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Abstract—Gamma-ray spectral classification requires the au-
tomatic identification of a large background class and a small
minority class composed of instances that may pose a risk to
humans and the environment. Accurate classification of such
instances is required in a variety of domains, spanning event
and port security to national monitoring for failures at industrial
nuclear facilities. This work proposes a novel form of synthetic
oversampling based on artificial neural network architecture and
empirically demonstrates that it is superior to the state-of-the-art
in synthetic oversampling on the target domain. In particular, we
utilize gamma-ray spectral data collected for security purposes
at the Vancouver 2010 winter Olympics and on a node of Health
Canada’s national monitoring networks.

I. INTRODUCTION

Given recent events, such as the nuclear accident in Japan
and the threat of terrorism, monitoring and the early detection
of radioactive threats is of significant importance. A particu-
larly common form of monitoring involves the use of gamma-
ray spectroscopy. The threat of terrorism has necessitated the
monitoring of ports of entry to ensure that nuclear material
is not being secretly moved across borders [1]. This process
typically involves the scanning of individual shipping contain-
ers in order to identify and prevent the illicit movement of
nuclear materials. Similarly, the entry points of certain events,
such as the G8 meetings and the Vancouver 2010 Olympics,
may represent high profile targets, and are thus monitored to
ensure security from radioactive threats [2]. More generally, it
is considered prudent to monitor radiation at a national level
with particular points of interest in mind, such as downwind
from nuclear power plants and isotope production facilities
[3], the goal being to instil confidence that national industries
are safe, and to facilitate fast detection and reaction should a
malfunction occur.

This work focuses on the real-time monitoring that takes
place in the national monitoring network developed by the
Radiation Protection Bureau of Health Canada and their work
in securing high profile events. In both scenarios, a large vol-
ume of data is collected, and the resulting gamma-ray spectra
must be quickly analyzed in order to ensure public safety.
Though highly proficient at identifying troubling spectra, the
data volume dictates that reliance on human experts alone is
not feasible. Rather, a combination of computer technology
for identifying spectra affected by isotopes of interest, in con-
junction with the post-hoc analysis of an expert, is necessary.

Thus, the objective is to ensure that all spectra affected by
isotopes of interest are reviewed by a physicist, with as few
benign spectra being analyzed as possible.

Machine learning algorithms have been applied to this task
[2, 3] and have succeeded in improving performance beyond
the more traditional peak fitting algorithms that look to identify
specific isotopes. The false positive rate, however, remains a
concern. One approach to dealing with the accuracy of positive
predictions is to manage the significant class imbalance that
exists in this domain. The standard requirement in machine
learning is that a representative set of examples is available
for the purpose of training. This learning task, however, is
complicated by the fact that the isotopes of interest in the
data occur much less frequently than the background class.
As a result, significantly fewer non-background examples are
available for training the classifier.

Three paradigms exist for coping with imbalance:

• one-class classification: is ideal when examples are
extremely rare or non-existent;

• cost-sensitive methods: are often appropriate when
specific costs are known and extensive choice in the
classification method is not required; and,

• Sampling methods: are generally preferable when
costs are not well known and classifier independence
is desirable.

It has been shown that the benefit of one-class classification
quickly erodes as the number of training samples is increased
[4]. From the perspective of imbalanced classification, it has
been shown that sampling and cost-sensitive methods are often
comparable in terms of their effect on performance [5, 6].
Thus, we focus on sampling for its simplicity in implemen-
tation and applicability to all binary classification algorithms
without modification.

Bagged random undersampling (BRUS) and SMOTE have
empirically been shown to be superior methods on different
imbalanced domains [7, 8]. Both of these methods, however,
have known weaknesses that affect their performance on
our target domain. In particular, the degree of imbalance
demands that too much majority information is discarded by
BRUS, whereas SMOTE’s use of distance measures impacts
its performance on the high-dimensional gamma-ray spectral



data. In addition, the kNN framework applied by SMOTE to
generate synthetic instances causes them to be placed inside
the convex-hull; this can negatively impact classification by
either over- or under-generalizing, depending on the properties
of the domain. This has necessitated the development of post-
hoc cleaning techniques, such as the removal of Tomek links
[9] and, conversely, means of adding additional diversity to the
synthesized set [10, 11].

As an alternative, we propose a novel method of syn-
thetically oversampling the minority class that is based on
the induction of an artificial neural network. Specifically, we
introduce a method of DEnoising Autoencoder-based Gen-
erative Oversampling (DEAGO) for modelling the minority
class and synthesizing new instances to balance the training
set. By inducing a neural network model, we are able to
avoid the short-comings of distance-based solutions on the
high-dimensional spectral data. Moreover, through the training
process, the autoencoder model learns to approximate the
shape of the minority distribution rather than naively placing
synthetic points between nearest neighbours. This ensures
that the samples generated by DEAGO represent the global
structure of the class. Our results show that DEAGO is superior
to SMOTE and bagged-random undersampling on the target
domain in terms of the AUC on both gamma-ray spectral test
domains.

II. GAMMA-RAY SPECTRA DATA

In this section, we describe the datasets acquired from
Health Canada for the development of the classification sys-
tem.

A. Collection

The data utilized in this study was collected as part of two
separate, but related, health and safety programs. In particular,
the VAN dataset was collected at three Vancouver 2010 Winter
Olympics venues and the SAAN data was collected as part of
the national monitoring network at Saanich, British Columbia.
Both datasets were recorded with sodium iodine (NaI) gamma-
ray spectrometers (GRS) which measure photon counts with
respect to energy in KeV (see Figure 1 for an example of
the VAN data). Four months of data is used in the experi-
ments from the national monitoring network, with each sample
collected over a 15-minute interval. Due to time constraints,
specifically with respect to the need for fast detection and
reaction, noisier, 1-minute samples were collected for security
at the Olympic venues.

B. Processing

Annotated data files from a Health Canada database were
provided for the experiments. The annotations specified the
presence of isotopes of interest; this task was conducted in
advance by government physicists. These files were converted
to csv and imported to R1 for analysis and cleaning. Each
subsequent experiment was conducted in R.

The data from the national monitoring network was sam-
pled according to 512 spectral channels. Based on the channels
that are affected by the isotopes of interest, the final dataset

1http://cran.r-project.org

included only the first 250 channels. The Olympics data was
sampled with 1024 channels and, once again, we reduced the
feature-space of our dataset to half of this based on the energy
levels at which the isotopes of interest are expected to occur.

C. Properties

The VAN dataset has 39,000 background instances and 39
instances marked as isotopes of interest; thus, the dataset is
heavily imbalanced. The SAAN data contains 11,500 back-
ground instances and 29 technicium-99 instances that form
the class of interest; therefore, this learning task also includes
a significant degree of absolute imbalance.

Two examples of the data are plotted in log-form in Figure
1; these correspond to a background reading and a sample
that has been affected by Technicium-99. In this, data energy
is represented in terms of channels on the x-axis, and the
counts, which indicate the intensity, are recorded on the y-
axis. Unshielded and poorly shielded isotopes produce specific
and identifiable peaks in the background distribution, as the
signals are not degraded by shielding materials. In the case of
Technicium-99 instance, we clearly see this in the low energy
range of the spectrum. In other cases, we might expect a much
more muted signal.

III. RELATED WORK

This section presents the existing work related to isotope
detection, machine learning applied to such tasks, and class
imbalance.

A. Hypothesis Testing for Isotope Detection

The hypothesis testing algorithm for isotope detection is the
preferred method resulting from Health Canada’s experiments,
and is analogous to a multi-class classifier. It is based on a set
of one or more user-defined regions of interest, each associated
with an isotope of interest. The advantage of this is that an
alarm can be triggered for more than one isotope at any given
time.

In terms of application, when presented with a novel
spectrum, one confidence value is produced for each region
of interest (ROI), based on the area under that region. In
order for an alarm to be generated, the confidence value
must exceed the associated alarm threshold for the region, the
definition of which is not tied to the algorithm in general. The
specific thresholds were set according to data sampled from the
background and the intuition of the analysts at Health Canada.

Despite having the advantage of being able to detect
multiple isotopes, it’s fundamental weakness is it’s lack of
sensitivity. This motivates the use of machine learning for
detecting isotopes.

B. Machine Learning and Gamma-Ray Spectroscopy

Machine learning algorithms first appeared in the context
of spectral analysis in the early 1990s. These initial studies
were, in essence, laboratory experiments aimed at determining
the effectiveness of machine learning algorithms at identifying
the presence of a single isotope of interest in test spectra.
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Fig. 1. These figures contain randomly selected examples from the VAN
dataset. Plotted on top in log-scale is a background instance. Below this is
an instance containing Technicium-99. As can be seen, the high counts in
the Tc-99 spectrum below channel 100 represent are indicative of a weakly
shielded Tc-99 sample.

Olmos et al., in [12] and [13], for example, applied a
linear associative memory neural network to identify the
presence of 133Ba and 57Co in spectra recorded during labo-
ratory experiments, and found that the results represented an
improvement over traditional ‘peak-fitting’ strategies. Abdel-
Aal and Al-Haddad reported improved results [14], when
applying abductive machine learning to identify a small set
of radioisotopes in gamma-ray spectra. More recently, Kangas
et al. reported the results of applying multilayer perceptrons
[15] to analyze the shape of low resolution polyvinyl toluene
spectra data acquired from port monitoring technology. Mul-
tilayer perceptrons were also applied by Vignerson et al.,
[16], to determine 235U/Utotal ratios, and Yoshida et al. for
radionuclide detection in uranium ore [17].

While these studies suggest that machine learning algo-
rithms offer the possibility of improved efficiency and de-
tection, they are far from comprehensive. In this work, and

in previous work [2], we seek a deeper understanding of the
effectiveness of machine learning for the detection of isotopes
of interest, and compare them to those obtained by deployed
systems.

C. Class Imbalance

In gamma-ray spectral classification, the class of interest
is rare and the data is high-dimensional. Previously, problems
of class imbalance have been dealt with in a variety of ways,
including cost-sensitive methods, random undersampling and
oversampling, and informed sampling methods. Sampling and
cost-sensitive methods have been shown to be competitive and,
in some cases, theoretically related [5, 6]. These methods have
their strengths and weaknesses [18]; however, they do not add
new information to the learning process. Instead, they only
adjust the classification bias relative to the existing training
data. When the minority training set is small, these approaches
risk overfitting the minority class. To prevent this, additional
examples are required.

Synthetic oversampling methods apply a generative bias to
the minority training instances to synthesize additional training
instances. Rifia et al., [19] accurately articulate the objective
of modelling from finite training sets as one of deciding upon
how to redistribute the probability mass associated with the
training instances.

SMOTE [8] assumes that the best place to insert probability
mass is between nearest neighbours. Depending on the distri-
bution of the training instances, this can create small clusters
of high-density that spread in directions unassociated with the
latent distribution. Such a spread is one reason that expensive
post-hoc “cleaning” processes, such as the removal of Tomek
links [9], must often be applied. In addition to being slow,
cleaning processes insert their own biases that are difficult
to validate, and utilize distances measures that are generally
inaccurate in high-dimensional spaces.

IV. DATA SYNTHESIZATION

This section presents the two data synthesization methods
and demonstrates their functionality over an artificial domain.

A. SMOTE

SMOTE has shown considerable success [8] in alleviating
the class imbalance problem. SMOTE works by generating
synthetic minority instances between existing instances of the
minority class. Thus, its performance is dependent upon the
availability of instances in the minority training set. More
specifically, SMOTE finds the k-nearest neighbours of each
instance, xi, and generates a synthetic point between xi and a
randomly selected instance, xj , in the nearest neighbour set.
Formally, the new point xnew is generated as:

xnew = xi + (xj − xi)× δ (1)

where δ = [0, 1] causes xnew to be placed at a random
distance between xi and xj . The direct result of this is that
vectors connecting nearest neighbours become populated with
uniformly distributed, randomly generated synthetic instances.
This is clearly seen in Figure 2 where the synthetic distribution
formed by the blue circles spans nearest neighbours in the



training set (red triangles). The result is that the synthetic
instances do not accurately represent the target distribution
shown in grey. Some of the worst examples cover regions
completely outside the target distribution; however, this does
not necessarily mean that the impact on performance will be
poor.
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Fig. 2. The synthetic samples resulting from SMOTE method with 20 training
instances.

B. Denoising Autoencoder-Based Minority Oversampling

As an alternative to SMOTE, we present a synthetic sam-
pling technique (DEAGO) that is based on the modelling and
reconstructive capabilities of denoising autoencoders. Denois-
ing autoencoders are neural networks that learn to reconstruct
clean versions of the network input at the output layer [20].

The general algorithm for modelling and sampling is
presented in Algorithm 1. The algorithm takes the training

Algorithm 1 daego(X,e,h,σ,Xinit)

Input:
i) X , the instances of the class training set.

ii) e, the number of training epochs.

iii) h, the number of hidden units in the autoencoder.

iv) σ, the training noise.

v) Xinit, the sample initiation set.
Output:

i) Y , the synthetic samples.
Method:

1: Normalize the training dataset X into [Xnorm,
norm params].

2: Apply the normalization parameters norm params to the
sample initiation set Xinit.

3: Create a denoising autoencoder network dea from the
parameter set e, h, σ.

4: Train the network on the normalized training data
x norm.

5: Map Xinit to the induced manifold via dea.
6: Denormalize the mapped synthetic instances Y with the

normalization parameters norm params.
7: Return Y

End Algorithm
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Fig. 3. DEAGO synthetic samples generated the training instances with
Gaussian noise added for the sample initiation points on the cData with 20
training instances. This synthetic set has the lowest density difference relative
to the target set.

instances X as an input and performs normalization prior to
training the denoising autoencoder, dea. dea is then trained
with h hidden units for e epochs via gradient descent with
back propagation. Subsequent to the creation and training of
the network, the normalized sample initiation set is mapped
via dea to the induced distribution.

The sample initiation points themselves can have an impact
on the synthetic set depending on how they are selected. This
is due to the fact that the induced function g(f(x̃)) maps the
input x̃ learn distribution. Thus, if the sample initiation set is
distributed in a small region relative to the learnt distribution,
the resulting samples will populate the nearby region of the
induced distribution. This can be an effective way to bias the
induced classifier in favour of the minority class.

The output, Y , of the DEAGO algorithm is denormalized
and returned for use in inflating the minority training set. Our
empirical results suggest the use of Xinit = X + N (·) for a
synthetic set that covers all regions of the induced distribution.
Alternatively, the synthetic set can be biased towards the
majority class by utilizing the majority class instances in Xinit.
Finally, the complexity and generality of the function induced
by DEAGO is controlled by the number of hidden units u and
training noise σ.

Figure 3 presents the generative result of DEAGO in the
same context that SMOTE was previously reviewed. It is clear
from this that, unlike SMOTE, DEAGO induced a global
model based on the training set that appears as red triangles,
and that, as a result, the synthetic samples (blue circles) better
represent target distribution shown in grey.

V. EXPERIMENTAL METHODOLOGY

As previously described, the gamma-ray classification per-
formed in this study is intended to identify isotopes of interest
for the purpose of maintaining health and security. The volume
of data produced makes it impractical to rely solely on human
analysis. Thus, machine learning, particularly classification,
has the potential to have significant impact on this domain.



TABLE I. THE MEAN 5X2-FOLD CROSS VALIDATED AUC RESULTS

FOR SAAN AND VAN.

SAAN VAN
µ σ µ σ

DEAGO 0.894 0.049 0.989 0.002
SMOTE 0.818 0.086 0.939 0.032
BRUS 0.742 0.048 0.836 0.072
MLP 0.786 0.149 0.840 0.087

This section briefly describes the methodology applied to
evaluate the performance of each method on the gamma-ray
spectral classification tasks.

In order to validate the performance of each method, we run
5x2-fold cross validated (CV) experiments on the SAAN and
VAN datasets. The AUC for each combination of imbalance
correction technique and classifier is recorded for each iteration
of CV and the mean and standard deviations are reported. The
AUC provides an excellent general assessment of the classifier
as it is not affected by the degree of imbalance in the test set,
and 5x2-fold CV is used in place of the more common 10-
fold CV as it has been observed that 5x2 CV has a lower
probability of issuing a Type I error as compared to k-fold
CV [21]. Furthermore, the amount of test data available in
5x2-fold CV is larger in comparison to 10-fold CV.

We present results based on the SMOTE algorithm and a
novel form of synthetic oversampling that is based on autoen-
coders, which we have denoted DEAGO. For completeness,
we also include the results of BRUS, as this method has seen
success on some imbalanced domains. In each case, subsequent
to the rebalancing phase, we apply a multilayer perceptron
classifier (MLP). Future work will consider the performance
of other state-of-the-art classifiers.

VI. RESULTS

This section reports the results of our experiments on
gamma-ray classification. The 5x2-fold cv tests on the SAAN
and VAN data are performed using MLPs trained on the natural
distribution, and with data balanced via BRUS, SMOTE and
DEAGO. Finally, the results of the top two methods (DEAGO
and SMOTE) are tested for statistical significance using the t-
test. The columns of the table specify the corresponding means
and standard deviations for each dataset.

In both cases, BRUS decreases the AUC produced by the
MLP classifier. This is likely due to the degree of imbalance in
the datasets, which necessitates that a large number of majority
class instances be randomly removed in order to achieve a
relative balance. Alternatively, both SMOTE and DEAGO,
which add novel instances to the training process in order to
balance the training set, lead to improvements in performance.

Statistical analysis via the paired t-test shows that the
mean AUC of 0.894 on the SAAN data produced by DEAGO
is significantly better than the score of 0.818 produced by
SMOTE. Similarly, the mean AUC of 0.989 for VAN produced
by DEAGO is also a significant improvement over the AUC
of 0.939 produced by SMOTE.
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Fig. 4. SMOTE synthetic spectra produced from train 20 examples.
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Fig. 5. DEAGO synthetic spectra produced from train 20 examples.

A. Synthesized Instances

In order to further understand the results of our experi-
ments, we proceed to examine gamma-ray spectra synthesized
by DEAGO and SMOTE. Figure 4 and Figure 5 depicts the
isotope of interest class as blue dotted lines, the mean by the
solid line and the synthesized instances as red dashed lines for
SMOTE and DEAGO, respectively.

Whilst SMOTE generated many reasonable synthetic in-
stances, it is clear that the distribution of these instances is
less representative of the latent distributions. Specifically, the
density of the synthetic instances inside the convex-hull make
the distributions appear unimodal; we can see, however, from
the training instances that the spectra are multimodal below
channel 30. Alternatively, DEAGO does a better job of main-
taining the latent distribution while adding novel instances.

VII. DISCUSSION

The results on both gamma-ray spectral datasets demon-
strate the considerable promise of DEAGO on gamma-ray
spectral domains. Indeed, DEAGO produces statistically sig-
nificantly better results on VAN and SAAN, with an AUC
that is nearly 0.08 higher on SAAN and 0.05 higher on
VAN. In addition, DEAGO proves to be very consistent in
its performance. It produces a standard deviation of 0.002 and
0.049 for VAN and SAAN respectively, whereas SMOTE has
standard deviations of 0.032 and 0.086 and BRUS produces
standard deviations of 0.072 and 0.048. The consistency of
DEAGO is very noteworthy, as many imbalanced classification
systems, including those tested here, tend to vary greatly over
multiple runs when the minority class is as small as it is
here. Once again, this demonstrates that DEAGO is capable
of inducing a good model from a synthetic oversampling
perspective from small minority training sets.



Finally, although neural networks are sometimes slow to
train, the training time is much shorter for this application
due to the fact that DEAGO is trained on the small minority
training set. In addition, it benefits from not requiring that
multiple classifiers be trained, as is the case with BRUS, and
no post-hoc cleaning is needed, such as with SMOTE.

VIII. CONCLUSION

Given the risks associated with nuclear materials, be they
from malfunctions at an industrial facility or terrorist threats,
it is of considerable importance that we develop the means
to monitor and detect the presence of isotopes of interest. In
particular, this work focuses on the identification of isotopes
of interest based on gamma-ray spectra sampled from NaI
spectrometers on the national monitoring network and those
used to secure entrance to the Vancouver 2010 Olympics.
Our results demonstrate that by synthetically oversampling the
minority class that is composed of the isotopes of interest, we
can mitigate the negative effects of imbalance in the domain,
thereby improving the classification results. Moreover, our
experiments show that DEAGO produces statistically signif-
icantly better AUC results than SMOTE on both datasets.
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