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Abstract

Combining information from various data
sources has become an important research
topic in machine learning with many scien-
tific applications. Most previous studies em-
ploy kernels or graphs to integrate different
types of features, which routinely assume one
weight for one type of features. However,
for many problems, the importance of fea-
tures in one source to an individual clus-
ter of data can be varied, which makes the
previous approaches ineffective. In this pa-
per, we propose a novel multi-view learn-
ing model to integrate all features and learn
the weight for every feature with respect to
each cluster individually via new joint struc-
tured sparsity-inducing norms. The proposed
multi-view learning framework allows us not
only to perform clustering tasks, but also to
deal with classification tasks by an extension
when the labeling knowledge is available. A
new efficient algorithm is derived to solve the
formulated objective with rigorous theoret-
ical proof on its convergence. We applied
our new data fusion method to five broadly
used multi-view data sets for both clustering
and classification. In all experimental results,
our method clearly outperforms other related
state-of-the-art methods.

1. Introduction

Many problems in machine learning involve data sets
with multiple views where observations are represented
by multiple sources of features. Because different data
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sources contain different and partly independent infor-
mation, the multi-view learning is beneficial by reduc-
ing the noise, as well as by improving statistical sig-
nificance and leveraging the interactions and correla-
tions between data sources to obtain more refined and
higher-level information, which is also known as data
fusion or data integration. Much progress has been
made over the last ten years in developing effective
multi-view semi-supervised (e.g. co-training (Ghani,
2002) and co-EM (Brefeld & Scheffer, 2004)) and un-
supervised learning (e.g. multi-view clustering (Bickel
& Scheffer, 2004)) algorithms. These methods typ-
ically utilize multiple redundant views to effectively
learn from unlabeled data by mutually training a set
of classifiers defined in each view, with the assumption
that the multi-view features given the class are con-
ditionally independent. However, in most real-world
applications, the independence assumption of the fea-
ture sets is not well satisfied, such that these methods
may not effectively work (Belkin et al., 2006).

From machine learning point of view, different repre-
sentations of the same set of objects could give rise
to different kernel functions, thus the Multiple Kernel
Learning (MKL) approaches (Yu et al., 2010; Suykens
et al., 2002; Kloft et al.; Ye et al., 2008a; Lanckriet
et al., 2004a; Bach et al., 2004; Sonnenburg et al.,
2006) have recently become very popular, because they
can easily combine information from multiple views.
In general, MKL attempts to form an ensemble of ker-
nels to yield a good fit for a certain application. It has
been proven that MKL can offer some needed flexibil-
ity and well manipulate the case that involves multiple,
heterogeneous data sources.

A core assumption in MKL, as well as many existing
graph based multi-view learning methods (Cai et al.,
2011; Kumar et al., 2011), is that all features in the
same data source are considered as equally impor-
tant and given the same weight in data fusion, i.e.,
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one weight is learned for one kernel matrix or graph.
However, one can expect that the feature-wise impor-
tance to different learning tasks can vary significantly.
To capture the view-wise relationships among data
sources without ignoring the feature-wise importance
within each data source, we propose a novel multi-
view learning framework via the sparse regularizations
to emphasize structured sparsity from both group and
multi-task points of views.

In sparsity learning, the sparse representations are
typically achieved by imposing non-smooth sparsity-
inducing regularization terms. From the sparsity orga-
nization perspective of view, we have two types of spar-
sity: 1) The flat sparsity is often achieved by ℓ0-norm
or ℓ1-norm regularizer or trace norm in matrix/tensor
completion. 2) The structured sparsity is usually ob-
tained via different sparsity-inducing norms such as
ℓ2,1-norm (Obozinski et al., 2010), ℓ∞,1-norm (Quat-
toni et al., 2009), and group ℓ1-norm (Yuan & Lin,
2006), and many others (Wang et al., 2011; 2012a;c;d).

In this paper, we propose a novel multi-view feature
learning and data clustering framework that integrates
all features of different views and uses joint struc-
tured sparsity-inducing norms to learn a weight for
each feature and provide a more flexible method for
model selection. The group ℓ1-norm regularization
learns the group-wise features importance of one view
on each cluster (task) and the ℓ2,1-norm regularization
explores the feature-wise importance for multiple clus-
ters (tasks). Our new model is designed for multi-view
data clustering, which can also be naturally extended
to deal with classification tasks when prior labeling
knowledge is available. Because our final objective
comprises two non-smooth sparsity-inducing norms,
the current related optimization methods cannot be
efficiently applied. We derive a new efficient algorithm
with rigorous theoretical proof on its convergence. We
apply our new multi-view learning framework to five
broadly used multi-view data sets. Promising results
in extensive experiments have validated our new ap-
proaches in a number of real-world applications.

2. Multi-View Clustering via Joint
Structured Sparsity-Inducing Norms

In this section, we will first systematically propose a
novel multi-view learning model for exploring the un-
supervised heterogeneous data fusion and clustering,
followed by a new efficient iterative algorithm to solve
the formulated highly non-smooth objective with a rig-
orous proof of its convergence. Then we extend the
proposed multi-view learning framework to deal with
supervised classification tasks.

Notations. In this paper, we write matrices as bold
uppercase letters and vectors as bold lowercase letters.
Given a matrix W = [wij ], we denote its i-th row as
wi and its j-th column as wj .

2.1. Joint Structured Sparsity-Inducing Norms
for Heterogeneous Features Learning

In the setting of clustering, given n data samples
{xi}ni=1, we have data matrix X = [x1, · · · ,xn] ∈
ℜd×n. xi ∈ ℜd is the input vector including all fea-
tures from a total of k views and each view j has dj
features such that d =

∑k
j=1 dj . Our goal in multi-

view clustering is to partition {xi}ni=1 into c clusters
by exploiting the information stored in all k different
views of the input data.

Although the traditional K-means clustering or spec-
tral clustering objectives can be extended for multi-
view clustering, similar to MKL, such multi-view clus-
tering objectives still only learn one weight for all fea-
tures from the same type (due to the objectives’ nat-
ural limitation). Thus, we need do clustering from
another point of view. Previous work (Nie et al.,
2009) showed the following regression-like clustering
objective, which is equivalent to the Discriminative K-
means (Ye et al., 2008b), obtains better results than
K-means or spectral clustering methods:

min
W,FTF=I

||XTW + 1nb
T − F||2F , (1)

where b ∈ ℜc×1 is the intercept vector, 1n is n × 1
constant vector of all 1’s, F = [f1, · · · , fn]T ∈ ℜn×c

is the cluster indicator matrix, and fi ∈ ℜc is the
cluster indicator vector for data point xi with fij
indicating how likely xi belongs to the j-th clus-
ter. Upon solution, we learn the d × c parameter
matrix W, which includes the weights of each fea-
ture for c different clusters. In multi-view clustering,
W = [w1

1, · · ·,w1
c ; · · ·, · · ·, · · ·; wk

1 , · · ·,wk
c ] ∈ ℜd×c,

where, as illustrated in Figure 1, wq
p ∈ ℜdq indicates

the weights of all features in the q-th view with re-
spect to the p-th cluster. Although Eq. (1) learns
the weight for each feature to capture the feature-wise
importance, more importantly we need design proper
regularizers to include the interrelations among multi-
view features.

In heterogeneous data fusion, from a multi-view view-
point, the features of a specific view can be more
or less discriminative for different clusters (groups of
data objects). For instance, in image clustering, the
color features substantially increase the detection of
stop signs while they are almost irrelevant for find-
ing cars in images. To address this, we use group ℓ1-
norm (G1-norm) for regularization, which is defined
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as ∥W∥G1
=

c∑
i=1

k∑
j=1

||wj
i ||2 (Wang et al., 2012b; 2013)

and illustrated in Figure 1. Thus, and our objective
can be written as:

min
W,FTF=I

||XTW + 1nb
T − F||2F + γ1||W||G1 . (2)

Because the group ℓ1-norm uses ℓ2-norm within each
view and ℓ1-norm between views, it enforces the spar-
sity between different views, i.e. if one view of features
are not discriminative for certain group of objects, the
objective in Eq. (2) will assign zeros (in ideal case,
usually they are very small values) to them for corre-
sponding clusters; otherwise, their weights are large.
Crucially, this group ℓ1-norm regularizer captures the
global relationships between views.

However, in certain cases, even if most features in one
view are not discriminative for a group of objects, a
small number of features in the same view can still be
highly discriminative. From multi-task learning per-
spective of view, such important features should be
shared by all clusters. Thus, we add an additional
ℓ2,1-norm regularizer into Eq. (2) as following:

min
W,FTF=I

||XTW + 1nb
T − F||2F

+γ1||W||G1 + γ2||W||2,1.
(3)

The ℓ2,1-norm has been widely used in multi-task fea-
ture learning (Argyriou et al., 2008; Obozinski et al.,
2010). Because the ℓ2,1-norm regularizer imposes the
sparsity between all features and non-sparsity between
clusters, the features that are discriminative for all
clusters will get large weights.

Our regularization items consider the heterogeneous
features from both view-wise and individual view-
points. Figure 1 visualizes the matrixWT as a demon-
stration, in which the elements with deep orange color
have large values. The group ℓ1-norm emphasizes
the view-wise weights learning corresponding to each
cluster and the ℓ2,1-norm accentuates the individual
weight learning across multiple clusters. Through the
joint sparsity-inducing norms, for each task (cluster),
many features (not all of them) in the discriminative
views and a small number of features (may not be
none) in the non-discriminative views will learn large
weights as the important and discriminative features.

2.2. Optimization Algorithm

Because the objective in Eq. (3) comprises two non-
smooth regularization terms of G1-norm and ℓ2,1-
norm, it is difficult to solve in general. Thus we derive
an alternative iterative algorithm to solve the prob-
lem, which employs the iteratively re-weighted method

(Gorodnitsky & Rao, 1997) to deal with the non-
smooth regularization terms.

First, when W and b are fixed, we need to solve the
following problem:

min
FTF=I

||XTW + 1nb
T − F||2F . (4)

Due to the orthonormal constraint, Eq. (4) is not easy
to solve. We prove the following theorem for generic
matrices, which provides the solution to Eq. (4) in a
closed form.

Theorem 1 Given any matrix A ∈ ℜn×c (c ≤ n) and
its singular value decomposition (SVD) A = UΛVT

(U ∈ ℜn×n, V ∈ ℜc×c), the solution of the follow-

ing optimization problem: (P1)minBTB=I ∥A−B∥2F
is given by B = U[I;0]VT (I is the identity matrix
with size c, 0 ∈ ℜ(n−c)×c is a matrix with all zeros).

Proof : When A is fixed, it can be verified that
the problem (P1) is equivalent to the following prob-
lem: maxBTB=I tr

(
BTA

)
. We can derive that

tr
(
BTA

)
= tr

(
BTUΛVT

)
= tr

(
ΛVTBTU

)
=

tr (ΛZ) =
∑

i λiizii (1 ≤ i ≤ c), where Z = VTBTU,
and λii and zii are the (i, i)-th entry of Λ and Z,
respectively. Note that ZZT = I, thus zii ≤ 1.
On the other hand, λii ≥ 0 as λii is singular value
of A. Therefore, tr

(
BTA

)
=

∑
i λiizii ≤

∑
i λii,

and when zii = 1 (1 ≤ i ≤ c), the equality holds.
That is to say, tr

(
BTA

)
reaches its maximum when

Z = [I,0T ]. Recall that Z = VTBTU, the solu-
tion to maxBTB=I tr

(
BTA

)
or the problem (P1) is

B = UZTVT = U[I;0]VT . Theorem 1 is proved. �
Using Theorem 1, letting SVD of XTW + 1nb

T =
UΛVT , the solution to Eq. (4) is F = U[I;0]VT .

Next, when F is fixed, taking the derivative of the
objective with respect to b and wi(1 ≤ i ≤ c), and
setting it to zero, we obtain b = FT1n/n (because the
data are centered) and have1:

XXTwi −X(fi − bi) + γ1D
iwi + γ2D̃wi = 0, (5)

where bi is an n×1 vector in which all elements are the
i-th element of b, Di(1 ≤ i ≤ c) is a block diagonal

1When ∥wj
i ∥2 = 0, Eq. (3) is not differentiable. Fol-

lowing (Gorodnitsky & Rao, 1997), we can introduce a
small perturbation to regularize the j-th diagonal block
of Di as 1

2
√

∥wj
i ∥

2
2+ζ

Ij . Similarly, when ∥wi∥2 = 0, the i-th

diagonal element of D̃ can be regularized as 1

2
√

∥wi∥22+ζ
.

Then it can be verified that the derived algorithm mini-
mizes the following problem:

∑n
i=1 ∥W

Txi + b − f i∥22 +

γ1
∑c

i=1

∑k
j=1

√
∥wj

i ∥22 + ζ + γ2
∑d

i=1

√
∥wi∥22 + ζ, which

is apparently reduced to problem Eq. (3) when ζ → 0.
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Figure 1. Illustration of the feature weight matrix WT . The elements in matrix with deep orange color have large values.
The group ℓ1-norm (G1-norm) emphasizes the learning of the group-wise weights for a type of features corresponding to
each cluster and the ℓ2,1-norm accentuates the individual weight learning cross multiple clusters.

matrix with the j-th diagonal block as 1

2∥wj
i∥2

Ij , Ij

is an identity matrix with size of dj , w
j
i is the j-th

segment ofwi and includes the weights of features in j-
th view. D̃ is a diagonal matrix with the i-th diagonal
element as 1

2∥wi∥2
. Thus we have:

wi = (XXT + γ1D
i + γ2D̃)−1X(fi − bi). (6)

Note that Di(1 ≤ i ≤ c) and D̃ are dependent on
W and thus are also unknown variables. We propose
an iterative algorithm to solve this problem, which is
described in Algorithm 1.

Algorithm 1 An efficient iterative algorithm to solve
the optimization problem in Eq. (3).

Input: X = [x1,x2, ...,xn] ∈ ℜd×n.
1. Let t = 1. Initialize Ft by K-means clus-
tering and then initialize Wt and bt by solving

minW,b

∥∥XTW + 1nb
T − F

∥∥2
F
.

while not converge do
2. Calculate Ft+1 = U[I;0]VT where U and V
are obtained by SVD on XTWt + 1nb

T
t .

3. Calculate bt+1 = FT
t+11n/n. Calculate the

block diagonal matrices Di
t+1(1 ≤ i ≤ c), where

the j-th diagonal block of Di
t+1 is 1

2∥(wt)
j
i∥2

Ij .

Calculate the diagonal matrix D̃t+1, where the
i-th diagonal element is 1

2∥wi
t∥2

.

4. For each wi(1 ≤ i ≤ c), (wt+1)i = (XXT +
γ1D

i
t+1 + γ2D̃t+1)

−1X((ft+1)i − (bt+1)i).
5. t = t+ 1.

end while
Output: Wt ∈ ℜd×c, bt, F = [f1, f2, ..., fn]

T
.

Computational analysis. In Algorithm 1, step 2
solves a SVD problem. Because in typical cluster-
ing tasks, the number of clusters d is usually not very
large, step 2 can be computed efficiently by many off-
the-shelf numerical packages. Step 3 is computation-
ally trivial. In step 4, instead of computing the matrix
inverse with cubic complexity, we can solve a system
of linear equations with quadratic complexity to ob-

tain (wt+1)i. When sufficient computational resources
are available and parallel computing is implemented,
both SVD and linear equations, thereby the whole al-
gorithm, can be solved with desired efficiency.

Convergence analysis. The following theorem guar-
antees the convergence of Algorithm 1.

Theorem 2 Algorithm 1 decreases the objective value
of Eq. (3) in each iteration.

Proof : In each iteration t of Algorithm 1, according
to Step 2, we know that

Ft+1 = min
F

∥∥XTWt + 1nb
T
t − F

∥∥2
F

(7)

+ γ1

c∑
i=1

Di
t+1 ∥(wt)i∥22 + γ2TrW

T
t D̃t+1Wt.

According to Steps 3 and 4, we know that

Wt+1,bt+1 = min
W,b

∥∥XTW + 1nb
T − Ft+1

∥∥2
F

(8)

+ γ1

c∑
i=1

Di
t+1 ∥(w)i∥22 + γ2TrW

T D̃t+1W.

Thus, we can derive:

∥∥XTWt+1 + 1nb
T
t+1 − Ft+1

∥∥2
F

(9)

+ γ1

c∑
i=1

Di
t+1 ∥(wt+1)i∥22 + γ2TrW

T
t+1D̃t+1Wt+1

≤
∥∥XTWt + 1nb

T
t − Ft+1

∥∥2
F

+ γ1

c∑
i=1

Di
t+1 ∥(wt)i∥22 + γ2TrW

T
t D̃t+1Wt

≤
∥∥XTWt + 1nb

T
t − Ft

∥∥2
F

+ γ1

c∑
i=1

Di
t+1 ∥(wt)i∥22 + γ2TrW

T
t D̃t+1Wt .
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Substituting D̃ and D by definitions, we obtain:

Lt+1 + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥2
2

2
∥∥∥(wt)

j
i

∥∥∥
2

+ γ2

d∑
i=1

∥∥wi
t+1

∥∥2
2

2
∥∥wi

t

∥∥
2

≤

Lt + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥2
2

2
∥∥∥(wt)

j
i

∥∥∥
2

+ γ2

d∑
i=1

∥∥wi
t

∥∥2
2

2
∥∥wi

t

∥∥
2

, (10)

where Lt = ||XTWt + 1nb
T
t − Ft||2F . Because it can

be easily verified that for function f (x) = x− x2

2α , given
any x ̸= α ∈ ℜ, f (x) ≤ f (α) holds, we can derive that

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2
−

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥2
2

2
∥∥∥(wt)

j
i

∥∥∥
2

≤

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2
−

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥2
2

2
∥∥∥(wt)

j
i

∥∥∥
2

,

(11)

and

d∑
i=1

∥∥wi
t+1

∥∥
2
−

d∑
i=1

∥∥wi
t+1

∥∥2
2

2
∥∥wi

t

∥∥
2

≤

d∑
i=1

∥∥wi
t

∥∥
2
−

d∑
i=1

∥∥wi
t

∥∥2
2

2
∥∥wi

t

∥∥
2

.

(12)

Adding Eqs. (9-12) on both sides (note Eq. (11) is
repeated for 1 ≤ i ≤ c), we have

Lt+1 + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2
+ γ2

d∑
i=1

∥∥wi
t+1

∥∥
2
≤

Lt + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2
+ γ2

d∑
i=1

∥∥wi
t

∥∥
2
. (13)

Therefore, the algorithm decreases the objective value
in each iteration. �
Upon convergence, Wt, bt, Di

t(1 ≤ i ≤ c) and D̃t

will satisfy the Eq. (6), i.e., the K.K.T. conditions is
satisfied, which indicates the algorithm converges to a
local solution of the problem.

Clustering Rules. Given the input data X, we can
compute the projection matrix W and the cluster in-
dication matrix F by Algorithm 1. Upon solution, we
cluster the data samples {xi}ni=1 by performing K-
means clustering on F.

2.3. Extension to Supervised Classification

The proposed clustering framework can also be
extended to a supervised multi-view classification

method. Suppose the data samples are labeled into
c classes, which are represented by a class indication
matrix Y = [y1, · · · ,yn]

T
, such that yij = 1 if data

point xi belongs to the j-th class, yij = 0 otherwise.
Then we can perform supervised multi-view classifica-
tion by simply replacing F in our objective in Eq. (3)
byY. BecauseY is fixed upon the labeling knowledge,
Step 2 in Algorithm 1 is skipped and b = YT1n/n.
Upon solution, we can classify an unseen data point
by argmaxj

(
WTx+ b

)
j
.

The extended supervised classification method is ad-
vantageous for the following reasons. First, similar to
the proposed method for clustering, the new classifi-
cation method explicitly computes the feature weight
coefficients W for both each type of features and each
feature within one single type. As a result, com-
pared to the MKL methods, our new classification
method has the capability to identify both useful fea-
ture types (views) and relevant individual features.
Therefore, the features are properly weighted at two
levels of granularity upon their relevance to the seman-
tic classes of interest, which could lead to improved
classification results. Second, because no SVD is in-
volved in the algorithm for classification task, the com-
putational complexity is approximately linear when
sufficient computational resources are available and
parallel computing is implemented, i.e., our method
scales well to large-scale data and is suitable for prac-
tical use to solve real-world problems.

3. Experiments

In this section, we experimentally evaluate the pro-
posed multi-view learning framework in both cluster-
ing and classifications tasks on five broadly used multi-
view data sets, including three image data sets, one
Protein data set and one Multi-Lingual (ML) Text
analysis data set. Each data set has a certain number
of types of features (views), whose details are described
as following and summarized in Table 1.

Image annotation. To minimize the gap between
the low-level visual features and high-level semantic
concepts, an image can be abstracted by a variety of
different descriptors, and each type of these descriptors
naturally forms up a view of the images of interest.
We evaluate our new multi-view learning framework
on the following three broadly used benchmark data
sets, including NUS-WIDE-Object data set2, Ani-
mal data set3 and MSRC-v1 data set4.

2
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

3
http://attributes.kyb.tuebingen.mpg.de/

4
http://research.microsoft.com/en-us/projects/

objectclassrecognition/
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Table 1. Details of the multi-view data sets used in our experiments (feature type (dimensionality)).

Feature type NUS-WIDE-Object Animal MSRC-v1 Protein ML Text

1 Color moments (255) Self-Similarity (2000) Color moment (48) Pfam (3375) English (2000)
2 Color histogram (64) Color histogram (2688) LBP (256) FFT (4910) German (2000)
3 Color correlogram (144) PyramidHOG (252) HOG (100) Gene expression (441) French (2000)
4 Wavelet texture (128) SIFT (2000) SIFT (1230) – Japanese (2000)
5 Edge distribution (73) colorSIFT (2000) GIST (512) – –
6 Visual words (500) SURF (2000) Centrist (1320) – –

Data points 30000 30457 240 1500 5000
Classes 31 50 7 2 28

Protein categorization. Protein can be character-
ized from different aspects, each of which can be seen
as a view. The Berkeley genomic data set5 (Lanckriet
et al., 2004b) is used in our studies.

Multi-lingual document analysis. With the ad-
vances of machine translation techniques, one can eas-
ily get different translations for one document (Pret-
tenhofer & Stein, 2010), and the translation in each
language can be considered as a view. We apply
our new multi-view learning framework on the multi-
lingual (ML) text data set6 for document analysis.

3.1. Improved Multi-View Clustering

In this subsection, we first evaluate the multi-view
clustering capability of the proposed method.

Experimental setup. Following (Cai et al., 2011),
as a baseline, we apply the spectral clustering (SC)
algorithm (Ng et al., 2001) on every data set using
each single type of features. Besides, we also apply
SC on the concatenation of all the features in differ-
ent types, which is equivalent to assume that all the
feature types are of the same importance and does not
distinguish the feature relevance within a feature type.
For SC, we need to build a graph from the input data.
Following (He et al., 2005), we construct the nearest-
neighbor graph, where the neighborhood size for the
graph construction is set as optimal by searching the
grid of {1, 2, . . . , 10}.

We compare our method against two most recent
multi-view clustering methods: the Multi-Modal Spec-
tral Clustering (MMSC) method (Cai et al., 2011)
and Co-regularized Multi-view Spectral Clustering
(CMSC) method (Kumar et al., 2011), which have
demonstrated state-of-the-art clustering performance
on multi-view data. We implement the compared
methods following the original works and set the pa-
rameters as optimal by performing cross validations in
our preliminary experiments using the ground truth
data labels. For our method, we fine tune the pa-

5
http://noble.gs.washington.edu/proj/sdp-svm/

6
http://www.webis.de/research/corpora/

rameters γ1 and γ2 in Eq. (3) by searching the grid of{
10−5, 10−4, . . . , 104, 105

}
following the same strategy.

We implement four versions of the proposed method
to evaluate the effectiveness of its component terms in
multi-view learning. First, we implement our method
by only using the first term of Eq. (3) and denote it as
“loss only”, which is equivalent to use linear regression
to perform the clustering on the concatenation of all
the features from different types. Second, we imple-
ment our method by only imposing the group ℓ1-norm
regularization and denote it as “G1-norm”, which, sim-
ilar to MKL, only takes into account type-wise rele-
vance but not feature-wise relevance. Third, we imple-
ment our method by only imposing the ℓ2,1-norm reg-
ularization and denote it as “ℓ2,1-norm”, which thus is
reduced a typical multi-task feature selection method
and only takes into account feature-wise relevance. Fi-
nally, we implement the full version of the proposed
method as defined in Eq. (3).

Comparison results. Because the clustering results
of compared methods are dependent on the initial val-
ues, we repeat each experiment on each setting for 50
times and report the average performance. The com-
parison results measured by clustering accuracy and
normalized mutual information are reported in Table 2
and Table 3 respectively.

A first glance at the experimental results in Table 2
and Table 3 shows that the three multi-view cluster-
ing methods, including ours, are generally better than
SC on each individual data view, which validate the
usefulness of data integration in clustering. In addi-
tion, the three multi-view methods also outperform SC
on the concatenation of all features, which is reason-
able in that multi-view methods learn proper weights
for different views (and features by our method) upon
their relevance to the data clusters while the simple
features concatenation does not has such capability.

Moreover, for the three compared multi-view cluster-
ing methods, our method is always better by a large
margin. This observation is consistent with our theo-
retical analysis in that both MMSC and CMSC only
learn the weights at feature type level, while ignoring
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Table 2. Clustering performance comparison measured by clustering accuracy.

Method NUS-WIDE-object Animal MSRC-v1 Protein ML Text

SC (Type 1) 0.151 ± 0.018 0.508 ± 0.015 0.712 ± 0.023 0.627 ± 0.019 0.505 ± 0.020
SC (Type 2) 0.157 ± 0.020 0.513 ± 0.019 0.716 ± 0.022 0.292 ± 0.023 0.513 ± 0.019
SC (Type 3) 0.153 ± 0.022 0.507 ± 0.018 0.714 ± 0.021 0.651 ± 0.019 0.508 ± 0.024
SC (Type 4) 0.160 ± 0.018 0.518 ± 0.021 0.721 ± 0.025 – 0.519 ± 0.021
SC (Type 5) 0.168 ± 0.023 0.529 ± 0.022 0.734 ± 0.019 – –
SC (Type 6) 0.171 ± 0.021 0.534 ± 0.021 0.741 ± 0.022 – –
SC (All by concatenation) 0.201 ± 0.013 0.571 ± 0.017 0.768 ± 0.016 0.656 ± 0.018 0.603 ± 0.021

MMSC 0.214 ± 0.018 0.585 ± 0.016 0.783 ± 0.019 0.662 ± 0.020 0.614 ± 0.015
CMSC 0.217 ± 0.015 0.580 ± 0.018 0.779 ± 0.015 0.667 ± 0.019 0.617 ± 0.021
Our method (loss only) 0.202 ± 0.021 0.563 ± 0.014 0.764 ± 0.015 0.661 ± 0.013 0.601 ± 0.018
Our method (G1-norm) 0.223 ± 0.015 0.598 ± 0.011 0.797 ± 0.013 0.725 ± 0.015 0.620 ± 0.015
Our method (ℓ2,1-norm) 0.227 ± 0.013 0.603 ± 0.014 0.804 ± 0.015 0.738 ± 0.015 0.627 ± 0.013
Our method 0.238 ± 0.015 0.629 ± 0.013 0.827 ± 0.016 0.747 ± 0.011 0.646 ± 0.009

Table 3. Clustering performance comparison measured by normalized mutual information.

Method NUS-WIDE-object Animal MSRC-v1 Protein ML Text

SC (Type 1) 0.179 ± 0.019 0.607 ± 0.020 0.851 ± 0.023 0.751 ± 0.021 0.602 ± 0.019
SC (Type 2) 0.182 ± 0.021 0.609 ± 0.022 0.856 ± 0.019 0.757 ± 0.023 0.604 ± 0.025
SC (Type 3) 0.180 ± 0.018 0.613 ± 0.026 0.859 ± 0.021 0.760 ± 0.024 0.611 ± 0.021
SC (Type 4) 0.187 ± 0.021 0.617 ± 0.021 0.864 ± 0.019 – 0.609 ± 0.020
SC (Type 5) 0.184 ± 0.023 0.622 ± 0.024 0.866 ± 0.018 – –
SC (Type 6) 0.190 ± 0.021 0.628 ± 0.026 0.861 ± 0.022 – –
SC (All by concatenation) 0.238 ± 0.021 0.681 ± 0.023 0.916 ± 0.019 0.811 ± 0.021 0.718 ± 0.025

MMSC 0.251 ± 0.022 0.698 ± 0.023 0.931 ± 0.023 0.826 ± 0.026 0.730 ± 0.021
CMSC 0.256 ± 0.026 0.695 ± 0.021 0.926 ± 0.024 0.828 ± 0.019 0.733 ± 0.023
Our method (loss only) 0.235 ± 0.016 0.677 ± 0.021 0.911 ± 0.023 0.809 ± 0.024 0.716 ± 0.024
Our method (G1-norm) 0.262 ± 0.022 0.719 ± 0.016 0.942 ± 0.021 0.841 ± 0.021 0.752 ± 0.023
Our method (ℓ2,1-norm) 0.271 ± 0.021 0.726 ± 0.026 0.948 ± 0.021 0.850 ± 0.018 0.759 ± 0.016
Our method 0.282 ± 0.018 0.751 ± 0.019 0.987 ± 0.019 0.865 ± 0.020 0.769 ± 0.018

the relevance of each individual features, especially for
those in low-weight feature types. In contrast, our
method is particularly designed to take into account
the feature weighting at the two levels of granularity,
which is confirmed to be effective in data clustering by
all the experimental results reported in Table 2 and 3.

Finally, the full version of our new method outper-
forms all its three degenerate versions, which demon-
strate the correctness of our objective and the useful-
ness of its two regularization terms that capture both
the global and local aspects of feature relevances.

Analysis of learned view relevance and feature
relevance. Besides the clustering performance com-
parison, we examine the feature weight matrix W
learned from Eq. (3) with some details, because the
most important advantage of our new method over
other competing multi-view learning methods lies in
its capability for simultaneous view selection and in-
dividual feature selection. First, for example, for
MSRC-v1 data set we notice that the overall spar-
sity of the learned coefficient matrix W is 22.1%. In
contrast, for the image cluster related to the “out-
door” concept, the sparsity of “color moment” fea-
ture type is about 59.7% and the relative weights
of the Color/SIFT/LBP/HOG/GIST/CENTRIST
are about 1/0.81/0.63/0.35/0.86/0.42, which clearly
shows that the color features and GIST features are
of the most significant importance when we deter-

mine whether an image belongs to the “outdoor”
class. This observation perfectly agrees with our
common sense and empirically justifies the correct-
ness the proposed method in terms of view se-
lection. Second, although the relative weights of
the Color/SIFT/LBP/HOG/GIST/CENTRIST fea-
tures for the image cluster related to the “car” concept
are about 1/1.12/0.60/0.33/0.46/0.68, two HOG fea-
tures have considerably high relative weights of 0.27%
and 0.26%. Such high relative weights, compared to
the average relative weights of all non-zero features of
0.12%, indicates the high discriminative power of these
two HOG features, although the overall importance of
HOG features is the lowest compared to the other 5
types of image features. This result concretely con-
firms that our new method is able to select the useful
individual features from feature groups with very weak
influences. In summary, empirical results validate the
proposed method for its capability to learn both view-
wise and individual feature-wise relevances.

3.2. Improved Multi-View Classification

Now we evaluate the supervised extension of the pro-
posed method in multi-view classification.

We apply SVM on each individual type of features and
the concatenation of all types of features of the experi-
mental data sets as baselines. We compare our method
against several most recent multiple kernel learning
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Table 4. Classification performance comparison measured by classification accuracy.

Method NUS-WIDE-object Animal MSRC-v1 Protein ML Text

SVM (Type 1) 0.152 ± 0.018 0.542 ± 0.016 0.777 ± 0.019 0.682 ± 0.023 0.543 ± 0.019
SVM (Type 2) 0.149 ± 0.020 0.551 ± 0.019 0.768 ± 0.018 0.318 ± 0.025 0.549 ± 0.021
SVM (Type 3) 0.146 ± 0.016 0.569 ± 0.021 0.781 ± 0.022 0.708 ± 0.021 0.545 ± 0.018
SVM (Type 4) 0.150 ± 0.018 0.541 ± 0.023 0.784 ± 0.026 – 0.548 ± 0.025
SVM (Type 5) 0.141 ± 0.017 0.566 ± 0.021 0.773 ± 0.023 – –
SVM (Type 6) 0.149 ± 0.018 0.554 ± 0.200 0.789 ± 0.021 – –
SVM (all by concatenation) 0.138 ± 0.020 0.547 ± 0.019 0.793 ± 0.025 0.714 ± 0.018 0.649 ± 0.020

SVM ℓ∞ MKL method 0.211 ± 0.023 0.603 ± 0.017 0.820 ± 0.023 0.758 ± 0.021 0.551 ± 0.026
SVM ℓ1 MKL method 0.207 ± 0.020 0.599 ± 0.019 0.813 ± 0.019 0.744 ± 0.022 0.554 ± 0.029
SVM ℓ2 MKL method 0.202 ± 0.021 0.593 ± 0.018 0.789 ± 0.022 0.737 ± 0.019 0.556 ± 0.023
LSSVM ℓ∞ MKL method 0.200 ± 0.018 0.588 ± 0.025 0.778 ± 0.025 0.755 ± 0.024 0.560 ± 0.021
LSSVM ℓ1 MKL method 0.195 ± 0.022 0.586 ± 0.023 0.808 ± 0.027 0.729 ± 0.025 0.564 ± 0.022
LSSVM ℓ2 MKL method 0.187 ± 0.021 0.578 ± 0.019 0.796 ± 0.018 0.789 ± 0.018 0.667 ± 0.019
Our method (loss only) 0.141 ± 0.021 0.561 ± 0.022 0.790 ± 0.026 0.716 ± 0.023 0.652 ± 0.016
Our method (G1-norm) 0.229 ± 0.019 0.641 ± 0.020 0.839 ± 0.023 0.789 ± 0.018 0.667 ± 0.019
Our method (ℓ2,1-norm) 0.235 ± 0.021 0.648 ± 0.023 0.847 ± 0.021 0.803 ± 0.018 0.682 ± 0.026
Our method 0.251 ± 0.020 0.665 ± 0.018 0.869 ± 0.016 0.813 ± 0.021 0.718 ± 0.018

(MKL) methods that are able to make use of multiple
types of data: (1) SVM ℓ∞ MKL method (Sonnen-
burg et al., 2006), (2) SVM ℓ1 MKL (Lanckriet et al.,
2004a), (3) SVM ℓ2 MKL method (Kloft et al.), (4)
least square (LSSVM) ℓ∞ MKL method (Ye et al.,
2008a), (5) LSSVM ℓ1 MKL method (Suykens et al.,
2002) and (6) LSSVM ℓ2 MKL method (Yu et al.,
2010). Same as before, four versions of our method
are implemented and evaluated.

We conduct standard 5-fold cross-validation and re-
port the average results. For each of the 5 trials, within
the training data, an internal 5-fold cross-validation is
performed to fine tune the parameters. The param-
eters of our method (γ1 and γ2 in Eq. (3)) are opti-
mized in the range of

{
10−5, 10−4, . . . , 104, 105

}
. For

the SVM method and MKL methods, one Gaussian
kernel is constructed for each type of features (i.e.,

K (xi,xj) = exp
(
−γ ∥xi − xj∥22

)
), where the param-

eters γ are fine tuned in the same range used in our
method. We implement the compared MKL methods
using the codes published by (Yu et al., 2010). Follow-
ing (Yu et al., 2010), in LSSVM ℓ∞ and ℓ2 methods,
the regularization parameter λ is estimated jointly as
the kernel coefficient of an identity matrix; in LSSVM
ℓ1 method, λ is set to 1; in all other SVM approaches,
the C parameter of the box constraint is fine tuned in
the same range used for our method. We use LIBSVM-
software package to implement SVM in all our exper-
iments. The classification performances measured by
average classification accuracies of all compared meth-
ods on the five data sets are reported in Table 4.

Table 4 shows that our method consistently outper-
forms all other compared methods, which demonstrate
the effectiveness of our method in supervised multi-
view classification. In addition, the methods that use
multiple data sources are generally better than SVM

using each one single type of data. This confirms the
usefulness of data integration in supervised multi-view
learning. Moreover, the results that our method is al-
ways better than the MKL methods, though both of
them take advantage of data from multiple different
sources, are consistent with our theoretical analysis.
That is, our method not only assigns proper weight to
each type of data, but also considers the relevances of
the features inside each individual type of data. In con-
trast, the MKL methods only address the former while
not being able to take into account the latter. These
important observations, again, concretely demonstrate
the advantages of the proposed multi-view learning
framework in classification tasks. Finally, the full ver-
sion of the proposed method is clearly superior to its
degenerate versions, which prove the necessity of the
both regularization terms of the proposed method in
multi-view learning.

4. Conclusion

In this paper, we proposed a novel multi-view learn-
ing model to efficiently learn the weights of individ-
ual feature on different clusters when all heterogenous
features are integrated. The joint sparsity-inducing
norms are utilized to impose the structured sparsity
on the learned weight (parameter) matrix from both
local and global multi-view viewpoints. Compared to
existing state-of-the-art multi-view clustering methods
approaches, our new methods capture the importance
of local features and achieve better performance in
both unsupervised and supervised multi-view learning
tasks.
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