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Genetic Programming

 Koza 1992 book
* Genetic Algorithm (Mitchell ch. 9):

— Hypothesis representation: parse tree

e Functions

* Terminals
— Operators:

* Crossover: exchange subtrees

* Mutation: replace subtree randomly

— Fitness functions
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1. Organization Design using GP

— @GP as postprocessor optimizer for project organization design
simulator Virtual Design Team VDT (Kunz, CACM, 1998)

CONTROLS (“Assumed Model")
Organization (structure)

Process description (activities)
Actors

Communication tools

l OUTPUTS
(“Measures of progress”)
INPUTS (variables) & V?‘;_ S
Organization (structure) 4] =IMulation | ' .
Process description (activities) Model * Process Quality
e . TF}taI Cost
Communication tools T * Time

MECHANISMS (“Systam™)
Actor, Activity p-behaviors

Figure 3. VDT Model Architecture. Given values for independent input variables that describe a
project and a set of fixed assumptions. the VDT model simulates each activity being performed by
responsible actors and computes overall project duration. cost and coordination quality. The
microbehaviors consider both planned direct work and inferred requirement for coordination and

rework.
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Fig. 1. User Interface of the VDT Simulator - Each project participant fills a position in
the project organizational hierarchy and works on one or more activities. The organizational
structure and the interdependence between activities deline coordination requirements

among individuals



VDT Inputs

* Resource counts, budget
* Topology
e Skill levels

* Decision making policies:

* Centralization (delegation)
* Formalization (meetings)

* Matrix strength (collocation)



Fitness =

M
SPD+TFTE x FTEW + (FRI .« FRIW .+ PRI .« PRIW .+CR,*CRW )

i=1

SPD = Simulated Project Duration
TFTE = the Total FTE added

FTEW = FTE Weight (TFTE > 3.0 => 1000, else 1)
FRI = Functional Risk Index for activity 1

FRIW = FRI weight for activity 1 (FRL > 0.5 => 1000, else 1)
PRI = Project Risk Index for activity 1

PRIW_ = PRI weight for activity 1 (PRI > 0.5 => 1000, else 1)
CR = Communication Risk for activity 1

CRW. = CR weight for activity 1 (CR > 0.5 => 1000, else 1)

M = maximum number of activities
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Fig. 3. Sample of a Transforming Genetic Tree. Program trees
created by genetic operations modify the structure and attributes of
a project organization. The genetic tree above transforms an
organization design proposed by a project manager to a near
optimal one.




Representation

e Function semantics are obscure:

— Up, Down, Same have different meaning
depending on the Terminals they connect to
and whether there are FTE, Assign or Aloc
functions 1n between.

— E.g. FTE increases or decreases the number of
FTESs for each actor depending on the number
of Up/Down functions preceding it in the Tree.

* Constraint: FTE, Assign, and Aloc functions can
only appear next to the bottom of the tree



Table 1. Tableau for the project organization design optimization problem

Objective:

Find the changes need to be made to the current project or-
ganization 1 order to reduce the project simulated dura-
fion, reduce cost and improve quality of the final outcome

Terminal Set

P1, P2 P3 P4 P5 P6, P7. CEM

Function Set

Up., Down, Same, FTE, Assign, Aloc

Fitness Cases

15 total — 1 for simulation duration, 1 for FTE. 13 for each
activities

Raw Fitness SPD + TFTE * FTEW + ) (FRL, * FRIW; + PRI, * PRIW, +
CR; * CRW;) (see section 4.4 Fitness Evaluation)
Standardized Fitness | Same as raw fitness
Parameters Population size M = 3000
Maximum number of generations, G = 100
Crossover =90% Mutation = 3% Reproduction = 7%
Success Predict None — search for the shortest simulation duration with the

orven quality and FTE constramts




Results

* Experiment 1: varied only skill levels to
benchmark known optimum (infinite budget)

* Experiment 2: varied FTEs, policies, to compare
with 40+ student/manager team solutions

* Best individual found by GP 1n generation 21
beats the best human-discovered solution by 2
days (over approx. 8 months)

e Best tree has 99 non-leaf nodes

e (Generalization?



The best individual found by GP in generation 21, and it is shown
below 1n a lisp-type format:

(Up (Down (Same (Same P5 P4) (Down (Down Pl
P5) (Up (FTE P0O) (Up (Down (Up (FTE P0) (Down
P5 P5)) (Up (FTE P1l) (Up (FTE PO) (Same P3
P6)))) (FTE P5))))) (Up (Same (Same (Down (Up
(Up (Assign P0O) (FTE P1l)) (Same (Up (Same
(Down (FTE P4) (FTE PO)) (Down (FTE P2) (Up
(Up P6 (Up (Up PO (FTE P1l)) (FTE P4))) (FTE
P1)))) (Up (FTE P4) (Assign P4))) (Up (Up (Up
(FTE P5) (FTE P5)) (FTE P4)) (Up (FTE PO) (Up
(Assign P0O) (Same P5 P4)))))) (Up (FTE P5S)
(Aloc PO))) P2) (FTE PO)) (Same (Same (Down

(Up (Up (Assign P0O) (Same P5 P4)) (Same (Up
(Same (Up (Assign P0O) (Up (Assign P1l) (Assign
PO))) (Aloc P1l)) (Up (FTE P4) (Assign P4)))

(Up (Up (Up (FTE P5) (FTE P5)) (FTE P4)) (Up
(FTE PO) (Up (Assign P0O) (Same P5 P4)))))) (Up
(FTE P5) (Aloc PO))) P2) (FTE PO)))) (FTE P4))



2. Decision Trees using GP

Multi-layered Fitness
* Primary: misclassification percentage
* Secondary: number of tree nodes (also pruning)

If individuals tied on primary fitness, compare secondaries.

Full atomic representations
Each node 1s attribute operator value
* Non-leaf (boolean):
numeric: attribute < value
nominal: attribute = value
* Leaf (assignment):class := C



Simple Representation
* Potential atoms for every attribute-value combination.
* Flexible, but huge search space.

Refined representation

* Analogous to C4.5 but not greedy; uses gain or gain-
ratio but globally.

* Instead of splitting numeric attributes at single
threshold, splits them into k£ intervals (k-1 thresholds).
* k<5 here.

Clustering representation
Partitions each numeric attribute globally using k-means.



Modified Atoms

Refined representation
* (attribute < thresholdl1),

o (attribute [ [threshold]1, threshold2)),

e (attribute [ [threshold2, threshold3)), and
* (attribute > threshold3).

Clustering representation
e (attribute LI [minl, max 1]),
e (attribute [ [min2, max 2]), and
e (attribute [l [min3, max 3]),




Table 1: Example data set

A BJclass
1l | @ ViR
2| b | yes
3 | & [0
4 [ b 10
5| oa Vs
6 | 0 ¥es

Numeric atoms:
*(A<1),(A<2),(A<3),(A<4),(A<5),and (A<6)

* oain-ratio: (A <3),(AU[3,5)),and (A>5)
* k-means: (A L [1, 2]), (A L[3,4]), and (A L[5, 6])



Experiments

* Mutation = crossover = 90%

* Population 100, generations < 99

* Tournament selection

* Nodes < 63, pruned automatically

* 10-fold crossvalidation

* Performance = average misclassification rate

 UCI datasets, some with C4.5 results



Table 3: Australian credit data set results.

algorithm k | average | s.d. | best | worst | rank
clustering cp 2 13.7 08 | 125 | 14.8 1
clustering cp 3 14.8 0.7 | 13.8 | 16.1 3
clustering ¢P 4 14.8 0.4 | 143 | 15.7 4
clustering cp 5 15.2 0.7 | 13.5 | 158 3
refined GP (gain) 2 14.2 0.4 | 135 | 149 2
refined GP (qgain) 3 5.1 0.8 | 149 | 164 7
refined Gp (gain) 4 14.9 0.9 | 13.3 | 165 5
refined Gp (gain) ) 151 0.6 | 13.9 | 164 §
refined cp (gain_ratio) | 2 15.7 04 | 149 | 164 12
refined cp (gain_ratio) | 3 15.5 0.1 | 154 | 15.7 9
refined GP (gain_ratio) | 4 5.5 0.3 | 151 | 159 10
refined Gp (gain_ratio) | 5 15.6 0.4 | 151 | 16.1 11
simple Gp 22.0 3.0 | 17.0 | 25.7 14
C4.5 15.9 13
Bagged C4.5 N/A

Boosted C4.5 N/A

CEFR-MINER N/A

ESIA 194 0.1 15




Table 7: Ionosphere data set results

algorithm k | average | s.d. | best | worst | rank
clustering Gp 2 13.1 09 | 114 | 14.2 16
clustering Gp 3 10.5 1.2 8.8 13.4 9
clustering Gp 4 12.1 1.3 9.4 14.0 14
clustering Gp 5 13.3 2.1 | 10.8 17.4 17
refined Gp (gain) 2 8.3 1.0 7.1 10.8 h
refined GP ( gain) 3 10.5 131 9.1 12.5 10
refined GP (gain) 4 10.8 0.6 9.9 12.0 11
refined GP (gain) 5 11.6 1.7 | 8.8 15.1 13
refined Gp (gain_ratio) | 2 (A 0.7 | 6.8 9.1 3
refined P (gain_ratio) | 3 8.1 0.8 7.1 9.4 4
refined GP ( gain_ratio) | 4 8.3 0.9 | 6.5 10.0 A
refined GP (gain_ratio) | 5 9.1 1.0 7.1 10.2 S
simple GP 12.4 1.8 | 8.0 14.3 15
C4.5 3.9 7
Bagged C4.5 6.2 2
Boosted C4.5 5.8 1
CEFR-MINER 11.4 6.0 12

ESIA

N/A




