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Abstract

Real world data mining applications must address the issue of
learning from imbalanced data sets. The problem occurs when the
number of instances in one class greatly outnumbers the number of
instances in the other class. Such data sets often cause a default clas-
sifier to be built due to skewed vector spaces or lack of information.
Common approaches for dealing with the class imbalance problem in-
volve modifying the data distribution or modifying the classifier. In
this work, we choose to use a combination of both approaches. We
use support vector machines with soft margins as the base classifier to
solve the skewed vector spaces problem. Then we use a boosting al-
gorithm to get an ensemble classifier that has lower error than a single
classifier. We found that this ensemble of SVMs makes an impres-
sive improvement in prediction performance, not only for the majority
class, but also for the minority class.

1 Introduction
A data set is imbalanced if the number of instances in one class greatly outnumbers the
number of instances in the other class. Some examples of domains presenting a class
imbalance are: fraudulent telephone calls, telecommunications management, text and
image classification, and disease detection. For reasons of simplicity, and with no loss
in generality, only binary class data sets are considered in this paper.

Recently, the class imbalance problem has received a lot of attention in the Machine
Learning community by virtue of the fact that the performance of the algorithms used
degrades significantly if the data set is imbalanced (Japkowicz and Stephen, 2002).
Indeed, in very imbalanced domains, most standard classifiers will tend to learn how
to predict the majority class. While these classifiers can obtain higher predictive ac-
curacies than those that also try to consider the minority class, this seemingly good
performance can be argued as being meaningless.
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The next section will discuss some of the approaches previously applied to deal
with the class imbalance problem. Section 3 introduces the performance measures we
use to evaluate our research. Section 4 discusses the motivations for our approach.
Next, Section 5 describes our approach while Section 6 presents the results we ob-
tained. Section 7 is the conclusion.

2 Previous Work
The machine learning community has addressed the issue of class imbalance in two
different ways in order to solve the skewed vector spaces problem. The first method,
which is classifier-independent, is to balance the original dataset. The second way in-
volves modifying the classifiers in order to adapt them to the data sets. Here we will
talk about the most effective approaches that have been proposed. We will discuss these
approaches in terms of both their benefits and their limitations.

Balancing the data set. The simplest way to balance a data set is by under-sampling
(randomly or selectively) the majority class while keeping the original population of
the minority class (Kubat & Matwin, 1997)

Obviously this method results in information loss for the majority class. Over-
sampling (Japkowicz & Stephen, 2002; Chawla et al., 2000) is the opposite of under-
sampling approach. It duplicates or interpolates minority instances in the hope of re-
ducing class imbalance. With over-sampling, the neighborhood of a positive instance
is assumed to be also positive as are the instances between two positive instances.
Assumptions like these, however, are data dependent and do not apply in all cases. Ex-
perimental results show that under-sampling produces better results than over-sampling
in many cases. The belief is that although over-sampling does not lose any informa-
tion about the majority class, it introduces an unnatural bias in favour of the minority
class. Using synthetic examples to augment the minority class is believed be better
than over-sampling with replacement (Chawla et al., 2000). It does not cause any in-
formation loss and could potentially find “hidden” minority regions. The disadvantage
of this method is that it creates noise for the classifiers which could result in a loss of
performance. Nonetheless, a method such as this one has the potential of being better
than the other approaches discussed since it used a non-skewed mechanism to solve the
problem of skewed data.

Modifying the classifiers. Working with classifiers to adapt data sets could be an-
other way to deal with the imbalanced data problem. Assigning distinct costs to the
training examples seems to be the best approach of this kind. Various experimental
studies of this type have been performed using different kinds of classifiers (Chen et
al., 2004; Guo & Viktor, 2004). In terms of SVMs, several attempts have been made to
improve their class prediction accuracy (Akbani et al., 2004; Morik et al., 1999). We
will discuss them in detail in Section 4. These experiments show that SVMs may be
able to solve the problem of skewed vector spaces without introducing noise. However,
the resulting classifiers may over-fit the data, as we will discuss later.
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In this paper, we present a system that combines the two general methods described
for solving the problem of data set imbalance. The system works by modifying the
classifier using cost assignation, but counters the modification by using a combination
scheme, which is in effect similar to modifying the data distribution. We choose to use
boosting as our combination scheme since it is works very well in terms of being able
to produce very accurate prediction rules without causing over-fitting. Boosting has
the added advantage of working with any type of classifier. In this paper we will fo-
cus on support vector machines, which have demonstrated remarkable success in many
different applications. Our experiments show that boosting methods can be combined
with SVMs very effectively in the presence of imbalanced data. Our results show that
this method is not only able to solve the skewed vector spaces problem, but also the
over-fitting problem caused by support vector machines.

3 Motivation for our Approach
In this section, we begin by explaining why SVM with soft margins is not sufficient
for solving the class imbalance problem. We then discuss methods that have been
previously devised in order to improve on this scheme and explain how our methods
compares to them. Our scheme will be described in detail in Section 5.

3.1 SVMs and the skewed boundary
Support vector machines are based on the principle of Structural Risk Minimization
from statistical learning theory. The idea of structural risk minimization is to find a
hypothesis h for which we can guarantee the lowest true error. In the presence of noise,
the idea of using a soft margin was introduced by Vapnik (1995).

As noted earlier, data imbalance causes a default classifier to be learned which
always predicts the “negative” class. Wu and Chang (2003) observed two potential
causes for the problem of a skewed boundary: (1) the imbalanced training data ratio
and (2) the imbalanced support-vector ratio. For the first cause, we note that on the
minority side of the boundary, the positive examples may not always reside as close
to the “ideal boundary” as the negative examples. In terms of the second cause, con-
sider the following: according to the KKT conditions, the values for αi must satisfy
Σn

i=1αiyi = 0. Since the values for the minority class tend to be much larger than those
for the majority class and the number of positive support vectors substantially smaller,
the nearest neighborhood of a test point is likely to be dominated by negative support
vectors. In other words, the decision function is more likely to classify a boundary
point as negative.

3.2 Analysis of Strategies for the Imbalanced problem for SVMs
To deal with the imbalanced boundary problem, several approaches were given for
adjusting the skewed boundary. We first present three approaches, then, in the next
section, our strategy for handling this problem.
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3.2.1 Kernel transformation method

Adaptively modifying the kernel function K based on the training data distribution is
an effective method for improving SVMs. Amari and Wu (1999) propose a method of
modifying a kernel function to improve the performance of a support vector machine
classifier. This method is based on the structure of the Riemannian geometry induced
by the kernel function. The idea is to increase the separability between classes by en-
larging the space around the separating boundary surface.
Improving upon Amari and Wu’s method, Wu and Chang (2003) propose a class-
boundary-alignment algorithm, which also modifies the kernel matrix K based on the
distribution of the training data. Instead of using an input space, they conduct the ker-
nel transformation based on the spatial distribution of the support vectors in feature
space. A new kernel function is defined as:K̃(x, x′) = D(x)D(x′)K(x, x′) Where an
RBF distance function D(x) =

∑
k∈SV exp (− |x−xk|

τ2
k

) is used as a positive conformal
function in this equation.
This method takes advantage of the new information learned in every iteration of the
SVM algorithm while leaving the input-space distance unchanged. The class boundary
alignment algorithm can be applied directly to adjust the pair-wise object distance in
the kernel matrix K in cases where the input space may not physically exist. Theo-
retical justifications and empirical studies show that kernel transformation method is
effective on imbalanced classification, but this technique is not sufficiently simple to
be implemented efficiently.

3.2.2 Biased penalties method

Shawe-Taylor & Cristianini (1999) show that the distance of a test point from the
boundary is related to its probability of misclassification. This observation has mo-
tivated a related technique which is used in his paper. The technique is to provide a
more severe penalty if an error is made on a positive example than if it is made on a
negative example. By using the cost factors and adjusting the cost of false positives and
false negatives, such penalties can be directly incorporated into the SVM algorithm.

Morik et al. (1999) and Shawe-Taylor & Cristianini (1999) propose an algorithm to
use the L1 norm (k=1). Two cost-factors are chosen so that the potential total cost of the
false positives equals the potential total cost of the false negatives. This means that the
parameters of the SVM are selected such that they obey the ratio: C+/C− = n−/n+.
By increasing the margin on the side of the smaller class, this method provides a way to
induce a decision boundary which is much more distant from the “critical” class than
it is from the other. But in this model, the balance between sensitivity and specificity
cannot be controlled adaptively resulting in over-fitting.
Instead of using the L1 norm for the loss measure, Veropoulos et al. (1999) use the
square of the L2 norm (k=2). This method enables the algorithm to control the balance
between sensitivity and specificity, not adding any information. Experimental results
(Veropoulos et al., 1999) show that this method has the power to effectively control the
sensitivity and not the specificity of the learning machine.

From this analysis we can see that what is really required is a method that is able
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to introduce some information to the problem in order to increase both sensitivity and
specificity.

3.2.3 Boosting method (Our Approach)

Our approach seeks to improve upon Morik et al. (1999)’s method. Instead of increas-
ing C+ or C− to get the balance between sensitivity and specificity, we provide another
solution that modifies the training data sets xi in order to adjust some αi on both the
positive and negative side. The respective adjustments are based on the contribution
of each. We choose to use boosting, a general method which combines several simple
classifiers, to modify the training data sets. The details of this technique are given in
the next section.

4 Boosting SVM with Asymmetric Misclassification Cost
Boosting and other ensemble learning methods have been recently used with great suc-
cess in many applications (Chawla et al., 2003; Guo & Viktor, 2004). In our algorithm,
we choose to use the L1 norm (k=1) SVM (as described in Section 4) with asymmetric
misclassification cost for the component classifiers in a boosting scheme. Our method
will now be presented formally: Given a set of labeled instances {xi, yi}n

i=1, the class
prediction function of our base classifier is formulated in terms of the kernel function
K:

sign(f(x) =
n∑

i=1

yiαiK(x, xi) + b)

where b is the bias and the optimal coefficients are found by maximizing the primal
Lagrangian:

Lp =
‖ ~ω ‖2

2
+ C+

n+∑

{i|yi=+1}
ξ2
i + C−

n−∑

{j|yj=−1}
ξ2
j

−
n∑

i=1

αi[yi(ω · xi + b)− 1 + ξi]−
n∑

i=1

µiξi

where C+ ≥ αi ≥ 0 , C− ≥ αi ≥ 0 , C+
C−

= n−
n+

and µi ≥ 0. Using this component
classifier, we find that the points labeled ξ∗i , where since ξ∗i = ξi/‖β‖, are said to
be on the wrong side of the margin, as shown in figure 1. In terms of the L1 norm
margin slack vector optimization, the feasibility gap can be computed since the ξi are
not specified when moving to the dual. The values for ξi can therefore be chosen in
order to ensure that the primary problem is feasible. The values are calculated using
the following equation:

ξi = max(0, 1− yi(
n∑

j=1

yjαjK(xj , xi) + b))
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Here, the task consists of modifying the weights ωi of the training observations xi in
the input space in order to modify the point labeled ξ∗i . The advantage of this technique
is that we are able to easily build a modified version of the training data and improve
the class prediction function of the boosting procedure.
Our purpose is to sequentially apply the component classification algorithm to the
modified versions of the data, thereby producing a sequence of component classifiers
Gm(x), m=1, 2,..., M.
The predictions from all of the component classifiers are then combined by a weighted

original margin
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y=+1 Updated margin

||β||
1

ξ

ξ

ξ

ξ

*

*

*
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3
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Figure 1: Support vector machines with Asymmetric Misclassification Cost in the im-
balanced non-separable case. The points labeled ξ∗i are on the wrong side of the margin
by an amount ξ∗i = ξi/‖β‖; points on the correct side have ξ∗i = 0. The margin shown
results after the update to the points labeled ξ∗i .

majority vote to produce the final prediction: G(x) = sign(ΣM
m=1αmG(m)(x)). Here

the values for α1,α2,...αM are computed by the boosting algorithm and are used to
weight the contribution of each respective Gm(x). The resulting effect is to give greater
influence to the more accurate classifiers in the sequence.
Figure 2 shows the details of our boosting-SVM algorithm. In this algorithm, the clas-
sifier S is induced from the current weight observation. The resulting weighted error
rate ε is computed as shown at line (c). The weight αm is then found by calculating
αm = λ log(1−ε)/ε. Here the λ is an empirical parameter used to tune the magnitude
of the penalization for each iteration. We use G-mean instead of prediction accuracy
to evaluate the classifier since it combines the values of both sensitivity and specificity.
We apply our algorithm on the training data set Xtrain until the G-mean value on the
test set Xvalidation cannot be improved.

Algorithm Boosting-SVM:
Given: Sequence of N examples XTrain, XV alidation

M; /∗ the maximum running iterations ∗/
Output: G; /∗ output ensemble classifier ∗/
Variables:
ωi; /∗ weights to training observations (xi, yi), i=1,2,...,N ∗/

6



T; /∗ the selected running iterations ∗/
ρ /∗ G-mean value ∗/
Function Calls:
S; /∗ single classifier ∗/
SVMTrain(X); /∗ training the single classifier S using SVMs with Asymmetric Cost ∗/
SVMClassify(X,S); /∗ classify X by the classifier S ∗/
Gmean(G); /∗ obtain the G-mean value from G ∗/
Begin
Initialize
ωi = 1, i=1,2,...N
ρ = 0; ρbest = 0
T=1.
Do for m=1, 2,, M
(a) Xtrain(x) ← Xtrain(x) using weights ωi.
(b) Sm ← SV MTrain(Xtrain).
(c) Compute εm = ΣN

i=1ωiI(yi 6=SV MClassify(Xtrain,Sm))

ΣN
i=1ωi

(d) Compute αm = λ log(1− εm)εm (0 < λ ≤ 1)
(e) Set ωi ← ωi · exp[αm · I(yi 6= SV MClassify(Xtrain, Sm))], i=1,2,...,N.
(f) Gm = sign[Σm

j=1αjSj ]
(g) ρm = Gmean[Gm(Xvalidation)]
(g) if ρm > ρbest, then T=m and ρbest = ρm.
Return Gt.
End

Algorithm 1. Boosting-SVM with Asymmetric Cost algorithm

The final classification is given following a vote by the sequence of component clas-
sifiers. Figure 3 provides an example of a final classifier built from three component
classifiers. The ensemble classifier will have lower training error on the full training
set than any other single component classifier. The ensemble classifier will also have
lower error than a single linear classifier trained on the entire data set.

5 Experiments and Discussion
In our experiments, we compare the performance of our classifier with eight other pop-
ular methods: (I)Adacost (Fan et al, 1999), (II)SMOTEboost (Chawla et al., 2003),
(III)WRF (Chen et al., 2004), (IV)Databoost-IM (Guo & Viktor, 2004), (V)Under-
sampling with SVMs, (VI)SMOTE (Chawla et al., 2000) with SVMs, (VII)SVMs with
Asymmetric Cost (Morik et al., 1999), (VIII)SMOTE combined with VII (Akbani et
al., 2004). For under-sampling we used a random sampling method. For both under-
sampling and SMOTE, the minority class was over-sampled at 200%, 300%, 400%
and 500%. We use the same component classifier for all methods. The results obtained
were then averaged. For our method and the SVMs with Asymmetric Cost and L1
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Figure 2: The final classification is given by the voting of the component classifiers and
yields a nonlinear decision boundary. The three component classifiers trained by SVM
are shown on the top and the resulting classifier is given on the bottom. The ensemble
classifier has lower error than a single classifier trained on the entire data set.

norm, we set the cost ratio by: C+
C−

= n−
n+

. In our experiment we use 10-fold cross-
validation to train our classifier since it provides more realistic results than the holdout
method. In the boosting schemes we use 70% of the data set for training, 20% to set the
threshold for each boosting iteration. The remaining 10% of the data is used as normal
in the 10-fold cross validation testing. All training, validation, and test subsets were
sampled in a stratified manner that ensured each of them had the same ratio of negative
to positive examples (Morik et al., 1999). For all SVM classifiers, we used a linear
kernel function to prevent the choice of kernel function from affecting our results.
We chose to experiment on 12 different imbalanced data sets. Abalone19, B-cancer,
Car3, Glass7, Heart-disease1, Letter4, Segment and Yeast are from UCI datasets. Lupus-
I, Lupus-II, Stroke-I, Stroke-II, are health related data sets.

The next table lists Kubat’s G-mean (as a percentage) measure (Kubat & Matwin,
1997) obtained for each algorithm. This measure is more representative of an algo-
rithm’s performance.

As a result, when comparing the four approaches we can see that Boosting-SVM
with Asymmetric Cost C+ and C− yields the best average performance. The result
demonstrates that our approach has the power to effectively control both sensitivity
and specificity without adding noise. Our approach is always better than SVMs with
Asymmetric Cost and L1 norm since we use it as the component classifier. The im-
provement in terms of both sensitivity and specificity means that this method is able to
avoid over-fitting the data.

6 Conclusion
We have proposed the boosting-SVMs with Asymmetric Cost algorithm for tackling
the problem associated with imbalanced data sets. Through theoretical justifications
and empirical studies, we demonstrated this method to be effective. We find that our
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Table 1: Kubat’s G-mean for each algorithm from 10-fold cross validation

DATASET I II III IV
ABALONE 56.14 56.95 57.39 61.09
B-CANCER 55.64 58.74 58.03 60.01
CAR 91.95 89.13 90.93 91.89
GLASS 94.41 91.07 90.54 92.34
H-DISEASE 47.34 47.09 46.60 48.76
LETTER 86.03 87.23 86.22 87.99
LUPUS-I 74.68 74.61 74.56 77.54
LUPUS-II 64.07 63.13 66.00 67.41
SEGMENT 96.10 96.23 95.76 97.29
STROKE-I 63.10 63.14 62.88 65.25
STROKE-II 62.04 61.42 62.05 63.30
YEAST 66.00 67.57 69.52 66.94
MEAN 71.46 71.36 71.70 73.32

boosted SVM classifiers are robust in two ways: (1) they improve the performance of
the SVM classifier trained with training set; and (2) they are sufficiently simple to be
immediately applicable.
In future work, we hope to test more effective boosting methods on our algorithm. We
will test this framework on different kernel functions and we will use more efficient
measures to evaluate performance in our experiments.
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