
Genetic Programming

CSI 5388
Paper Presentation

Joe Burpee
2005/2/9



Genetic Programming

● Koza 1992 book
● Genetic Algorithm (Mitchell ch. 9):

– Hypothesis representation: parse tree
● Functions
● Terminals

– Operators:
● Crossover: exchange subtrees
● Mutation: replace subtree randomly

– Fitness functions



Papers

1. Bijan KHosraviani, Raymond E. Levitt and John R. Koza
Organization Design Optimization Using Genetic Programming
Late Breaking Papers at the 2004 Genetic and Evolutionary 
Computation Conference, 26 July 2004.

2. Jeroen Eggermont, Joost N. Kok and Walter A. Kosters
Genetic Programming for data classification: partitioning the 
search space
Proceedings of the 2004 ACM symposium on Applied computing, 
March 2004.



– GP as postprocessor optimizer for project organization design 
simulator Virtual Design Team VDT (Kunz, CACM, 1998)

1. Organization Design using GP





VDT Inputs

● Resource counts, budget
● Topology
● Skill levels
● Decision making policies:

● Centralization (delegation)
● Formalization (meetings)
● Matrix strength (collocation)



Fitness =

SPD = Simulated Project Duration
TFTE = the Total FTE added
FTEW = FTE Weight (TFTE > 3.0 => 1000, else 1)
FRI

i
 = Functional Risk Index for activity i

FRIW
i 
= FRI weight for activity i (FRI

i
 > 0.5 => 1000, else 1)

PRI
i
 = Project Risk Index for activity i

PRIW
i
 = PRI weight for activity i (PRI

i
 > 0.5 => 1000, else 1)

CR
i
 = Communication Risk for activity i

CRW
i
 = CR weight for activity i (CR

i
 > 0.5 => 1000, else 1)

M = maximum number of activities

SPDTFTE∗FTEW ∑
i=1

M

FRI i∗FRIW iPRI i∗PRIW iCRi∗CRW i



Fig. 3. Sample of a Transforming Genetic Tree. Program trees 
created by genetic operations modify the structure and attributes of 
a project organization. The genetic tree above transforms an 
organization design proposed by a project manager to a near 
optimal one.



Representation

● Function semantics are obscure:
– Up, Down, Same have different meaning 

depending on the Terminals they connect to 
and whether there are FTE, Assign or Aloc 
functions in between.

– E.g. FTE increases or decreases the number of 
FTEs for each actor depending on the number 
of Up/Down functions preceding it in the Tree. 

● Constraint: FTE, Assign, and Aloc functions can 
only appear next to the bottom of the tree 





Results

● Experiment 1: varied only skill levels to 
benchmark known optimum (infinite budget)

● Experiment 2: varied FTEs, policies, to compare 
with 40+ student/manager team solutions

● Best individual found by GP in generation 21 
beats the best human-discovered solution by 2 
days (over approx. 8 months)

● Best tree has 99 non-leaf nodes
● Generalization?



The best individual found by GP in generation 21, and it is shown 
below in a lisp-type format: 

(Up (Down (Same (Same P5 P4) (Down (Down P1 
P5) (Up (FTE P0) (Up (Down (Up (FTE P0) (Down 
P5 P5)) (Up (FTE P1) (Up (FTE P0) (Same P3 
P6)))) (FTE P5))))) (Up (Same (Same (Down (Up 
(Up (Assign P0) (FTE P1)) (Same (Up (Same 
(Down (FTE P4) (FTE P0)) (Down (FTE P2) (Up 
(Up P6 (Up (Up P0 (FTE P1)) (FTE P4))) (FTE 
P1)))) (Up (FTE P4) (Assign P4))) (Up (Up (Up 
(FTE P5) (FTE P5)) (FTE P4)) (Up (FTE P0) (Up 
(Assign P0) (Same P5 P4)))))) (Up (FTE P5) 
(Aloc P0))) P2) (FTE P0)) (Same (Same (Down 
(Up (Up (Assign P0) (Same P5 P4)) (Same (Up 
(Same (Up (Assign P0) (Up (Assign P1) (Assign 
P0))) (Aloc P1)) (Up (FTE P4) (Assign P4))) 
(Up (Up (Up (FTE P5) (FTE P5)) (FTE P4)) (Up 
(FTE P0) (Up (Assign P0) (Same P5 P4)))))) (Up 
(FTE P5) (Aloc P0))) P2) (FTE P0)))) (FTE P4)) 



2. Decision Trees using GP
Multi-layered Fitness
● Primary: misclassification percentage
● Secondary: number of tree nodes (also pruning)

If individuals tied on primary fitness, compare secondaries.

Full atomic representations
Each node is attribute operator value
● Non-leaf (boolean):

numeric: attribute < value
nominal: attribute = value

● Leaf (assignment):class := C



Simple Representation
● Potential atoms for every attribute-value combination.
● Flexible, but huge search space.

Refined representation
● Analogous to C4.5 but not greedy; uses gain or gain-
ratio but globally.
● Instead of splitting numeric attributes at single 
threshold, splits them into k intervals (k-1 thresholds).
● k≤5 here.

Clustering representation
Partitions each numeric attribute globally using k-means.



Modified Atoms

Refined representation
• (attribute < threshold1),
• (attribute ∈ [threshold1, threshold2)),
• (attribute ∈ [threshold2, threshold3)), and
• (attribute ≥ threshold3).

Clustering representation
• (attribute ∈ [min1, max 1]),
• (attribute ∈ [min2, max 2]), and
• (attribute ∈ [min3, max 3]),



Numeric atoms:
● (A <1), (A < 2), (A < 3), (A < 4), (A < 5), and (A < 6)
● gain-ratio: (A < 3), (A ∈ [3, 5)), and (A ≥ 5)
● k-means: (A ∈ [1, 2]), (A ∈ [3, 4]), and (A ∈ [5, 6])
 



Experiments

● Mutation = crossover = 90%
● Population 100, generations ≤ 99
● Tournament selection
● Nodes ≤ 63, pruned automatically
● 10-fold crossvalidation
● Performance = average misclassification rate
● UCI datasets, some with C4.5 results






