
Clustering using an Autoassociator: A case study in Network Event
Correlation

Reuben Smith and Nathalie Japkowicz
University of Ottawa, School of Information Technology and Engineering

Ottawa ON Canada K1N 6N5
{nat,rsmith}@uottawa.ca

Maxwell Dondo
Defence R&D Ottawa

Ottawa ON Canada K1A 0Z4
maxwell.dondo@drdc-rddc.gc.ca

Abstract

An autoassociator is a feedforward neural network that has
the same number of input and output units. The goal of the
autoassociator is very simple; to reconstruct its input at the
output layer. Despite their simplicity, autoassociators have
previously been shown to be quite successful on the task
of Novelty Detection applied to industrial and military do-
mains. The purpose of this paper is to test their utility on
the more general task of clustering. In particular, we apply
a clustering version of the autoassociator to the domain of
Network Event Correlation. The results suggest that autoas-
sociators are indeed useful as clustering systems. They were
able to successfully correlate similar types of network alerts
and have the added advantage of being fast once trained, a
crucial feature when used for Network Event Correlation.

1 Introduction

An autoassociator [1, 2] is a very simple feedforward net-
work whose goal is to reproduce its input at the output layer.
More specifically, an input vectorx, is fed through an au-
toassociator through connection weightsw. The objective
is for the autoassociator to reproduce the vectorx at the
output.

Autoassociators were previously used successfully for
Novelty detection [2, 3]. The approach is based on the fact
that the reproduction of the input layer is not perfect, and a
measure of this imperfection, the reconstruction error, can
be used to distinguish inputs that deviate from the norm. In
more detail, at training time, the autoassociator was only
fed positive instances of the concept at hand. The expecta-
tion was that testing examples of the class the autoassocia-
tor was trained on (positive examples) would be well recon-
structed (because the autoassociator already knows how to
reconstruct examples of this kind) while negative examples
would not be (since examples of this kind were never en-
countered by the system). This expectation proved correct
and the autoassociator produced very good results.

In our previous work [2, 3], we noticed but did not ex-
ploit, an interesting feature of the autoassociator used as a
novelty detector; in addition to separating all the positive
from all the negative examples, with respect to the recon-
struction error, they produced subgroupings of the input.

This seemed to suggest that the network may be perform-
ing some sort of clustering and we wondered whether such
clustering could be of any benefit.

In order to test this hypothesis, we applied a cluster-
ing version of the autoassociator to the difficult problem of
Network Event Correlation. The autoassociator was used in
a different manner than previously since this time, instead
of being trained only on a subset of the data (the positive
class), it was trained on all the available data (which is con-
sidered multi-class).

The remainder of this paper is organized in 5 sections.
Section 2 introduces the domain of Intrusion Detection, fo-
cusing particularly on the issue of Network Event Correla-
tion. Section 3 describes the architecture of the autoassoci-
ator used in our work and discusses its training parameters.
Section 4 discusses the evaluation measures we devised to
test our systems. Section 5 presents our results along with
a discussion of their practical significance. Section 6 con-
cludes the study.

2 Intrusion Detection and Network Event
Correlation

Intrusion detection analysts are tasked with detecting at-
tacks on their network. To do so, they use Intrusion De-
tection Systems (IDSs) which alert on unacceptable or sus-
picious events. Intrusion Detection Analysts are often over-
whelmed by a multitude of alerts that they receive on a daily
basis. The majority of these alerts are not new, but the an-
alyst must go through each one of them to determine the
threat each one poses. In some cases, analysts use multi-
ple IDS rules to classify alerts or use some of the generic
correlation tools that come bundled together with IDSs.

The majority of the existing correlation tools, however,
use simplistic approaches to correlate attacks. For example,
Shadow [4] and ACID [5], use the IP addresses to corre-
late attacks. However, it is known that IP addresses may be
spoofed, therefore using IP addresses alone does not pro-
vide a sufficient measure to classify the threat possed by an
alert. Work reported by Haineset al [6], details some of the
common correlation tools and approaches. The majority of
these approaches take one alert metric at a time to correlate
with other possible attacks. More sophisticated approaches
use statistical methods on multiple alert metrics [7]. How-

1

l
l

l

rrr

l

l

rrr

l
l

l

rrr

XXXXXz@
@

@
@

@R

»»»»»:

»»»»»:
XXXXXz@

@
@

@@R-½
½

½
½½>

¶
¶

¶
¶

¶¶7
-

-

-

Alert Alert

-

-

-

Compare

Threshold

- ?

6

-Cluster

-

¡
¡

¡
¡

¡µQ
Q

Q
QQs

Figure 1. Autoassociation model.

ever, statistical approaches require assumptions to be made
on the data beforehand.

IDS researchers and developers are actively working on
new and better methods to implement automated alert corre-
lation from both homogeneous and heterogeneous sensors.
Current work on IDS reporting standards [6–8] will facili-
tate the sharing of alert information within the IDS commu-
nity. We, therefore model our approach as closely as pos-
sible towards a model that would be capable of receiving
and processing alert content from different homogeneous
and heterogeneous IDS sensors. However, in this first gen-
eration model, we extract alert features that are common to
many IDS sensors, while using Snort [9] based alerts. Fu-
ture work will harden this approach by looking at a broader
spectrum of IDS sensors as opposed to just considering one.
This includes any standards that IETF [8] might have devel-
oped at that time.

In this work, we extract variables information from the
alert content. This consists of the TCP/IP header informa-
tion associated with the alert. To maximize correlation and
to ensure that all the important factors of a possible attack
are taken into consideration, as much information as possi-
ble is extracted from the alert content. Some attributes of
the alerts were dropped for various reasons; for example,
the source IP address was dropped because this may give
some misleading clusters in cases where the IP address is
spoofed; like in DoS attacks (for example). We also felt
that the variable IP addresses on different alerts could be
used as a strong determining factor in alert clustering, when
we know that different alerts may originate from the same
IP address. So it was our contention that the remaining
variables should be able to identify and correlate any attack
based on the remaining input variables.

The alert variable input vectorx, extracted from the
TCP/IP content of the alert, is independent of the sensor
used for the IDS. The same information may be equally ex-
tracted from any type of IDS sensor which gives similar
amount of data in its alert content.

3 Details of our Autoassociation Scheme

To address the various shortcomings of the network correla-
tion tools currently in use (i.e. information loss and lack of

speed), our work undertakes to design an autoassociation-
based event correlation engine that takes into account the
majority of the alert attributes. We have incorporated a neu-
ral network whose speed is excellent for near real-time ap-
plications. A reduced dimension clustering algorithm en-
sures that very little additional computational effort is ex-
pended in performing the final decision making process.
Neural networks are also adaptive and do not lose infor-
mation as with classical correlation techniques that use data
stored in TCP Quad format [10] and perform a multi-stage
query on reduced information or data.

In our approach, all previously seen or collected attack
data is used to train an ANN without prior analysis by ex-
perts. Once trained, this information is retained in the ANN
as connection weights and does not need as much storage
as the original alert data. In more detail, a three layer fully
connected feedforward ANN withN input nodes,N output
nodes andJ < N hidden nodes (unoptimised) was used.
The output at nodei of each layer isyi = f(

∑Ki

k=1 wikyk),
whereyi is the output of neuroni after receivingKi signals
from the neurons of the preceding layer, andyi = xi for the
input layer.

The network is trained using the error-backpropagation
algorithm with the objective of reconstructing the input
space at the output. The training objective is to mini-
mize the square errorsE =

∑n
i=1 ||xi − yi||2. The ANN

weights are iteratively updated asw2 = w1 + η∆w1, un-
til convergence is achieved, whereη is the training con-
stant. Once training has been completed, a threshold level
is used to compare with the resultant reconstruction error
ei = ||xi − yi|| for each input vectorxi during ANN re-
call. This is illustrated in Fig. 1. The result of the clustering
is expected to be multiple alert groups that have similar or
closely similar attributes.

4 Experimentation Effectiveness Measures

To analyse the performance of our approach and decide
whether or not the clustering version of the autoassociator is
indeed worthwhile, we have developed measures of success
criteria. Our approach will take raw alert data, and use part
of it for training. Another part of the data is used for testing
the trained autoassociator. We expect to get crisp clusters of

similar, closely similar and identical alerts.
Since this is an experiment, errors are inevitable. To

understand and analyse the outcome of our experiments, we
have used basic performance measures to characterise the
effectiveness of the system.

If our approach putsB alerts into a cluster, and we de-
termine thatA alerts do not belong to this cluster, then the
alert placement precision (APP) for this cluster isB−A

B .
In a similar manner, ifC is the total number of alerts to
be clustered, andD is the number of alerts that were mis-
clustered, then the overall alert placement precision (OAPP)
would beC−D

C .
If our test data hasE alert types, we expect to getE

crisp clusters for each alert type. Now, ifF alert types don’t
have clusters of their own, then the cluster placement preci-
sion (CPP) isE−F

E .

5 Results

The model was tested in two steps. First, the model was
tested with labeled DARPA [11] alerts. This portion served
as a way to validate the ANN model. The main part of the
model testing were carried out with unknown alerts from
www.incidents.org . In each case,10 000 alerts were
used for training. An autoassociator with42 inputs, 10 hid-
den layers and42 outputs was trained, using the error back-
propagation algorithm with a training constantη of 0.4.
Training was initially fixed to5 000 epochs, but could be
changed if desired.

5.1 Labeled DARPA Alerts

The ANN was trained in90 000 epochs (an MSE of0.003)
using 20 000 alerts generated fromweek 5of the 1999
DARPA IDS Evaluation data set [11]. Forty-eight labeled
alerts not used in the training were used to test the ANN.
The reconstruction errors for the individual alerts are plot-
ted for each alert as shown in Figure 2.

The test alerts represented six attack categories. We ex-
pected to get six crisp clusters of these 48 alerts; namely
Telnet Access, DOS Winnuke, FIN Scan, Tiny Fragments,
Splice attack, and DOS Land attack. Our experiment pro-
duced six (CPP= 100%) clusters as indicated in Figure 2.
However, our model correctly clustered45 of these alerts
into six clusters (OAPP= 93.75%). Three alerts were
placed into a cluster (cluster 2) where they shouldn’t be
(APP= 30%). This translated to 1 erroneous cluster, and
three misplaced alerts. As shown in Figure 2, threeDOS
Winnukealerts were wrongly placed in cluster 2 (Telnet Ac-
cess).

To explain the three strayDOS Winnukealerts in cluster
2 instead of cluster 4 where the other 17 appeared, we com-
pared the values of the input attributes to see where there are
significant differences with alerts in cluster 4. Unlike alerts
in cluster 2, all alerts in cluster 4 have the TCP FIN flag set.
In addition, the alerts in each cluster use different values

Figure 2. Clusters generated by labeled DARPA alerts.

Table 1. DARPA alert clusters.

Alerts in clusterAlert
1 2 3 4 5 6

Splice attack 2 0 0 0 0 0
Telnet Access 0 2 0 0 0 0
FIN Scan 0 0 18 0 0 0
DOS Winnuke 0 3 0 17 0 0
DOS Land attack 0 0 0 0 2 0
Tiny Fragments 0 0 0 0 0 4
Clustering Error (1-APP) 0 60% 0 0 0 0

of the TCP urgent pointer;0x31 for cluster 2 and0xf5
for cluster 3. Despite these minor attribute differences, we
expected the ANN to be able to “see through” these differ-
ences and still cluster the alerts in one cluster. After all, the
Telnet Accessattributes are different from theDOS Winnuke
alerts.

The clustering results are summarised in Table 1. The
table shows the six clusters formed and the individual alerts
that fall into each cluster. It also shows the clustering errors
for each of the six clusters. The table also shows the number
of alert types that were erroneously clustered, e.g. theDOS
Winnukealert that was clustered into clusters 2 and 4.

The labeled DARPA data were clustered with very good
results; a100% CPP and a93.75% OAPP. We conclude that
the ANN clustering was successful in placing alerts into
relevant clusters. Only one cluster contained erroneously
placed alerts. These statistics were very encouraging and
we decided to take a close look at unlabeled alerts that are
available in the wild (an unsimulated environment).

5.2 Unlabeledincidents.org Alerts

The approach was tested with a sample of514 Snort alerts
from www.incidents.org . A total of 20 000 alerts
were used for training in80 000 epochs until the MSE was
0.05. Similarly matching alerts were grouped into the same

Table 2. A sample of cluster 4 alerts.

[**][1:628:3] SCAN nmap TCP [**]
11/14-10:10:23.856507 163.23.238.9:80 -> 170.129.19.170:80
TCP TTL:44 TOS:0x0 ID:31290 IpLen:20 DgmLen:40
** A**** Seq: 0x300 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref=> http://www.whitehats.com/info/IDS28]

[**][1:628:3] SCAN nmap TCP [**]
11/14-10:10:18.856507 61.218.161.210:80 -> 170.129.19.170:80
TCP TTL:48 TOS:0x0 ID:30943 IpLen:20 DgmLen:40
** A**** Seq: 0x278 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref=> http://www.whitehats.com/info/IDS28]

[**][1:628:3] SCAN nmap TCP [**]
11/14-10:10:13.826507 61.218.161.210:80 -> 170.129.19.170:80
TCP TTL:48 TOS:0x0 ID:30662 IpLen:20 DgmLen:40
** A**** Seq: 0x20A Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref=> http://www.whitehats.com/info/IDS28]

[**][1:628:3] SCAN nmap TCP [**]
11/14-10:10:08.786507 61.218.161.202:80 -> 170.129.19.170:80
TCP TTL:48 TOS:0x0 ID:30366 IpLen:20 DgmLen:40
** A**** Seq: 0x198 Ack: 0x0 Win: 0x578 TcpLen: 20
[Xref=> http://www.whitehats.com/info/IDS28]

clusters. In Table 2, we show an example ofnmap scanalert
clustering produced by our approach. These closely related
alerts belong to one cluster. As expected, the clustered alerts
have closely matching attributes as defined earlier. We also
note that the clustered alerts display other similar attributes
that were not used in the clustering algorithm as variables;
namely source and destination IP addresses.

The reconstruction errors plot of the individual alerts
are shown in Figure 3. From Figure 3, we note that there are
no clear cluster boundaries in some cases. It is evident that
there are some cluster overlaps. We decided to carry out

Figure 3. Clusters generated by unlabeled alerts from
incidents.org .

the analysis of these results in two stages; namely regular
clustering and variable clustering by inspection.

5.2.1 Regular Clustering

This approach uses a regular threshold spacing between dif-
ferent clusters. The clusters are separated by a fixed change
of 0.025 in reconstruction errors. The results are sum-
marised in Table 3, where the ND (last column) represents
an error value that cannot be determined because the clus-
tering is not very clear. The bold figures represents the alert
(column) that owns the cluster (row). The error value in
the last column represents the error associated with placing
alerts into each cluster (1− APP).

Using the regular clustering approach, we clustered the
514 test alerts into 27 clusters. Eighteen clusters accurately
placed alerts into relevant clusters without errors (APP=
100%); although some alert groups were clustered into two
or more clusters. Seven alert groups did not have clusters
of their own. Twenty-one clusters had an APP of85% or
better. The OAPP for this approach was82% and the CPP
was59%.

From these results and from Figure 3, some clusters
have overlaps that cannot be separated by a fixed threshold
value. The worst affected cluster is 12. Other overlaps are
characterised by low APP values as in clusters 6, 14, 18,
and 19. We also have seven alerts that span two or more
clusters, and seven alerts that don’t have clusters of their
own. The possible sources of these errors will be presented
in Section 5.3.

Table 3. Alert placement matrix for regular clustering.

Alerts

Cluster

N
U
L
L

S
C
A
N

T
C
P

P
o
r
t

0

T
r
a
f
f
i
c

S
q
u
i
d

P
r
o
x
y

S
C
A
N

B
A
C
K
D
O
O
R

Q

A
c
c
e
s
s

T
C
P

n
m
a
p

S
C
A
N

P
r
o
x
y

P
o
r
t

S
C
A
N

S
h
o
r
t

U
D
P

p
a
c
k
e
t

I
C
M
P

I
S
S

P
i
n
g
e
r

T
C
P

D
a
t
a

O
f
f
s
e
t

I
C
M
P

S
u
p
e
r
s
c
a
n

S
O
C
K
S

P
r
o
x
y

S
C
A
N

L
a
n
d

A
t
t
a
c
k

G
N
U
T
e
l
l
a

O
u
t
b
o
u
n
d

H
T
T
P

I
N
S
P
E
C
T

S
H
E
L
L
C
O
D
E

x
8
6

I
P

R
e
s
e
r
v
e
d

b
i
t

T
C
P

H
e
a
d
e
r

l
e
n
g

t
h

E
r
r
o
r

(1-APP)
1 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 50 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6%
5 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 75 1 4 0 0 0 0 0 0 0 0 0 0 6%
7 0 0 0 0 14 0 1 3 0 0 0 0 0 0 0 0 0 22%
8 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 5 0 0 0 0 0 0 0 0 16%
10 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
12 0 0 0 0 1 1 0 0 5 16 14 17 6 3 0 0 0 ND
13 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 2 0 0 0 6 0 0 0 25%
15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
18 0 0 0 0 0 0 0 0 9 0 0 0 0 4 0 0 0 30%
19 0 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 33%
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 1 11%
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

5.2.2 Variable Clustering by Inspection

Looking at Figure 3, we were also able to cluster the alerts
through inspection. This resulted in clusters with no fixed
threshold spacing. The threshold value varied form cluster
to cluster. However, there were still some overlaps in the
clusters.

In Table 4, we show that we were able to cluster the 514
alerts into fifteen clusters. The clusters had varying cluster-
ing successes. We were able to place 477 alerts into thirteen
clusters with an APP of80% or better. This translates to an
OAPP92%. Clusters 6, 10 and 11 had low APP values.

Four of the seventeen alert groups did not have clus-
ters of their own (CPP= 76%). There were only two alert
groups that fell into two different clusters, namelyTCP data
offset(clusters 5 and 11) andShellcode x86(clusters 12 and
14). Table 5 shows the summary of the two methods. The
variable clustering method is a marked improvement from
the fixed threshold clustering. With varying success, our au-
toassociation model was able to differentiate between subtle
differences in different alerts and cluster them accordingly.

Table 5. Clustering effectiveness for the incidents.org alerts

Clustering Method Group overlaps OAPP CPP
Regular clustering 8 82% 59%
Variable Clustering 2 92% 76%

5.2.3 Cluster Grouping

The results also show that some alerts can be grouped to-
gether because of the similarities in their signatures. To fur-
ther assist an analyst with making crucial decisions, it is
possible to group the clusters based on their similarities and
the analyst’s preference. For example, the sixscanalerts
can be grouped into one. This would reduce the number of
clusters to eleven.

In a similar manner, all alerts spanning more than one
cluster can be grouped together to form onesuper-cluster.
For example, clusters 1,4,6, and 8 could be grouped into
super-clusterA, and clusters 5 and 11 intosuper-cluster
B, and clusters 12 and 14 intosuper-clusterC. Depending
on the analyst’s preference, this grouping may be different,
thus we suggest that a configurable decision visualisation
engine be coupled to our autoassociation model. This re-
duces the number of alert categories the analyst has to deal
with.

5.3 Practical Impact of Clustering Errors

While the clustering process was overally successful, there
were some clustering errors encountered. We will use the
variable clustering results of Figure 4 to explain the varying
levels errors.

Closely following the six perfect clusters (1, 3, 7, 8,
12, and 15), we had the following finer grained cluster divi-
sions:

Table 4. Alert placement matrix for variable clustering.

Alerts

Cluster

N
U
L
L

S
C
A
N

T
C
P

P
o
r
t

0

T
r
a
f
f
i
c

S
q
u
i
d

P
r
o
x
y

S
C
A
N

B
A
C
K
D
O
O
R

Q

A
c
c
e
s
s

T
C
P

n
m
a
p

S
C
A
N

P
r
o
x
y

P
o
r
t

S
C
A
N

S
h
o
r
t

U
D
P

p
a
c
k
e
t

I
C
M
P

I
S
S

P
i
n
g
e
r

T
C
P

D
a
t
a

O
f
f
s
e
t

I
C
M
P

S
u
p
e
r
s
c
a
n

S
O
C
K
S

P
r
o
x
y

S
C
A
N

L
a
n
d

A
t
t
a
c
k

G
N
U
T
e
l
l
a

O
u
t
b
o
u
n
d

H
T
T
P

I
N
S
P
E
C
T

S
H
E
L
L
C
O
D
E

x
8
6

I
P

R
e
s
e
r
v
e
d

b
i
t

T
C
P

H
e
a
d
e
r

l
e
n
g

t
h

E
r
r
o
r

(1-APP)
1 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 64 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5%
3 0 0 0 85 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 101 1 5 3 0 0 0 0 0 0 0 0 0 8%
5 0 0 1 0 0 0 0 0 16 0 0 0 0 0 0 0 0 5%
6 0 0 0 0 1 1 0 0 4 16 1 0 0 0 0 0 0 30%
7 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 18 0 0 3 0 0 0 18%
10 0 0 0 0 0 0 0 0 1 2 0 0 0 13 0 0 0 20%
11 0 0 0 0 0 0 0 0 10 0 0 0 0 6 0 0 0 37%
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 18 0 10%
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0 1 2%
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0

Error(1-APP) 0 0 ND 0 1% ND ND ND 18% 11% 5% 0 0 45% 0 0 25%

1. The emergence of two or more distinct clusters for a
given alert group as exemplified by theShellcode x86
alert group (clusters 12 and 14), and theTCP data off-
setalert group(clusters 5 and 11).

2. The “spilling over” of some of the alerts from the main
clusters to the neighbouring clusters. This is exempli-
fied in theHTTP inspectalert group (clusters 9–11)
andTCP data offset(clusters 5–6 and 9–11).

Both errors 1 and 2 are very minor errors resulting from
cluster overlaps. Although very close, the TCP/IP attributes
for both alert categories were not “strong” enough to pro-
duce crisp clusters of their own. Some of theTCP data
offsetalerts are shown in Table 6. The TCP/IP attributes of
these three alerts closely match those in cluster 5, but for
reasons stated above, they were placed in cluster 6.

We also had three cases of “stray” alerts inTCP nmap
Scan, Socks Proxy ScanandICMP Superscan. There isn’t
any significant difference between the clustered alerts and
these stray alerts. These are likely the result of the cumula-
tive effect of the ANN errors and the minor TCP/IP differ-
ences in these alerts and the clustered alerts.

The main errors encountered were in the four cases in
which the alert groups failed to form individual clusters.
The alerts for three of them are distributed inside other clus-
ters (clusters 2 and 4). The overall reconstruction error for
these alerts was indistinguishable with that of the clusters
they are embedded in. The main cause of this type of er-
ror is attributable to the initial assumption of using a one-
dimensional reconstruction error as the clustering attribute.

Some of these errors suggest the use of a supervised
ANN to force the autoassociator to classify certain alerts
into certain clusters. While the performance of our au-
toassociation model is very good, the few errors encoun-
tered could be possibly reduced by conducting further re-

search into the clustering algorithm of the autoassociator.
For example, the threshold value dividing the different clus-
ter boundaries was shown to produce better results if made
variable rather than fixed. In addition, collapsing a 42
dimensional TCP/IP input vector into a one-dimensional
decision-metric (reconstruction error) may also introduce
some errors in the final results.

Table 6. Sample ofTCP data offsetalerts.

[**][116:46:1] WARNING: TCP Data Offset is less than 5!
11/12-20:25:11.826507217.209.183.235:0 ->
207.166.252.249:0TCP TTL:236 TOS:0x0 ID:0 IpLen:20 DgmLen:40
***** R** Seq: 0x24A1C4C Ack: 0x24A1C4C Win: 0x0 TcpLen: 0

[**][116:46:1] WARNING: TCP Data Offset is less than 5!
09/05-07:34:31.984488 172.20.10.199:0 ->
138.97.150.9:0 TCP TTL:237 TOS:0x0 ID:0 IpLen:20 DgmLen:40
***** R** Seq: 0x58092C9A Ack: 0x58092C9A Win: 0x0 TcpLen: 12

[**][116:46:1] WARNING: TCP Data Offset is less than 5!
10/10-15:12:45.92650780.128.206.166:0 ->
32.245.166.119:0 TCP TTL:117 TOS:0x0 ID:25125 IpLen:20 DgmLen:40
DF******* F Seq: 0x720049 Ack: 0xD655185A Win: 0x5010 TcpLen: 0

6 Conclusions

A first generation model of an autoassociator correlation
model was presented with very good results. Its ability
to cluster similar alerts with good accuracy is a vital tool
for the intrusion detection analyst. It also showed that our
autoassociation model was often sensitive enough to small
differences to set slightly different alerts apart; something
that a human analyst could have missed (especially when
swamped with the many alerts that are typical of networks
today). The processing speed produced by the ANN classi-
fier makes this approach a good candidate for implementa-
tion in real time. The model could be used as a correlation

engine for an IDS that collects events from other Snort–
based sensors. Future work enhancements could expand
our autoassociation model to handle inputs from multiple
heterogeneous sensors.

The errors associated with this approach may be at-
tributable to the 42 to 1 mapping of the input variables to
one dimensional decision metric–the reconstruction error.
This may require expanding the output of our autoassocia-
tion model to cluster the alerts based on weighted values of
the input metrics. This would also provide a possible rank-
ing system for the alerts using the analyst’s prior knowledge
of the different alerts. Another possibility would be sepa-
rating rare events from the common ones, by passing the
unclustered alerts into another autocorrelator for reclassifi-
cation.

All in all this demonstrates that the autoassociator used
as a clustering system, rather than a novelty detector, is a
worthwhile approach. This is an important conclusion given
two attractive features of autoassociators. First, they issue
soft custers in the sense that, unlike a number of other clus-
tering systems, they output raw signals that can be inter-
preted by users as they wish. This is of great practical inter-
est since it is often desirable to have a human being make
final decisions rather than having it imposed by a piece of
software. Second, the basic autoassociator used in this work
can be upgraded in various ways (e.g. by adding extra hid-
den layers or coupling them with Kernel functions) in or-
der to improve performance. In future work, we plan to
try some of these potential upgrades as well as compare the
system to other highly performing clustering devices such
as Self-Organizing Maps or the EM-Algorithm.

References

[1] J. M. Zurada,Introduction to Artificial Neural Sys-
tems. New York NY: West Publishing Company,
1992.

[2] N. Japkowicz, “Supervised versus unsupervised
binary-learning by feedforward neural networks,”Ma-
chine Learning, vol. 42, no. 1/2, pp. 97–122, January
2001.

[3] N. Japkowicz, C. Myers, and M. Gluck, “A novelty de-
tection approach to classification,” inThe Fourteenth
International Joint Conference on Artificial Intelli-
gence (IJCAI-95), 1995, pp. 518–523.

[4] SANS Institute, “Shadow,”SANS Institute, 2001. [On-
line]. Available: http://www.nswc.navy.mil/ISSEC/
CID/

[5] Southcott Patrick, “Snort & Acid,”
Online, 2002. [Online]. Available:
http://www.patricksouthcott.com/projects/
saclugsnort andacid/SACLUGSnortandACID.ppt

[6] J. Haines, D. K. Ryder, L. Tinnel, and S. Taylor, “In-
trusion alert correlation: Validation of sensor alert

correlations,” IEEE Security & Privacy, pp. 46–56,
Jan/Feb 2003.

[7] A. Valdes and K. Skinner, “Probabilistic alert cor-
relation,” in Recent Advances in Intrusion Detection
(RAID 2001), ser. Lecture Notes in Computer Science,
no. 2212. Springer-Verlag, 2001. [Online]. Available:
http://www.sdl.sri.com/papers/raid2001-pac/

[8] Erlinger Michael and Staniford-Chen Stuart, “In-
trusion detection exchange format (IDWG),”IETF,
2003. [Online]. Available: http://www.ietf.org/html.
charters/idwg-charter.html

[9] M. Roesch, “Snort: Lightweight intrusion de-
tection for networks,” in USENIX 13th Systems
Administration Conference (LISA 99), 1999. [On-
line]. Available: http://www.usenix.org/publications/
library/proceedings/lisa99/roesch.html

[10] S. Northcutt and J. Novak,Network Intrusion Detec-
tion : An Analyst’s Handbook, 2nd ed. Indianapolis,
Indiana: New Riders, 2000.

[11] DARPA, “1999 darpa intrusion detection evaluation
data set overview,”MIT: DARPA Intrusion Evaluation,
1999. [Online]. Available: http://www.ll.mit.edu/IST/
ideval/data/1999/1999dataindex.html

