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Outline

 classification: ROC plots, the ROC convex hull, iso-
accuracy lines

 ranking: ROC curves, the AUC metric, turning
rankers into classifiers

 probability estimation: probability estimates from
ROC curves, calibration

 model manipulation: new models without re-
training, ordering decision tree branches and rules,
locally adjusting rankings

 more than two classes: multi-objective optimisation
and the Pareto front, approximations
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from http://wise.cgu.edu/sdt/

Receiver Operating Characteristic

 Originated from signal detection theory
 binary signal corrupted by Gaussian noise
 how to set the threshold (operating point) to

distinguish between presence/absence of signal?
 depends on (1) strength of signal, (2) noise

variance, and (3) desired hit rate or false alarm rate
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Signal detection theory

 slope of ROC curve is equal to likelihood ratio

 if variances are equal, L(x) increases
monotonically with x and ROC curve is convex
 optimal threshold for x0 such that

 concavities occur with unequal variances

    

! 

L(x) =
P(x |signal)

P(x |noise)

    

! 

L(x0) =
P(noise)

P(signal)
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ROC analysis for classification

 Based on contingency table or confusion matrix

 Terminology:
 true positive = hit
 true negative = correct rejection
 false positive = false alarm (aka Type I error)
 false negative = miss (aka Type II error)

 positive/negative refers to prediction
 true/false refers to correctness

Predicted
positive

Predicted
negative

Positive
examples

True positives False negatives

Negative
examples

False positives True negatives
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More terminology & notation

 True positive rate tpr = TP/Pos = TP/TP+FN
 fraction of positives correctly predicted

 False positive rate fpr = FP/Neg = FP/FP+TN
 fraction of negatives incorrectly predicted
 = 1 – true negative rate TN/FP+TN

 Accuracy acc = pos*tpr + neg*(1–fpr)
 weighted average of true positive and true

negative rates

Predicted
positive

Predicted
negative

Positive
examples

TP FN Pos

Negative
examples

FP TN Neg

PPos PNeg N
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A closer look at ROC space
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A worse than random classifier…

…can be made better than random
by inverting its predictions
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Example ROC plot

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)
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The ROC convex hull

 Classifiers on the convex hull achieve the best accuracy
for some class distributions

 Classifiers below the convex hull are always sub-optimal
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Iso-accuracy lines
 Iso-accuracy line connects ROC points with the same

accuracy
 pos*tpr + neg*(1–fpr) = a



 Parallel ascending lines
with slope neg/pos
 higher lines are better
 on descending diagonal,

tpr = a

  

! 

tpr =
a " neg

pos
+

neg

pos
fpr
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Iso-accuracy & convex hull

 Each line segment on the convex hull is an
iso-accuracy line for a particular class
distribution
 under that distribution, the two classifiers on the

end-points achieve the same accuracy
 for distributions skewed towards negatives

(steeper slope), the left one is better
 for distributions skewed towards positives (flatter

slope), the right one is better

 Each classifier on convex hull is optimal for a
specific range of class distributions
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Selecting the optimal classifier

 For uniform class distribution, C4.5 is optimal
 and achieves about 82% accuracy
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Selecting the optimal classifier

 With four times as many +ves as –ves, SVM is optimal
 and achieves about 84% accuracy
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Selecting the optimal classifier

 With four times as many –ves as +ves, CN2 is optimal
 and achieves about 86% accuracy
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Selecting the optimal classifier

 With less than 9% positives, AlwaysNeg is optimal
 With less than 11% negatives, AlwaysPos is optimal
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Incorporating costs and profits

 Iso-accuracy and iso-error lines are the same
 err = pos*(1–tpr) + neg*fpr
 slope of iso-error line is neg/pos

 Incorporating misclassification costs:
 cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–)
 slope of iso-cost line is neg*C(+|–)/pos*C(–|+)

 Incorporating correct classification profits:
 cost = pos*(1–tpr)*C(–|+) + neg*fpr*C(+|–) +

          pos*tpr*C(+|+) + neg*(1–fpr)*C(–|–)
 slope of iso-yield line is

          neg*[C(+|–)–C(–|–)]/pos*[C(–|+)–C(+|+)]
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Skew

 From a decision-making perspective, the
cost matrix has one degree of freedom
 need full cost matrix to determine absolute yield

 There is no reason to distinguish between
cost skew and class skew
 skew ratio expresses relative importance of

negatives vs. positives

 ROC analysis deals with skew-sensitivity
rather than cost-sensitivity
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Rankers and classifiers

 A scoring classifier outputs scores f(x,+)
and f(x,–) for each class
 e.g. posterior P(+|x) and P(–|x), or likelihoods

P(x|+) and P(x|–)
 scores don’t need to be normalised

 f(x) = f(x,+)/f(x,–) can be used to rank
instances from most to least likely positive
 e.g. posterior odds P(+|x)/P(–|x), or likelihood

ratio P(x|+)/P(x|–)

 Rankers can be turned into classifiers by
setting a threshold on f(x)
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Drawing ROC curves for rankers

 Naïve method:
 consider all possible thresholds

 in fact, only k+1 for k instances

 construct contingency table for each threshold
 plot in ROC space

 Practical method:
 rank test instances on decreasing score f(x)
 starting in (0,0), if the next instance in the

ranking is +ve move 1/Pos up, if it is –ve move
1/Neg to the right
 make diagonal move in case of ties
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Some example ROC curves

 Good separation between classes, convex curve
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Some example ROC curves

 Reasonable separation, mostly convex
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Some example ROC curves

 Decent performance in first and last segments of ranking,
more or less random performance in middle segment
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Some example ROC curves

 Poor separation, large and small concavities
indicating locally worse-than-random behaviour
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Some example ROC curves

 Random performance
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ROC curves for rankers
 The curve visualises the quality of the ranker

or probabilistic model on a test set, without
committing to a classification threshold

 The slope of the curve indicates empirical (test
set) class distribution in local segment
 straight segment -> test set indicates no need to

distinguish between those examples
 slope can be used for calibration

 Concavities indicate locally worse than random
behaviour
 distinguishing between those examples is harmful
 convex hull gets rid of concavities by binning scores
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 The AUC metric
 The Area Under ROC Curve (AUC) assesses the

ranking in terms of separation of the classes
 all the +ves before the –ves: AUC=1
 random ordering: AUC=0.5
 all the –ves before the +ves: AUC=0

 Equivalent to the Mann-Whitney-Wilcoxon
sum of ranks statistic
 estimates probability that randomly chosen +ve is

ranked before randomly chosen –ve
                       where S– is the sum of ranks of –ves

 Gini coefficient = 2*AUC–1 (area above diag.)
 NB. not the same as Gini index!

    

! 

S" " Pos(Pos + 1)/2

Pos # Neg
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AUC=0.5 not always random

 Poor performance because data requires two
classification boundaries

0 1

0

1
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 Turning rankers into classifiers

 Requires decision rule, i.e. setting a
threshold on the scores f(x)
 e.g. Bayesian: predict positive if
 equivalently:

 If scores are calibrated we can use a default
threshold of 1 on the posterior odds
 with uncalibrated scores we need to learn the

threshold from the data
 NB. naïve Bayes is uncalibrated

 i.e. don’t use Pos/Neg as prior!

    

! 

P(+|x)

P("|x)
=

P(x|+) # Pos

P(x|") #Neg
> 1

    

! 

P(x |+)

P(x |")
>

Neg

Pos
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Uncalibrated threshold

True and false positive
rates achieved by
default threshold
(NB. worse than
majority class!)
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Calibrated threshold

Optimal
achievable
accuracy
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Classification vs. ranking

 Classifiers and rankers optimise a different
loss function
 classifier minimises classification errors (O(n))
 ranker minimises ranking errors (O(n2))

 number of misclassified (+ve,–ve) pairs

 The best achievable ROC point may not lie
on the best achievable ROC curve
 would probably learn a different weight vector

for linear model
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Probability estimation

 A probability estimator assigns a probability
to each point in instance space
 more restrictive than scores, which can be

shifted or scaled without affecting the ranking

 Scores are not necessarily good probability
estimates, even when normalised
 e.g., naive Bayes scores tend to be close to 0 or 1

 Turning a ranker into a probability estimator
requires calibration
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Probabilities from trees
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Naïve Bayes probabilities

LRA1=13/3, LR¬A1=5/7,
LRA2=12/2, LR¬A2=6/8,
LR1=156/6, LR2=60/14,
LR3=78/24, LR4=30/56
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Good probabilities ≠ good ranking

 .8+.7+ .6+ .4– .3– .2–
 AUC = 1
 MSE (aka Brier score) = .097

 1+.9+ .51– .49+ .1– 0–
 AUC = 8/9 (worse)
 MSE = .090 (better)
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Calibration

 Well-calibrated probabilities have the
following property:
 in a sample with predicted probability p, the

expected proportion of positives is close to p

 This means that the predicted likelihood ratio
approximates the slope of the ROC curve
 perfect calibration implies convex ROC curve

 This suggests a simple calibration procedure:
 discretise scores using convex hull and derive

probability in each bin from ROC slope
 = isotonic regression (Zadrozny & ELkan, 2001; Fawcett &

Niculescu-Mizil, 2007; Flach & Matsubara, 2007)
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Decomposing the Brier score

calibration loss:
mean squared deviation

from empirical probabilities 
derived from slope of 

ROC segments

refinement loss: 
defined purely in terms

of empirical probabilities
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Calibration and refinement
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Calibration and refinement
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From ranks to probabilities

 One way to obtain a well-calibrated
probability estimator:
 train a ranker from labelled training data
 draw ROC curve on test set
 obtain a calibration map from convex hull

 NB. This is exactly what decision trees do,
taking into account that:
 test set could be training set (risk of overfitting)
 decision tree training set ROC curves are

provably convex, so no need for convex hull
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ROC-based model manipulation

 ROC analysis allows creation of model
variants without re-training
 e.g., manipulating ranker thresholds or scores

 Example: re-labelling decision trees
 (Ferri et al., 2002)

 Example: locally adjusting rankings
 (Flach & Wu, 2003)
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Re-labelling decision trees

 A decision tree can be seen as an unlabelled tree
(a clustering tree):
 Given n leaves and 2 classes, there are 2n possible

labellings, each representing a classifier

 Use ROC analysis to select the best labellings
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DT labellings in ROC space

False  positive  rate
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False  positive  rate
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Selecting optimal labellings
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1. Rank leaves by
likelihood ratio
P(l|+)/P(l|–)

2. For each possible split
point, label leaves
before split + and
after split –
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Why does it work?
 Decision trees are rankers if we use class

distributions in the leaves
 Probability Estimation Trees (Provost &

Domingos, 2003)

 ROC curve can be constructed by sliding
threshold
 just as with naïve Bayes

 Equivalently, we can order instances, which
boils down to ordering leaves
 because all instances in a leaf are ranked

together

 NB. Curve may not be convex on test set
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Repairing concavities

 Concavities in ROC curves from rankers
indicate worse-than-random segments in the
ranking

 Idea 1: use binned ranking (aka discretised
scores) —> convex hull

 Idea 2: invert ranking in segment

 Need to avoid overfitting
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Repairing concavities

 Convex hull corresponds
to binning the scores into
variable-sized bins in
order to eliminate locally
worse-than-random
ranking (concavity)
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Repairing concavities

 Convex hull corresponds
to binning the scores into
variable-sized bins in
order to eliminate locally
worse-than-random
ranking (concavity)

 Can do better than this:
invert ranking in each
concavity
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above line?

use ranking
in 2nd segment

yes no

use ranking
in 1st segment

Example: XOR

0 1

0

1

tied  XXXinvert  XXXX
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More than two classes

 Two-class ROC analysis is a special case of
multi-objective optimisation
 don’t commit to trade-off between objectives

 Pareto front is the set of points for which no
other point improves all objectives
 points not on the Pareto front are dominated
 assumes monotonic trade-off between objectives

 Convex hull is subset of Pareto front
 assumes linear trade-off between objectives

 e.g. accuracy, but not precision
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How many dimensions?
 Depends on the cost model

 1-vs-rest: fixed misclassification cost C(¬c|c) for
each class c∈C —> |C| dimensions
 ROC space spanned by either tpr for each class or fpr

for each class

 1-vs-1: different misclassification costs C(ci|cj)
for each pair of classes ci≠ cj —> |C|(|C|–1)
dimensions
 ROC space spanned by fpr for each (ordered) pair of

classes

 Results about convex hull, optimal point
given linear cost function etc. generalise
 (Srinivasan, 1999)
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Multi-class AUC

 In the most general case, we want to
calculate Volume Under ROC Surface (VUS)
 See (Mossman, 1999) for VUS in the 1-vs-rest

three-class case

 Can be approximated by projecting down to
set of two-dimensional curves and averaging
 MAUC (Hand & Till, 2001): 1-vs-1, unweighted

average
 (Provost & Domingos, 2001): 1-vs-rest, AUC for

class c weighted by P(c)
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Multi-class calibration

1. From thresholds to weights:
 predict argmaxc wc f(x,c)
 NB. two-class thresholds are a special case:

 w+ f(x,+) > w– f(x,–) ⇔ f(x,+)/f(x,–) > w–/w+

2. Setting the weights (Lachiche & Flach, 2003)
 Assume an ordering on classes and set the weights

in a greedy fashion
 Set w1 = 1
 For classes c=2 to n

 look for the best weight wc according to the weights
fixed so far for classes c'<c, using the two-class
algorithm
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3

1 2

Example: 3 classes

(0,0,1)

(1,0,0)

(0,1,0)
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Coverage space (Fürnkranz & Flach, 2005)

 Coverage space is ROC space with absolute
rather than relative frequencies
 x-axis: covered –ves n (instead of fpr = n/Neg)
 y-axis: covered +ves p (instead of tpr = p/Pos)



19 July, 2007 UAI’07 tutorial on ROC analysis — © Peter Flach 56/64

Coverage space vs. ROC space

 Coverage space can be used if class
distribution (reflected by shape) is fixed
 slope now corresponds to posterior odds rather

than likelihood ratio
 iso-accuracy lines always have slope 1
 very useful to analyse

behaviour of particular
learning algorithm
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Precision-recall curves

 Precision prec = TP/PPos = TP/TP+FP
 fraction of positive predictions correct

 Recall rec = tpr = TP/Pos = TP/TP+FN
 fraction of positives correctly predicted

 Note: neither depends on true negatives
 makes sense in information retrieval, where true

negatives tend to dominate —> low fpr easy

Predicted
positive

Predicted
negative

Positive
examples

TP FN Pos

Negative
examples

FP TN Neg

PPos PNeg N
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From (Fawcett, 2004)

PR curves vs. ROC curves

 Two ROC curves  Corresponding PR curves

→ Recall

→
 P

re
ci

si
on
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Taking costs into account

 Error rate is err = (1–tpr)*pos + fpr*(1–pos)

 Define probability cost function as

 Normalised expected cost is
          nec = (1–tpr)*pcf + fpr*(1–pcf)

    

! 

pcf =
pos "C(#|+)

pos "C(#|+)+ neg "C(+|#)
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Concluding remarks
 ROC analysis for model evaluation and

selection
 key idea: separate performance on classes
 think rankers, not classifiers!
 information in ROC curves not easily captured by

statistics

 ROC analysis for use within ML algorithms
 one classifier can be many classifiers!
 separate skew-insensitive parts of learning…

 probabilistic model, unlabelled tree

 …from skew-sensitive parts
 selecting thresholds or class weights, labelling and

pruning
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Outlook

 Several issues not covered in this tutorial
 optimising AUC rather than accuracy when

training
 e.g. RankBoost optimises AUC (Cortes & Mohri, 2003)

 Many open problems remain
 ROC analysis in rule learning

 overlapping rules

 relation between training skew and testing skew
 multi-class ROC analysis
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