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Abstract

In multi-label classification, each sample can
be associated with a set of class labels. When
the number of labels grows to the hundreds or
even thousands, existing multi-label classifi-
cation methods often become computation-
ally inefficient. In recent years, a number
of remedies have been proposed. However,
they are based either on simple dimension re-
duction techniques or involve expensive op-
timization problems. In this paper, we ad-
dress this problem by selecting a small subset
of class labels that can approximately span
the original label space. This is performed
by an efficient randomized sampling proce-
dure where the sampling probability of each
class label reflects its importance among all
the labels. Experiments on a number of real-
world multi-label data sets with many labels
demonstrate the appealing performance and
efficiency of the proposed algorithm.

1. Introduction

Many real-world classification problems involve mul-
tiple label classes. In multi-class classification, each
sample can belong to one and only one label; whereas
in multi-label classification, each sample can be asso-
ciated with multiple labels. For example, in text cate-
gorization, a document can belong to the categories
of “piracy”, “copyright” and “software”. Similarly,
in bioinformatics, a gene may be associated with the
functions of “transcription”, “metabolism” and “pro-
tein synthesis”. Image annotation is also a multi-label
learning problem. Nowadays, in many social network-
ing websites, billions of digital images, each often as-
sociated with multiple tags (e.g., “elephant”, “jungle”
and “africa”), are available for free download, sharing
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and research. For example, Flickr already has 5 bil-
lion photos and more than 20 millions unique tags as
of 2010. While many of these tags may be redundant,
it has been suggested that humans can still recognize
between 10,000 and 100,000 unique object classes. The
Dmoz data set, which is constructed by crawling web-
pages from the Open Directory Project, also has more
than 30,000 labels. Obviously, how to handle such a
large number of labels in multi-label learning is an im-
portant research problem.

A basic approach to multi-label classification is binary
relevance (BR) (Tsoumakas et al., 2010), which sim-
ply trains a classifier for each label independently. In
recent years, many approaches have been proposed to
further improve classification performance by incorpo-
rating the label correlations (Dembczynski et al., 2010;
Hariharan et al., 2010) or exploiting the label hierarchy
(Bi & Kwok, 2011). However, as the number of labels
(d) in many domains keeps growing, even the simple
BR approach (in which the number of classifiers to
train is equal to d) can easily become computationally
infeasible, not to mention the more sophisticated and
computationally demanding approaches.

Some recent approaches have been proposed to ad-
dress the multi-label classification problem with many
labels. A first attempt is by Hsu et al. (2009),
who projects the d-dimensional label vector using
compressed sensing, and performs training with the
much lower-dimensional projected label vectors. Sub-
sequently, many variants have been developed along
this line, which use different projection mechanisms
including principal component analysis (Tai & Lin,
2012), canonical correlation analysis (Zhang & Schnei-
der, 2012) and other singular value decompositions
(Chen & Lin, 2012). A common characteristic is that
they all reduce the possibly large number of labels to
a more manageable set of transformed labels. Yet, a
major limitation is that the transformed labels, though
fewer in quantity, may be more difficult to learn.

Instead of using label transformation, Balasubrama-
nian & Lebanon (2012) proposed to train only a small
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subset of the labels. Since this subset come from
the original labels, their learning problems will not
be made more difficult. Obviously, the key issue is
how to select this label subset. A good candidate
should allow the non-selected labels to be faithfully
and easily constructed from the selected ones. Bal-
asubramanian & Lebanon (2012) formulated this as
a a group-sparse learning problem. However, even
with the recent advances in learning with structured
sparsity (Bach et al., 2011), the involved optimization
problem is still computationally expensive, especially
when there are a lot of labels to select from.

In this paper, we alleviate this problem by proposing
an efficient label selection method based on random-
ized sampling. Following the assumption in (Balasub-
ramanian & Lebanon, 2012), we design the sampling
probability of each label using its leverage score in the
best rank-k subspace of the label matrix. Theoretical
analysis shows the efficiency of this sampling scheme
and its performance when coupled into the multi-label
classification framework.

The rest of this paper is organized as follows. Sec-
tion 2 first gives a brief review on label transformation
/ selection and the column subset selection problem
(Drineas et al., 2006). Section 3 then presents the
proposed learning algorithm. Experimental results are
presented in Section 4, and the last section gives some
concluding remarks.

Notation: In the sequel, n denotes the number of
training samples, m is the number of features, and
d is the number of labels. X ∈ Rn×m is the input
(training) data matrix, and Y ∈ {0, 1}n×d is the cor-
responding label matrix. Moreover, the transpose of
vector/matrix is denoted by the superscript T , A† de-
notes the Moore-Penrose pseudo-inverse of a matrix A,
‖A‖2 is its spectral norm and ‖A‖F is the Frobenius
norm, and A(i) is the ith column of A.

2. Related Work

2.1. Label Transformation

Hsu et al. (2009) proposed a three-step approach to
address classification problems with a large number
of labels. First, the high-dimensional label vector is
projected to a low-dimensional space using random
transformation. Next, a regression model is built for
each dimension of the transformed label vector. Fi-
nally, given a test sample, the estimated label vector
is projected from the low-dimensional space back to
the original label space.

Recently, various improvements have been proposed.

Tai & Lin (2012) found the random transformation
in (Hsu et al., 2009) to be ineffective, and proposed
the principal label space transformation (PLST) which
uses principal component analysis (PCA) on the la-
bel matrix Y. As PCA only minimizes the encod-
ing error between Y and its low-dimensional represen-
tation, Chen & Lin (2012) proposed the conditional
PLST (CPLST) that simultaneously minimizes both
the encoding error and training error in the reduced-
dimensional space. Similarly, Zhang & Schneider
(2011) proposed to use canonical correlation analy-
sis (CCA) that also takes both the input and output
matrices into consideration. They further proposed a
maximum margin formulation to learn an output cod-
ing that is predictive (based on the estimated predic-
tions in the reduced-dimensional space) as well as dis-
criminative (such that different label vectors have dif-
ferent transformed label vectors) (Zhang & Schneider,
2012). However, its optimization relies on the cutting
plane algorithm (Tsochantaridis et al., 2005), which
may not be efficient when there are many labels. Zhou
et al. (2012) used the Gaussian random projection to
form the transformed labels. During preprocessing, it
extracts an auxiliary distilled label set containing the
frequently appearing label subsets. However, empiri-
cally this step is expensive.

2.2. Label Selection

Recently, Balasubramanian & Lebanon (2012) pro-
posed the multiple output prediction landmark selec-
tion method (MOPLMS) based on the assumption that
all the output labels can be recovered by a small sub-
set. In other words, Y ' YW, where W ∈ Rd×d is
the coefficient matrix with only a few nonzero rows.
Mathematically, we have

min
W
‖Y −YW‖2F + λ1‖W‖1,2 + λ2‖W‖1, (1)

where λ1, λ2 are regularization parameters, ‖W‖1,2 =∑d
i=1

√∑d
j=1W

2
ij is the `1,2 group-sparsity regular-

izer that encourages row sparsity of W, and ‖W‖1 =∑k
i,j=1 |Wij | is the traditional `1-regularizer that en-

courages sparsity over the whole W. However, when
the number of labels d is large, W becomes large and
problem (1) is computationally expensive. Besides,
the size of the label subset cannot be explicitly con-
trolled, and can only be indirectly varied by changing
the λ1, λ2 parameters in (1).

2.3. Column Subset Selection Problem (CSSP)

Given a matrix A ∈ Rn×d and a positive integer k, the
CSSP seeks to find exactly k columns of A so as to
span A as much as possible. In other words, we want
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to find an index set C with cardinality k such that
the residual ‖A−ACA†CA‖F is minimized. Here, AC

denotes the submatrix consisting of the C columns in
A, and ACA†C is the projection matrix onto the k-
dimensional space spanned by the columns of AC .

A brute-force search will need to enumerate O(dk) pos-
sible solutions. Even for a small k, this can be pro-
hibitive when d is large. Recently, randomized sam-
pling schemes have been proposed to find approximate
solutions of the CSSP more efficiently (Drineas et al.,
2006; Boutsidis et al., 2009).

A popular algorithm is the exact subspace sampling
scheme (Drineas et al., 2006), which has also been in-
corporated by other CSSP algorithms (Boutsidis et al.,
2009). For a given ε, it samples O(k2/ε2) columns from
A, where the probability of selecting the ith column is

pi =
1

k
‖(VT

A,k)(i)‖22, (2)

and VA,k is the matrix containing the top k right
singular vectors of A. Intuitively, pi corresponds to
the leverage score of A(i) on the best rank-k subspace
of A (Boutsidis et al., 2009). In statistical diagnos-
tic regression analysis, leverage scores can be used
to measure outliers. Thus, (2) provides a bias to-
ward columns that are outlying, which play an im-
portant role in spanning the subspace. With proba-
bility 1 − 1

e , the approximation error of the resultant

approximation ‖A−ACA†CA‖F is upper-bounded by
(1 + ε)‖A − Ak‖F , where Ak is the best rank-k ap-
proximation of A.

Recently, Boutsidis et al. (2009) proposed to first sam-
ple Θ(k log k) columns from A with the probabilities in
(2), and then perform the rank-revealing QR (RRQR)
decomposition (Gu & Eisenstat, 1996) on a scaled ver-
sion of the sampled columns of VT

A,k. This allows the
extraction of exactly k columns from A. With prob-
ability 0.8, the error bound is ‖A − ACA†CA‖F ≤
Θ(k log

1
2 k)‖A−Ak‖F .

3. Proposed Algorithm

Recall that CSSP aims to find k columns from a given
matrix A so that the reconstruction error is mini-
mized. Obviously, this shares the same goal as MO-
PLMS (Balasubramanian & Lebanon, 2012), with the
label matrix Y playing the role of A, i.e.,

min
C
‖Y −YCY†CY‖F . (3)

While MOPLMS relies on an expensive optimization
problem to select the labels (columns), here we will
use an efficient CSSP variant (Section 3.1). Once this

subset of k labels are selected, a binary classifier is
trained for each of them (alternatively, the k labels
can be learned jointly as in multi-task learning). In
total, k binary classifiers are needed. In contrast, a di-
rect application of BR requires the training of d binary
classifiers, where d� k.

As label selection is now considered as a CSSP, in prin-
ciple one can use any of the algorithms in Section 2.
However, this may not be entirely satisfactory. While
we aim at selecting exactly k columns of Y, the al-
gorithm in (Drineas et al., 2006) selects a lot more
than k columns. As for the algorithm in (Boutsidis
et al., 2009), though it can output exactly k columns,
it needs to first select c = Θ(k log k) columns. Empiri-
cally, a proper choice of c can be sensitive to the label
matrix (Mahoney, 2011). Moreover, performing the
RRQR decomposition in its deterministic step takes
O(c2k log

√
c) time (Boutsidis et al., 2009). As will be

demonstrated in Section 4.3, this can be even more
computationally expensive than the sampling step it-
self.

In Section 3.1, we propose a novel variant of (Drineas
et al., 2006; Boutsidis et al., 2009) which directly se-
lects k different columns in Y, while ensuring efficiency
and a good approximation error bound. Section 3.2
discusses the prediction mechanism. Section 3.3 pro-
vides an error analysis, and Section 3.4 discusses how
this can be extended to the use of kernels.

3.1. Proposed CSSP Randomized Sampling

The proposed procedure is shown in Algorithm 1. As
in (Drineas et al., 2006; Boutsidis et al., 2009), we
first perform partial SVD on Y and pick the top k
right singular vectors VY,k ∈ Rm×k. For notational
simplicity, we will use Vk for VY,k in the sequel. The
columns in Y are sampled with replacement, with the
probability for selecting the ith column being

pi =
1

k
‖(VT

k )(i)‖22, (4)

as in (2). However, instead of performing a fixed num-
ber of sampling trials, we continue sampling until k
different columns are selected (steps 4-9).

Similar to (Boutsidis et al., 2009), the following Propo-
sition shows that the (VT

k )C matrix sampled is full
rank with high probability.

Proposition 1. If the WHILE loop stops in T trials,
where

T =
2c20k

ε2
log

c20k

ε2
(5)

and c0 is a constant in Theorem 3.1 of (Rudelson &
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Algorithm 1 Multi-label classification via CSSP
(ML-CSSP).

1: Compute Vk, the top k right singular vectors of
Y.

2: Compute the sampling probability pi for each col-
umn in Y using (4).

3: C ← ∅.
4: while |C| < k do
5: Select an integer from {1, 2, . . . ,m} where the

probability of selecting i is equal to pi.
6: if i /∈ C then
7: C ← C ∪ {i}.
8: end if
9: end while

10: Train the classifier f(x) from {x(n),y
(n)
C }Nn=1.

11: Given a new test point x, obtain its prediction h
using f(x) and return ŷ by rounding hTY†CY.

Vershynin, 2007), then (VT
k )C is full rank with proba-

bility 1− 4ε2.

Moreover, one can obtain the following error bound,
which shows that the obtained approximation error is
close to that based on the best rank-k approximation,
with a factor of Θ(1).

Corollary 1. With probability 0.9 − 4ε2, ‖Y −
YCY†CY‖F ≤ Θ(1)‖Y −Yk‖F , where Yk is the best
rank-k approximation of Y.

The following Proposition shows that, with probability
at least 0.9, k different columns will be selected in
O(k log k) trials. Thus, in the worse case, we do not
need to sample more columns than the algorithm in
(Boutsidis et al., 2009).

Proposition 2. With probability at least 0.9, k differ-
ent columns are selected in O(k log k) sampling trials.

Though the above results suggest that O(k log k)
columns may still need to be sampled in the worst
case, empirical results in Section 4.3 show that the T
obtained is much smaller than k log k.

3.1.1. comparison with other methods

Table 1 compares the proposed algorithm with the
existing CSSP algorithms in (Drineas et al., 2006)
and (Boutsidis et al., 2009). To compute the sam-
pling probabilities, all three CSSP-based algorithms
have to first obtain the top k singular vectors of
the label matrix Y. This takes O(min{nd2, n2d})
time in general, but can be reduced to O(ndk) time
by using Lanzcos/Arnoldi algorithms as Y is typi-
cally sparse. The second term in the time complex-
ity comes from the number of sampling trials (which

is O(k2/ε2) for (Drineas et al., 2006), O(k log k) for
(Boutsidis et al., 2009) and ours). Finally, the algo-
rithm in (Boutsidis et al., 2009) involves an additional
RRQR decomposition after the sampling step, which
takes O(c2k log

√
c) = O(k3 log2 k log(k log k)) time for

c = Θ(k log k).

For easy comparison, we also show the time complex-
ities for PLST and CPLST in Table 1. PLST is fast,
as it only requires a single SVD on the label matrix,
which takes O(ndk) time. CPLST needs to compute
the pseudoinverse of the input matrix X (which is as
expensive as computing its SVD) and a SVD on the
matrix YTXX†Y. In general, these two matrices are
dense, and so CPLST takes O(min{nm2, n2m} + d3)
time for these two operations, and is much more expen-
sive. The time complexity of MOPLMS cannot be di-
rectly compared as it involves numerical optimization.
Empirically, as will be demonstrated in Section 4.2,
this is much more expensive.

3.2. Prediction

On prediction, we first apply the k learned classifiers
on a new test sample to obtain its k-dimensional pre-
diction vector h. Note from (3) that Y ' YCY†CY.
Each row of Y (which corresponds to the d labels of
a particular sample) can thus be approximated as the
product of the corresponding row in YC (which cor-
responds to the k selected labels of the same sample)

with Y†CY. Given h, a d-dimensional label vector ŷ

can be recovered as hTY†CY. This is further rounded
to produce a binary classification output.

3.3. Error Analysis

In this section, we analyze the root mean square error
(RMSE) on the training examples, which is defined as

RMSE ≡ 1√
n
‖Ŷ −Y‖F , (6)

where Ŷ is the estimated label matrix. As Ŷ,Y are
binary, the squared RMSE is also proportional to the
commonly used Hamming loss 1

nd‖Y − Ŷ‖2.

Denote the estimated label matrix using f(x) in the
selected label dimensions as H. Let Yk be the best
rank-k approximation of Y. The following Proposition
bounds the training RMSE for Algorithm 1.

Proposition 3. With the conditions in Proposition 1,
we have, with probability 1− 4ε2,

RMSE ≤ 2√
n

(
‖H−YC‖F + ‖Y −YCY†CY‖F

)
. (7)

Proof. Let Ŷ = round(HY†CY) be the reconstructed
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Table 1. Comparison of the various CSSP sampling algorithms, together with PLST and CPLST.
(Drineas et al., 2006) (Boutsidis et al., 2009) ours PLST CPLST

time O(ndk) O(ndk) +O(k log k) O(ndk) O(ndk) O(min{nm2, n2m})
complexity +O( k

2

ε2
) +O(k3 log2 k log(k log k)) +O(k log k) +O(d3)

#sampling trials Θ( k
2

ε2
) Θ(k log k) O(k log k) - -

approximation ratio 1+ε Θ(k log1/2 k) Θ(1) - -

probability it holds 1-1/e 0.8 0.9− 4ε2 - -

label vector after rounding, where round(·) rounds
each element of the matrix argument to the nearest
0 or 1. Since both Ŷ and Y are binary, (Ŷ −Y)ij is
either 1 or 0.

1. (Ŷ −Y)ij = 1: This happens iff (HY†CY)ij >
1
2

when Yij = 0; and < 1
2 otherwise. In both cases,

(HY†CY−Y)2
ij ≥ ( 1

2 )2 = 1
4 . Since (Ŷ−Y)ij = 1,

we can also write it as

(HY†CY −Y)2
ij ≥

1

4
(Ŷ −Y)2

ij . (8)

2. (Ŷ−Y)ij = 0: In this case, (8) also holds trivially.

Thus,

‖Ŷ−Y‖F =

√∑
ij

(Ŷ −Y)2
ij ≤ 2‖HY†CY−Y‖F . (9)

Using the triangle inequality for norms and the fact
that ‖AB‖F ≤ ‖A‖F ‖B‖2, we have

‖HY†CY −Y‖F
= ‖(H−YC)Y†CY + YCY†CY −Y‖F
≤ ‖H−YC‖F ‖Y†CY‖2 + ‖YCY†CY −Y‖F .(10)

From Proposition 1, (VT
k )C is full rank (and thus has

rank k) with probability 1 − 4ε2. As (VT
k )C is a sub-

matrix of (VT )C , rank((VT )C) ≥ rank((VT
k )C). Since

(VT )C has k different columns, rank((VT )C) ≤ k.
Let the SVD of Y be Y = UΣVT . Then YC =
UΣ(VT )C , which is full rank with rank k. Assuming

that VT is of rank d, we have Y†C = ((VT )C)TΣ−1UT

as YCY†CYC = YC and Y†CYCY†C = Y†C . Thus,

‖Y†CY‖2 = ‖(UΣ(VT )C)†UΣVT ‖2
= ‖((VT )C)TΣ−1UTUΣVT ‖2
= ‖(VT )C)TVT ‖2 = 1. (11)

Result follows by combining (9), (10), (11).

The error bound in (7) consists of two parts. Intu-
itively, the first term ‖H−YC‖F represents the train-
ing error between the learned label submatrix and the
target label submatrix YC selected by the algorithm;
while the second term ‖Y−YCY†CY‖F represents the
encoding error in projecting the full label matrix Y
onto the selected labels YC .

Combining with Corollary 1, we immediately obtain
the following.

Corollary 2. With the conditions in Proposition 1,
we have, with probability 0.9− 4ε2, that

RMSE≤ 2√
n
‖H−YC‖F +

2√
n

Θ(1)‖Y−YVkV
T
k ‖F .

This is similar to the error bound for PLST in (Tai
& Lin, 2012), namely, RMSE ≤ 2√

n
‖H − YVk‖F +

2√
n
‖Y−YVkV

T
k ‖F , where ‖H−YVk‖F is the train-

ing error between the learned label submatrix and the
projected label matrix YVk.

3.4. Kernel Extension

Instead of assuming that the columns of Y are spanned
by a small subset of its columns, we can first map the
columns to some kernel-induced feature space before
taking the approximation. In other words, we try to
minimize ‖Ỹ − ỸCỸ†CỸ‖F , where Ỹ is the mapped
label matrix.

As in Section 3.1, the probability for selecting the ith
column can be similarly defined as pi = 1

k‖(Ṽ
T
k )(i)‖22,

where Ỹ = ŨΣ̃ṼT . It can be easily seen that the Ṽk’s
are the same as the top k eigenvectors of the kernel
matrix K = ỸT Ỹ, as K = ỸT Ỹ = ṼΣ̃ŨT ŨΣ̃ṼT =

ṼΣ̃
2
ṼT .

On testing, the prediction ŷ of a pattern x can be ob-
tained by directly minimizing ‖ỹ− h̃T Ỹ†CỸ‖F , where
ỹ is the kernel-mapped vector of ŷ. For the RBF ker-
nel, it can be shown that the optimal ŷ can be easily
obtained in a component-by-component manner.

4. Experiments

In this section, we perform experiments on a number
of benchmark real-world data sets1 (Table 2).

• cal500 (Turnbull et al., 2008): It contains songs
by different artists. Each song is annotated by
a vocabulary of 174 tags representing genres, in-
struments, emotions, and other related concepts.

• corel5k (Duygulu et al., 2002): It contains images
from the Stock Photo CDs. Each image is anno-

1Downloaded from http://mulan.sourceforge.net
and http://lshtc.iit.demokritos.gr/LSHTC2_datasets

http://mulan.sourceforge.net
http://lshtc.iit.demokritos.gr/LSHTC2_datasets
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tated with 1 to 5 keywords. In total, there are
374 keywords.

• delicious (Tsoumakas et al., 2008): It contains the
text data of web pages along with their tags from
the del.icio.us social bookmarking site.

• Eur-Lex (Menćıa & Fürnkranz, 2008): It contains
a collection of documents on the European Union
law. The labels include several EuroVoc descrip-
tors, directory codes and subject matters. Here,
we use the first two, as they have more labels.

• dmoz: It is constructed by crawling webpages
from the Open Directory Project, and used in the
Second Pascal Challenge on Large Scale Hierar-
chical Text classification. Here, we include both
the internal and leaf classes.

Table 2. Data sets used in the experiment.
data set #samples #features #labels
cal500 502 68 174
corel5k 5,000 499 374

delicious 16,105 500 983
EUR-Lex (dc) 19,348 5,000 412

EUR-Lex (desc) 19,348 5,000 3,993
dmoz 394,756 829,208 35,437

Using linear regression as the learner, the proposed
ML-CSSP and its kernel version ML-CSSP-Knl (with
the RBF kernel) are compared with various recent
multi-label output coding methods: (i) PLST (Tai
& Lin, 2012); (ii) CPLST (Chen & Lin, 2012); (iii)
MOPLMS (Balasubramanian & Lebanon, 2012); (iv)
compressed labeling (CL) (Zhou et al., 2012). We also
compare with the standard baseline of binary relevance
(BR), which trains a classifier for each label indepen-
dently. All the methods are implemented in MatLab.
We do not compare with the compressed-sensing-based
method in (Hsu et al., 2009), as its performance is al-
ready shown to be inferior to PLST (Tai & Lin, 2012).

The number of selected (or transformed) labels is set
to k = 0.1d, except for dmoz in which we use k = 300
(i.e., k ' 0.01d). Note that MOPLMS cannot set k
explicitly. Thus, we try different settings of its regu-
larization parameter, and pick the one whose resultant
k is closest to 0.1d.

For performance evaluation, we will use two popular
measures: (i) the RMSE as defined in (6); and (ii) the
micro-averaged area under the precision-recall curve
(AUPRC) (Vens et al., 2008). Following (Menćıa &
Fürnkranz, 2008), we perform 10-fold cross-validation,
except on the large dmoz data set (for which we ran-
domly select 40,000 samples for training and the rest
for testing, and repeat 3 times). All experiments are
run on a PC with quad-core 3.40 GHz Intel i7-3770
CPU and 32 GB RAM.

4.1. Accuracy

Table 3 shows the RMSE results obtained. Recall that
MOPLMS is very computationally expensive, and so
cannot be run on most of the larger data sets. For the
largest dmoz data set, ML-CSSP-Knl also runs out of
memory as it has to perform a partial SVD on the
dense 35K × 35K kernel matrix. Similarly, CPLST
fails as it has to compute the pseudoinverse of the
350K × 800K input data matrix. For CL, computing
the distilled label set in its preprocessing step already
takes more than 72 hours. Moreover,

• The performance of CPLST is comparable with
that of PLST. This also agrees with the empir-
ical results in (Chen & Lin, 2012), and suggests
that the input data matrix may provide only little
information for label transformation or selection.

• CL does not perform well in our experiments. Em-
pirically, it is sensitive to the settings of a num-
ber of parameters, such as the number of label
clusters, the threshold in the underlying spectral
clustering algorithm, etc.

• ML-CSSP-Knl is better than ML-CSSP on the
multimedia data sets (cal500 and corel5k), but
does not outperform on the text data sets. This
agrees with the common observation that the lin-
ear kernel is often sufficient for the text data,
while the nonlinear kernel is more beneficial on
non-text, lower-dimensional data.

Overall, ML-CSSP and ML-CSSP-Knl achieve the best
accuracy on five of the six data sets.

Table 4 shows the AUPRC results,2 which is obtained
by varying the rounding threshold for each of the
methods from 0 to 1. As can be seen, ML-CSSP out-
performs the others on 5 of the 6 data sets. Note that
PLST sometimes performs much worse than the other
methods (e.g., on the data sets of delicious, EUR-Lex
(desc) and dmoz).

4.2. Time

In this section, we compare the time performance of
the various multi-label output coding methods. With
our experimental setup, they all have the same number
of learning tasks after label transformation/selection.
Hence, we will only compare their encoding time, i.e.,
the time to perform label transformation/selection.
Results are shown in Table 5. As can be seen,

2 ML-CSSP-Knl obtains the binary prediction outputs
directly without requiring a threshold, and so its AUPRC
results are not reported.
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Table 3. Testing RMSE’s obtained on the various data sets (number in square brackets indicates the rank). Methods that
cannot be run are denoted “-”. The best and comparable results (according to the pairwise t-test with 95% confidence)
are highlighted.

(label selection methods) (label transformation methods) baseline
data set ML-CSSP ML-CSSP-Knl MOPLMS PLST CPLST CL BR
cal500 4.93 ± 0.10 [2] 4.89 ± 0.11 [1] 5.04 ±0.10 [5] 4.97 ± 0.12 [3] 5.00 ± 0.11 [4] 5.70 ± 0.39 [7] 5.06 ± 0.11 [6]
corel5k 1.89 ± 0.02 [1] 1.87 ±0.02 [1] 1.89 ± 0.05 [1] 1.91 ± 0.03 [4] 1.91 ± 0.02 [4] 2.71± 0.22 [7] 1.91 ± 0.03 [4]

delicious 4.29 ± 0.02 [4] 4.36 ± 0.02 [5] - 4.27 ± 0.02 [3] 4.26 ± 0.02 [1] 5.58 ± 0.18 [6] 4.26 ± 0.01 [1]
EUR-Lex (dc) 1.22 ± 0.03 [1] 1.52 ± 0.11 [5] - 1.22 ± 0.03 [1] 1.23 ± 0.03 [1] 2.03 ± 0.04 [6] 1.50 ± 0.07 [4]

EUR-Lex (desc) 2.93 ± 0.09 [1] 3.88 ± 0.25 [5] - 3.02 ± 0.10 [2] 3.06 ± 0.11 [3] 4.51 ± 0.18 [6] 3.51± 0.18 [4]
dmoz 2.83 ± 0.01 [1] - - 2.95 ± 0.02 [2] - - 4.02 ± 0.03 [3]

Table 4. AUPRC’s obtained on the various data sets. The best and comparable results (according to the pairwise t-test
with 95% confidence) are highlighted.

data set ML-CSSP MOPLMS PLST CPLST CL BR
cal500 0.500 ± 0.031 [1] 0.459 ± 0.030 [3] 0.488 ± 0.035 [2] 0.412 ± 0.035 [5] 0.169 ± 0.028 [6] 0.442 ± 0.034 [4]
corel5k 0.089 ± 0.031 [1] 0.080 ± 0.029 [4] 0.079 ± 0.029 [5] 0.082 ± 0.029 [3] 0.011 ± 0.004 [6] 0.083 ± 0.029 [2]

delicious 0.220 ± 0.005 [3] - 0.182 ± 0.045 [4] 0.227 ± 0.005 [2] 0.089 ± 0.007 [5] 0.237 ± 0.005 [1]
EUR-Lex (dc) 0.180 ± 0.013 [1] - 0.180 ± 0.031 [1] 0.167 ± 0.012 [4] 0.036 ± 0.001 [5] 0.173 ± 0.015 [3]

EUR-Lex (desc) 0.094 ± 0.008 [1] - 0.018 ± 0.003 [4] 0.086 ± 0.009 [2] 0.016 ± 0.006 [5] 0.086 ± 0.009 [2]
dmoz 0.016 ± 0.000 [1] - 0.001 ± 0.000 [3] - - 0.012 ± 0.000 [2]

• CL has the shortest encoding time as it uses ran-
dom label transformation. However, it has to first
obtain a distilled label set as preprocessing. Tak-
ing this also into account, CL becomes the slowest.

• On encoding, both ML-CSSP and PLST have
to perform SVD, but CSSP needs an additional
O(k log k) time for the randomized sampling step
(Table 1). Thus, CSSP is always slower than
PLST. However, when both the number of sam-
ples (n) and the number of labels (d) are large,
this extra O(k log k) time becomes less significant
in comparison with the O(ndk) time for the SVD.

• CPLST has to compute the pseudoinverse
of the input data matrix, which takes
O(min{nm2, n2m}) time. Hence, it can be
slow when this matrix is large (as on the EUR-Lex
(dc) and EUR-Lex (desc) data sets).

• ML-CSSP-Knl is much slower than CSSP, as it
needs to compute the d × d kernel matrix on the
labels. Moreover, since the kernel matrix is dense,
its SVD can be much slower than SVD on the
sparse label matrix.

• MOPLMS has the longest encoding time as it
needs to solve a complex optimization problem.

Overall, the encoding speeds of ML-CSSP and PLST
are reasonably fast. Both of them take less than half an
hour even on the largest data set of dmoz. Moreover,
they reduce the number of learning tasks by 99% when
compared to BR. In combination with the accuracy
comparison in Section 4.1, we can conclude that ML-
CSSP is both fast and accurate.

4.3. Comparison with (Boutsidis et al., 2009)

Here, we compare the proposed method with the CSSP
algorithm in (Boutsidis et al., 2009). As suggested in
(Boutsidis et al., 2009), we set the number of sampled
columns to s = 2k log k, and the RRQR decomposition
is then used to extract exactly k columns (labels) from
these s columns.

Table 6 shows the number of sampling trials and en-
coding time. As can be seen, the proposed method
always samples a much smaller number of columns,
and its encoding is also faster. Recall that the RRQR
decomposition in (Boutsidis et al., 2009) operates on
the matrix (VT

k )S , where S is the subset of indices
selected in the sampling step (with |S| = s). This ma-
trix is of size k× s = k× 2k log k, which is around 400
× 5K for EUR-Lex (desc) and 300 × 3.5K for dmoz.
These are too large for the RRQR algorithm, which
cannot finish in an hour. Thus, the CSSP algorithm in
(Boutsidis et al., 2009) is not scalable enough for prob-
lems with a large number of labels. Table 7 compares
the two methods in terms of the approximation ra-

tio
‖Y−YCY†

CY‖F
‖Y−Yk‖F and testing RMSE. As can be seen,

both methods are comparable.

Overall, both algorithms have similar accuracy but the
proposed method is more efficient and can be used on
problems with much larger number of labels.

We further test the probability of (VT
k )C to be full

rank in Proposition 1. Table 8 shows that using the
sampling probabilities in (4), the (VT

k )C obtained is
always full rank in all the repetitions. In contrast, if
we use the more naive uniform sampling scheme, the
probabilities of obtaining a full-rank (VT

k )C drop sig-
nificantly. Thus, empirically, our sampling can obtain
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Table 5. Encoding time (in seconds) on the various data sets (number in square brackets indicates the rank). For CL, its
preprocessing time is shown in parentheses. The best and comparable results (according to the pairwise t-test with 95%
confidence) are highlighted.

(label selection methods) (label transformation methods)
data set ML-CSSP ML-CSSP-Knl MOPLMS PLST CPLST CL
cal500 0.0 ± 0.0 [2] 0.3 ± 0.0 [4] 10.7 ± 1.7 [5] 0.0 ± 0.0 [1] 0.0 ± 0.0 [3] (182+) 0.0 ± 0.0 [6]
corel5k 0.2 ± 0.0 [2] 17.2 ± 0.8[4] 36.8 ± 6.8 [5] 0.2 ± 0.0 [1] 0.3 ± 0.0 [3] (292+) 0.0 ± 0.0 [6]

delicious 11.6 ± 2.9 [2] 133.7 ± 2.5 [4] - 11.6 ± 2.9 [1] 16.0 ± 3.5 [3] (5675+) 0.2 ± 0.0 [5]
EUR-Lex (dc) 4.0 ± 0.3 [2] 17.93 ± 0.90 [4] - 4.0 ± 0.3 [1] 352.9 ± 32.3 [3] (547+) 0.1 ± 0.0 [5]

EUR-Lex (desc) 153.8 ± 20.0 [2] 1839.3 ± 202.3 [4] - 153.8 ± 20.0 [1] 511.7 ± 60.1 [3] (15582+) 3.5 ± 0.2 [5]
dmoz 1428.9 ± 59.2 [2] - - 1428.7 ± 59.2 [1] - -

Table 6. Number of sampling trials and encoding time for
the proposed CSSP algorithm and the algorithm in (Bout-
sidis et al., 2009) (which is denoted as BMD09).

sampling trials encoding time (sec)
data set ML-CSSP BMD09 ML-CSSP BMD09
cal500 18 ± 1 99 ± 0 0.0 ± 0.00 0.1 ± 0.0
corel5k 57 ± 7 271 ± 0 0.2 ± 0.0 0.8 ± 0.2

delicious 134 ± 7 902 ± 0 11.6 ± 2.9 165.6 ± 10.8
EUR-Lex (dc) 76 ± 11 297 ± 0 4.03 ± 0.3 4.4 ± 0.5

EUR-Lex (desc) 660 ± 22 - 153.8 ± 20.0 -
dmoz 472 ± 5 - 1428.9 ± 59.2 -

Table 7. Approximation ratio and testing RMSE for the
proposed CSSP algorithm and the algorithm in (Boutsidis
et al., 2009) (which is denoted as BMD09).

approximation ratio testing RMSE
data set ML-CSSP BMD09 ML-CSSP BMD09
cal500 1.33 ± 0.02 1.24 ± 0.04 4.93 ± 0.10 4.97 ± 0.09
corel5k 1.28 ± 0.02 1.33 ± 0.04 1.89 ± 0.02 1.90 ± 0.03

delicious 1.15 ± 0.01 1.54 ± 0.01 4.29 ± 0.02 4.34 ± 0.02
EUR-Lex (dc) 1.03 ± 0.01 1.35 ± 0.02 1.22 ± 0.03 1.21 ± 0.01

full rank (VT
k )C with high probability, thus Corollary 1

holds with high probability.

Table 8. Probabilities that (VT
k )C is full rank in the 10

folds of 10-fold cross-validation (for dmoz, it is over the 3
repetitions used).

sampling EUR-Lex EUR-Lex
method cal500 corel5k delicious (dc) (desc) dmoz

proposed 100% 100% 100% 100% 100% 100%
uniform 100% 50% 100% 0% 0% 0%

4.4. Variation with the Number of Selected
Labels

In this section, we demonstrate the tradeoff between
training error and encoding error as discussed in Sec-
tion 3.3. The number of selected labels k is varied
from 0.1d to d on the smallest data sets cal500. For
each k, we show the training error (‖H − YC‖F for
ML-CSSP and MOPLMS, and ‖H−YVk‖F for PLST

and CPLST) and the encoding error (‖Y−YCY†CY‖F
for ML-CSSP, ‖Y−YW‖F for MOPLMS, and ‖Y−
YCVkV

T
k ‖F for PLST and CPLST).

Figure 1 shows the results. As can be seen, the train-

ing error increases with k, as there are more tasks to
be learned. Moreover, ML-CSSP and MOPLMS have
lower training errors than PLST and CPLST, as the
selected labels are in general easier to learn than the
transformed labels. The encoding error, on the other
hand, decreases with k as expected. In particular,
PLST, which transforms Y to its best rank-k repre-
sentation, yields the smallest encoding error.

0 20 40 60 80 100 120 140 160 180
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

k

tra
in

in
g 

er
ro

r

 

 
ML−CSSP
PLST
CPLST
MOPLMS

(a) training error.

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

k

en
co

di
ng

 e
rro

r

 

 
ML−CSSP
PLST
CPLST
MOPLMS

(b) encoding error.

Figure 1. Variation of the training and encoding errors
with k on cal500 .

5. Conclusion

In this paper, we proposed an efficient approach for
handling multi-label classification problems with many
labels. Using a label selection approach, we sample the
more important labels by considering it as a column
subset selection problem (CSSP). Instead of using a
pre-determined number of sampling trials as in exist-
ing CSSP algorithms, the number of trials used in the
proposed algorithm is adaptive. Empirically, a much
smaller number of sampling trials is needed. Theo-
retical analysis shows that the proposed sampling ap-
proach is highly efficient. It can also obtain a good
approximation of the label matrix, and a good multi-
label classification performance bound. Experiments
performed on a number of real-world data sets with
large number of labels demonstrate that the proposed
algorithm is effective and efficient as compared to the
various recent multi-label learning algorithms.
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optimal multilabel classification via probabilistic clas-
sifier chains. In Proceedings of the 27th International
Conference on Machine Learning, pp. 279–286, Haifa,
Isreal, June 2010.

Drineas, P., Mahoney, M., and Muthukrishnan, S. Sub-
space sampling and relative-error matrix approxima-
tion: Column-based methods. In Proceedings of the 9th
International Conference on Approximation Algorithms
for Combinatorial Optimization Problems, pp. 316–326,
Barcelona, Spain, August 2006.

Duygulu, P., Barnard, K., Freitas, N.D., and Forsyth, D.
Object recognition as machine translation: Learning a
lexicon for a fixed image vocabulary. In Proceedings of
the 7th European Conference on Computer Vision, pp.
97–112, Copenhagen, Denmark, May 2002.

Gu, M. and Eisenstat, S.C. Efficient algorithms for com-
puting a strong rank-revealing qr factorization. SIAM
Journal on Scientific Computing, 17(4):848–869, 1996.

Hariharan, B., Zelnik-Manor, L., Vishwanathan, S.V.N.,
and Varma, M. Large scale max-margin multi-label clas-
sification with priors. In Proceedings of the 27th Inter-
national Conference on Machine Learning, pp. 423–430,
Haifa, Isreal, June 2010.

Hsu, D., Kakade, S.M., Langford, J., and Zhang, T. Multi-
label prediction via compressed sensing. In Advances in
Neural Information Processing Systems 22, pp. 772–780,
2009.

Mahoney, M.W. Randomized algorithms for matrices and
data. Foundations and Trends in Machine Learning, 3
(2):123–224, 2011.
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