x*, xi) will be 
largely affected by the norm of the input weights a, which will 
further support the previous discussion and cast light on why 
networks with large weights are more likely to overfit. The 
behaviour of the network is very similar to k-Nearest 
Neighbour (k-NN). 
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Fig. 2. The working region of the sigmoid is shown by the red dashed lines. 
The sigmoid will be close to a linear function that could be approximated by 
the blue line if its input is close to 0. More non-linearity and complexity is 
gained if the sigmoid works in a wider region.  

 As shown in the left plot in Fig. 3, when the norm of the 
input weights is small, the smooth k(x*, x*-x) will result in a 
flexible network that could take into account more distant data 
points. The predicted output is a weighted average of a lot of 
nearby training points, which is similar to a large k in k-NN. 
When the norm of the input weights increases, the k(x*, x*-x) 
becomes more peaked and localized, as illustrated by the right 
plot. In such cases, the predicted output will largely weigh only 
a few data points that are closest to the testing sample x*, 
which is more likely to lead to overfitting. The network will 
converge to 1-Nearest-Neighbour if ||a|| is sufficiently large. 
The role of a here is similar to that of the smoothing parameter 
used in Parzen’s probability density function estimation, which 
serve as a trade-off between the bias and variance of the 
estimator.  

 It is worth mentioning that the above discussion as well as 
such a property is only limited to sigmoidal hidden layers. 
When using other hidden neurons, this property may not hold 
anymore. 

C. Extension to deep architecture 
 

As mentioned before, we can also easily extend the 
proposed approach to a deep architecture with multiple layers. 
In deep learning methods [20, 21], the Restricted Boltzmann 
Machine or auto-encoders can be trained at each layer on 
unlabelled dataset, and the final layer is tuned in a supervised 
way, such as logistic regression or softmax regression, on 
labeled dataset. 

Similarly, we can also stack additional feedforward layers 
one at a time onto the previously trained architecture to form a 
deep network. However, currently we work on labeled datasets, 
the hidden layer of the proposed approach is trained in a 
supervised way. Similarly to other deep learning methods, the 
output of the previously trained layer is regarded as new input 
data for the next additional layer, so the learning consists, in 
fact, of repeating the training procedure of the single hidden 
layer case as described in section A. At this point, the proposed 
approach is the same as that of the other deep learning 
methods.  
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Fig. 3. The shape of k(x*, x*-x) with different norm of input weights. It shows the shape of k(x*, x*-x) under different norms of input weights. The first plot on 
the left correspond to a hidden layer with the smallest input weights, while the plot on the right corresponds to the case with the largest input weights. 

 

 We do not want to get into the tediously time-consuming 
tuning of the mapping parameters, so the weights in the hidden 
layer can be updated and decayed a desired number of times. 
Compared with traditional BP method, time will be saved since 
no error, also known as the delta term, will be backpropagated 
among the hidden layers. Similarly to single hidden layer case, 
the sparsity of W in (9) will speed up the learning of the output 
weights w. 

IV. EXPERIMENTS 
In this section, the proposed approach will be tested and 

compared to several other related learning methods. 
Experiments are conducted on a real military application task, 
Mine-Like Objects (MLOs) detection as well as the 
benchmarking UCI domains. 

Considering the class imbalance, the AUC, Area Under 
ROC Curve, is used to quantify the learning results. Also, in 
the training stage of every method, the positive and negative 
instances are balanced by weighting each class differently 
according to their ratio in the training set. For a fair 
comparison, all models are implemented in Matlab, including 
the quadratic programming optimizer for SVMs [22]. The 
experiment is carried out on the same computer with a 
2.00GHz CPU. 

A. MLOs detection task 
 

The military application, Mine Countermeasure Mission 
task could be conducted by Autonomous Underwater Vehicles 
(AUVs) which are capable of performing underwater tasks 
without an operator. In this way, the operators will be kept 
away from exposure to potential dangers. Usually the AUVs 
are equipped with side-looking sonar systems such as the Side 
Scan Sonar which is able to scan and image the seabed. The 
under-water conditions can be studied by analyzing the images 
produced by the sonar system.  

The Mine Countermeasure Mission can be divided into two 
stages: MLOs detection and MLOs classification. This work 
only focuses on MLOs detection where detected targets are not 
necessary real mines. The detected MLOs will be further 
classified in the second stage. It is worth pointing out that as a 
military task, there will usually be a time limit. The AUVs 
should be able to support fast target detection with a single 
pass. Therefore, the classification speed is important in this 
application. The side scan sonar images used in this experiment 
were collected by an AUV from a trail on Loch Earn, Scotland 
on November 10th and November 11th, 2010. The sonar 
images gathered on November 10th are used as the training set 
and the data gathered on November 11th are used as the testing 
set. In the data pre-processing stage, local range and standard 
deviation filters are used to extract the foreground object areas 
from the seabed. The image feature is the greyscale histogram. 

TABLE I.  SIDE SCAN SONAR DATASET INFORMATION 

 Training Set Testing Set 
# Positive Instances 18 17 
# Negative Instances 2202 1130 
# Pos./ # Neg. 0.0082 0.0150 
# Total Instances  2220 1147 
# Features 16 16 

 

The dataset information is summarized in Table I where the 
MLOs are labeled as the positive examples. It is found that the 
data is highly imbalanced. For the proposed method, the 
number of hidden neurons L is fixed at 200 and λ2 is fixed at 
0.5. For ELM and BP, the number of hidden neurons is 
optimized to obtain the best result and all the other parameters 
in BP are default parameters. A single sigmoidal hidden layer 
is used for all three networks. For the kernel methods, we used 
the Gaussian kernel. The regularization parameter C and 
scaling parameter γ are both optimized by grid search from {2-

10,2-9,…,210}. For the proposed approach, the combination of 
parameters (λ1, η) is optimized from {2-10,2-9,…,210} and {2-
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10,2-9,…,20}, where η is the learning rate used to update the 
mapping parameters aij. 

Table II shows the comparison of the results on the testing 
data. The True Positive Rate (TPR) and False Positive Rate 
(FPR) are also given for reference. Table III shows the model 
parameters as well as the training and classification times (LR 
in the tables is short for Logistic Regression). From the result 
tables we can see that LR it has the lowest AUC. It is the only 
classifier that directly solves the problem in the original input 
space. The proposed approach is able to beat all other neural 
network based models in prediction performance. The 
proposed approach can produce a prediction result close to or 
even better than the results obtained by kernel methods. It is 
found that the LS-SVMs has the highest AUC, but 
unfortunately as a non-sparse kernel machine, all the training 
points will become support vectors, which will limit its 
detection speed when trained with large scale dataset as 
previously discussed. 

TABLE II.  COMPARISON OF PERFORMANCE ON SIDE SCAN SONAR DATA 

Method Function TPR FPR AUC 
SVMs Gaussian 0.8824 0.0442 0.9865 
LS-SVMs Gaussian 0.9412 0.0540 0.9885 
Kernel LR Gaussian 0.9412 0.0416 0.9858 
BP Sigmoid 0.9353 0.3145 0.9231 
ELM Sigmoid 0.9059 0.0686 0.9747 
LR \ 0.4117 0.1876 0.7989 
Proposed Approach Sigmoid 0.9177 0.0443 0.9871 

TABLE III.  MODEL PARAMETERS AND COMPARISON OF TIME ON SIDE 
SCAN SONAR DATA 

Method pameters sparsity 
(%) 

training 
time(s) 

classification 
time(s) 

SVMs C=2-5,γ=24 27.8 94.17 0.9063 
LS-SVMs C=22, γ=22 100 13.07 2.1719 
Kernel LR C=2-6,γ=20 100 33.37 2.2031 
BP L=20 \ 9.173 0.0313 
ELM L=40 \ 0.090 <0.01 
LR C=2-2 \ 2.093 <0.01 
Proposed 
Approach 

λ1=2-8, 
η=2-7 

48.6 1.123 0.0391 

 

In terms of training and classification times, the proposed 
method largely outperformed all kernel methods. Moreover, for 
the proposed approach, the classification speed is directly 
related to the number of hidden neurons L in the network, 
which is independent of the size of training set. Therefore, the 
proposed approach enjoys more flexibility. Its classification 
speed can be manually adjusted by properly setting the value of 
L.  

B. UCI domains 
 

The proposed approach is a general method, so it can also 
be applied to many other domains. In this section, the 
performance of the proposed approach is tested on UCI 
domains [23]. As no real time classification is required on the 
UCI domains, we do not record the classification time in this 
section. The details of the UCI datasets are listed in Table IV. 
As mentioned before, only binary classification is considered 

in this work. Some of the listed datasets were originally used 
for multiple classifications, so for such datasets multiple 
classes are merged into two classes.  

Before training, all attributes are normalized into the 
interval [-1, 1]. The proposed approach is compared to two 
classic neural network and kernel methods, BP and SVMs. The 
result of another neural network based on random feature 
mapping methods, ELM is also given. A grid search is 
conducted to optimize the parameters of SVMs (C and γ, both 
within{2-10,2-9,…,210}) and the proposed approach (λ1 and η). 
For single hidden layer case, λ1 and η are optimized within {2-

10,2-9,…,210} and {2-10,2-9,…,20}. For multi-layer case, they are 
optimized within  {2-10,2-9,…,210} and {2-20,2-15,…,20}. The 
number of hidden nodes L used for the proposed approach is 
set to a large number, without much careful optimization. 
Other experiment settings remain the same to the previous 
section for the side scan sonar data. 

TABLE IV.  UCI DATASETS INFORMATION 

Dataset 
 

Attributes # pos. 
Instance 

# neg. 
Instance 

# pos./ # 
neg. real integer 

WDBC 0 9 239 444 0.5283 
CMC 0 9 629 844 0.7453 
CTG 0 20 1655 471 3.514 
Diabetes 2 6 268 500 0.538 
Glass 9 0 68 146 0.4658 
Haber 0 3 225 81 2.778 
Image 6 3 1320 990 1.333 
Iono 2 2 225 126 1.786 
Irish 0 5 175 325 0.5385 
Liver 1 5 145 200 0.725 
Sat 0 36 918 1082 0.8484 
Spam 55 2 1813 2788 0.6503 
Wine 11 2 107 71 1.507 

 

TABLE V.  COMPARISON OF TRAINING TIME(S) ON UCI DOMAINS 

Dataset BP ELM SVMs Proposed Approach 
Single       Multiple 

WDBC 
(Dev.) 

1.077 
(0.2027) 

0.0031 
(0.0066) 

3.895 
(0.6330) 

0.2437 
(0.0322) 

0.2978 
(0.0241) 

CMC 
(Dev.) 

1.411 
(0.3213) 

0.1078 
(0.0172) 

61.24 
 (2.361) 

1.3843 
(0.0670) 

4.010 
(0.1973) 

CTG 
(Dev.) 

23.01  
(6.127) 

0.7437 
(0.0692) 

85.30  
(5.427) 

4.0125 
(0.5266) 

5.572 
(0.4654) 

Diabetes 
(Dev.) 

0.9078 
(0.1830) 

0.0047 
(0.0075) 

8.0922 
(1.3124) 

0.8409 
(0.0656) 

2.216 
(0.1624) 

Glass 
(Dev.) 

0.7813 
(0.0979) 

0.0019 
(0.0060) 

0.9687 
(0.1462) 

0.1562 
(0.0165) 

0.1828 
(0.0232) 

Haber 
(Dev.) 

0.675 
(0.1296) 

0.0016 
(0.0007) 

2.300 
(0.3075) 

0.0688 
(0.0489) 

0.0703 
(0.0168) 

Image 
(Dev.) 

14.948 
(3.558) 

0.900 
(0.0391) 

32.20  
(3.096) 

1.9860 
(0.2907) 

2.8381 
(0.1959) 

Iono. 
(Dev.) 

2.255  
(1.190) 

0.0172 
(0.0049) 

3.155 
(0.4969) 

0.1640 
(0.0184) 

0.2322 
(0.0204) 

Irish 
(Dev.) 

0.9989 
(0.5665) 

0.0031 
(0.0066) 

9.414 
(0.8928) 

0.2750 
(0.0296) 

0.3038 
(0.0308) 

Liver 
(Dev.) 

0.9934 
(0.1409) 

0.0051 
(0.0080) 

2.6406 
(0.3212) 

0.0913 
(0.0179) 

0.2456 
(0.0251) 

Sat 
(Dev.) 

56.68  
(4.765) 

0.5549 
(0.0482) 

32.91  
(3.247) 

0.8037 
(0.0515) 

3.621 
(0.1896) 

Spam 
(Dev.) 

111.5  
(48.82) 

1.973 
(0.0347) 

461.2  
(6.073) 

11.05  
(1.711) 

11.58  
(1.179) 

Wine 
(Dev.) 

1.313 
(0.5420) 

0.0034 
(0.0065) 

0.8953 
(0.1409) 

0.0336 
(0.0186) 

0.0625 
(0.0071) 
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TABLE VI.  COMPARISON OF MODEL PARAMETERS ON UCI DOMAINS 

Dataset BP EL
M 

SVMs Proposed Approach        
single                  multiple           

 L L C, γ, SVs L, λ1 ,η L1,L2,L3, λ1 ,η 
WDBC 15 15 2-2,2-8,289 200,24,2-8 20, 200,\,2-1,2-5 
CMC 5 60 26,2-4,912 300,20,2-7 40, 500,\,2-2,2-10 
CTG 30 150 29,2-2,625 400,2-8,2-9 150, 500,\,2-10,2-20 
Diabetes 5 15 23,2-5,415 300,20,2-4 20,100,500,2-1,2-15 
Glass 15 10 2-1,24,159 100,24,2-3 10,50,200,2-8,2-10 
Haber 5 15 26,2-1,187 100,2-4,2-6 10,100,\,2-10,2-10 
Image 20 160 26, 20,257 300,2-10,2-10 150,200,300,2-12,2-20 
Iono 10 60 26, 21,248 200,21,2-5 60,100,200,2-2,2-10 
Irish 10 15 2-1,26,412 200,2-7,2-1 15,50,200,2-8,2-10 
Liver 30 20 210,2-4,204 100,2-6,2-9 20,200,\,2-10,2-10 
Sat 35 120 23,2-4,307 200,2-2,2-5 100,500,\,2-1,2-10 
Spam 15 150 26,2-1,766 500,2-10,2-10 200,500,\.2-5,2-20 
Wine 30 20 2-10,2-4,160 100,2-2,2-10 50,150,\,2-3,2-10 

 

TABLE VII.  COMPARISON OF PERFORMANCE (AUC) ON UCI DOMAINS 

Dataset BP 
 

ELM 
 

SVMs Proposed Approach 
single            multiple 

WDBC 
(Dev.) 

0.9880 
(0.0129) 

0.9937 
(0.0049) 

0.9953 
(0.0048) 

0.9956 
(0.0047) 

0.9956 
(0.0053) 

CMC 
(Dev.) 

0.7331 
(0.0379) 

0.7177 
(0.0403) 

0.7474 
(0.0365) 

0.7394 
(0.0423) 

0.7409 
(0.0377) 

CTG 
(Dev.) 

0.9109 
(0.0295) 

0.8898 
(0.0241) 

0.9351 
(0.0192) 

0.9295 
(0.0185) 

0.9407 
(0.0213) 

Diabetes 
(Dev.) 

0.8106 
(0.0650) 

0.8308 
(0.0427) 

0.8359 
(0.0406) 

0.8367 
(0.0496) 

0.8366 
(0.0562) 

Glass 
(Dev.) 

0.8062 
(0.1275) 

0.8321 
(0.1097) 

0.8907 
(0.0821) 

0.8426 
(0.1098) 

0.8567 
(0.1033) 

Haber 
(Dev.) 

0.6352 
(0.1223) 

0.6986 
(0.1097) 

0.7020 
(0.0984) 

0.7171 
(0.1117) 

0.7072 
(0.1146) 

Image 
(Dev.) 

0.9941 
(0.0038) 

0.9903 
(0.0070) 

0.9944 
(0.0042) 

0.9955 
(0.0046) 

0.9942 
(0.0042) 

Iono 
(Dev.) 

0.9307 
(0.0514) 

0.9381 
(0.0418) 

0.9799 
(0.0221) 

0.9670 
(0.0329) 

0.9683 
(0.0382) 

Irish 
(Dev.) 

0.9256 
(0.0401) 

0.9206 
(0.0265) 

0.9620 
(0.0171) 

0.9246 
(0.0444) 

0.9261 
(0.0319) 

Liver 
(Dev.) 

0.7316 
(0.0926) 

0.7480 
(0.0713) 

0.7667 
(0.0899) 

0.7751 
(0.0731) 

0.7621 
(0.0779) 

Sat 
(Dev.) 

0.9838 
(0.0122) 

0.9803 
(0.0090) 

0.9864 
(0.0069) 

0.9842 
(0.0070) 

0.9885 
(0.0061) 

Spam 
(Dev.) 

0.9682 
(0.0089) 

0.9566 
(0.0093) 

0.9762 
(0.0065) 

0.9702 
(0.0086) 

0.9738 
(0.0071) 

Wine 
(Dev.) 

0.9833 
(0.0526) 

0.9954 
(0.0089) 

0.9969 
(0.0045) 

0.9977 
(0.0036) 

0.9974 
(0.0061) 

 
The results shown are from an experiment of 5×10-fold 

cross-validation. Both the average results and the standard 
deviation (shown in italics in brackets) are recorded. The 
parameters of each model are given in Table VI. For the 
proposed approach, both cases with single hidden layer 
(penultimate column in Table V, Table VI, and Table VII) and 
multiple hidden layers (last column in Table V, Table VI, and 
Table VII) are listed. In Table VI, parameters L1, L2, L3 
(roughly optimized) indicate the number of neurons in the first, 
second, third hidden layer counted from the input side. In order 
to evaluate the results listed in Table VII, statistical tests are 
performed. To compare multiple algorithms on multiple 
domains, we chose Friedman’s test and post-hoc (Nemenyi’s) 
test [24].  

First, the Friedman’s test returns a χF
2 value of 37.46 and p-

value of 1.45×10-7<0.01. Therefore, the H0 hypothesis that all 

the classifiers have similar performance to each other on the 
datasets is rejected at significance level 0.01. 

Furthermore, Nemenyi’s test is conducted. The critical 
value of qα is 2.83 for α=0.05 and df=48. The result shows that 
the q statistics between the proposed approach with single 
hidden layer, and BP and ELM, are both 3.7210 and it is 
0.3721 when compared to SVMs. With multiple hidden layers, 
the q statistics between the proposed approach and BP and 
ELM are both 3.9691 and it is 0.1240 with SVMs. Therefore, 
from the result of Friedman’s test and Nemenyi’s test, we can 
conclude that on the UCI benchmarking datasets, at the 
significant level of 0.05, the proposed approach, with either 
single hidden layer or multiple hidden layers outperformed 
both BP and ELM and tied with SVMs. 

We also see that the proposed approach is easy to train. In 
terms of training times, from the results listed in Table V, we 
can see that ELM is able to dominate on all datasets. This is 
because ELM uses random feature mapping and the whole 
learning process is only a one step calculation of the output 
layer. The proposed approach will be much faster than that of 
kernel based methods. Furthermore, even using a much larger 
network, the proposed approach is able to learn faster than BP 
on all the datasets with one hidden layer. With multiple layers, 
it is still faster than BP on most of the datasets. 

V. CONCLUSION AND FUTURE WORK 
 

This work proposed a learning model that implements 
explicit feature mapping via building MLP. It is able to 
improve the prediction performance of neural network based 
methods. From our previous discussion in section 3.2, we 
found that the norm of the mapping parameters, which affects 
the working region of the sigmoid function, will control the 
non-linearity of the feature mapping, so it cannot be a random 
number independent of the training data. It is reasonable and 
beneficial to look at such parameters when building the 
network. The proposed approach is able to produce a satisfying 
generalization result as long as such parameters are properly 
addressed. Benefiting from no tedious hidden layer training, 
the learning speed of the proposed approach is very fast. 

Moreover, compared to kernel machines, the proposed 
approach will produce a generalization performance close to 
that of kernel machines, with much improvement in the 
learning speed even using a very large network. On the Side 
Scan Sonar dataset, where it is of great practical importance, 
the classification speed will also be largely improved. The 
improvement in training and classification speed is the result of 
explicit feature mapping which enables the direct feature space 
computation.  

Currently the network architecture of MLP is manually 
decided. One possible future research avenue could be how to 
learn the architecture, such as the number of layers and neurons 
in each layer, directly from the input pattern. Moreover, it is 
possible to implement the explicit feature mapping via 
constructing other non-sigmoidal layer(s) or other non-
feedforward network architectures. It would be interesting to 
see how the network parameters would affect the final model. 
It would also be worth discussing how to properly learn the 
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mapping parameters in such cases. Another possible future 
direction could be to apply the explicit MLP feature mapping 
to other tasks such as one class learning and PCA, etc.. 
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