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Abstract

In this paper, we analyze the task of inferring
rare links between pairs of entities that seem
too similar to have occurred by chance. Vari-
ations of this task appear in such diverse ar-
eas as social network analysis, security, fraud
detection, and entity resolution. To address
the task in a general form, we propose a sim-
ple, flexible mixture model in which most
entities are generated independently from a
distribution but a small number of pairs are
constrained to be similar. We predict the
true pairs using a likelihood ratio that trades
off the entities’ similarity with their rarity.
This method always outperforms using only
similarity; however, with certain parameter
settings, similarity turns out to be surpris-
ingly competitive. Using real data, we apply
the model to detect twins given their birth
weights and to re-identify cell phone users
based on distinctive usage patterns.

1. Introduction

The following tasks come from different domains, but
they share a common core:

• Can we infer social ties among people whose
Flickr photographs are geographically co-located?
(Crandall et al., 2010)

• Can we detect (and block) coalitions of attackers
clicking on the same advertisements as part of a
fraud scheme? (Metwally et al., 2007)

• Can we identify duplicate records to be merged in
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a customer database? (Elmagarmid et al., 2007)
• Can we determine with confidence whether

a crime scene fingerprint matches one in a
database? (Su & Srihari, 2010)

Each task concerns data in which most entities (people
or records) are distinct and independent, but certain
pairs or small groups are unusually similar. The simi-
larity reflects an unobserved link we would like to de-
tect, such as “these people are acting in coordination”
or “these are two traces of the same object.”

This class of problems arises in fields such as so-
cial network analysis (Adamic & Adar, 2003; Bejder
et al., 1998), entity resolution (see Section 3), fraud
and plagiarism detection (Friedland & Jensen, 2007;
Sorokina et al., 2006), security (Yang et al., 2011) and
forensics (Committee on DNA Forensic Science, 1996).
From a privacy perspective, we ask the same question
with an opposing goal: when is an individual’s behav-
ior or attributes distinctive enough to be identifiable
across multiple sightings (Whang & Garcia-Molina,
2011; Narayanan & Shmatikov, 2008)? Many of these
applications are longstanding, well-studied problems,
but each is addressed separately. This motivates us to
connect them as instances of a single formal task.

In these problems, the goals are to identify the links
and to assess their significance. Intuitively, a pair
is more likely to be linked the more the entities are
similar and the more the entities (or merely their
shared aspects) are rare. (Pairs can also occur in
dense regions, but those pairs will be less distinguish-
able.) Across the literature, numerous measures of
pair strength have been developed. These usually de-
scribe the similarity of the entities, and sometimes
also their rarity. Some measures are probabilistically
based, and almost all are domain-specific.



Copy or Coincidence? A Model for Detecting Social Influence and Duplication Events

We, instead, explicitly model how both paired and
non-paired entities are generated. With a likelihood
ratio that compares the paired and non-paired models,
our method takes into account both similarity and rar-
ity. We work with the simplest of systems—continuous
data and Gaussian distributions—in order to minimize
domain-specific aspects and focus on these questions:

• Supposing we knew everything about a domain,
how would this task be solved optimally?

• Do we even need a model, or will a simple
distance-only baseline be equally effective? If so,
why and under what circumstances? (Section 5.3)

• As we approach realistic scenarios, in which the
distance between pairs or the number of pairs is
not known (Section 5.4), or in which the form of
the model might not fit the data (Section 6), will
this method still be feasible?

In Section 2 of this paper, we present a generative
model for continuous data in k dimensions, and for
inference, a likelihood ratio score (“LR”) to compute
for every pair. In the synthetic data of Section 5, we
find that one key parameter most affects performance:
t, which describes how far apart the linked pairs may
be. We compare LR to baseline methods that mea-
sure only similarity of pairs (“d”, for distance), only
rarity, or sub-optimal combinations of the two. Sur-
prisingly, we find that d can perform almost as well as
LR—that is, rarity doesn’t matter—but only for the
easiest problems, those with the smallest values of t.
By examining the theoretical distributions of positive
(i.e., linked) and negative (non-linked) pairs, we are
able to explain why this happens.

Moving towards situations where parameters are un-
known (and true labels might be unavailable), we ex-
amine performance when our estimate t̂ mismatches
the model and discover it governs the score’s balance
of similarity vs. rarity. When the optimal t is un-
known, the approximation P (d|ε)

P (m|φ) is a robust alterna-
tive. In Section 6 we apply the model to two real data
sets constructed to be labeled instances of this task.
As we vary t̂, the performance trends are compara-
ble to those in synthetic data. We find that both real
data sets are in a middle range of difficulty, a range
where performance is only moderate, but where LR
distinctly outperforms d.

2. Model and Inference

The model below makes the following assumptions,
which are reasonable for many applications. First, the
number of linked entities is low. Second, the linked en-
tities appear only in disjoint pairs, not larger groups.

Third, the non-linked entities—the vast majority—can
be modeled as being independently generated from
some distribution φ. Finally, the pairs can be mod-
eled as being generated jointly in a process θ that in-
volves φ but also involves a distribution ε keeping pairs
close together. We deliberately keep the model simple
so that we can study the effects of parameter choices.
Yet it is flexible, in that arbitrary domains and distri-
butions could be swapped in with different choices of φ
and θ; in particular, one could specify an ε that makes
pairs be far apart or in another specific configuration.

2.1. Generative Process and Task

The output will be n points, x1, . . . ,xn in Rk, where
some pairs are generated together. Let φ be the dis-
tribution of singleton points. Let θ be the process for
generating pairs; within θ, we must specify ε, a distri-
bution by which pairs of points are displaced from their
common midpoint. Two variables are unobserved: r,
the actual number of pairs, and C = {cij}, a (binary)
adjacency matrix describing which points are in pairs.
We control the number of pairs with the variable q,
such that the expected number of pairs E(r) = qn.

When cij = 1 we say that the points xi and xj form a
pair (or a link), or equivalently, that the pair is posi-
tive; when cij = 0 we say that the points are singletons
or that the pair is negative.

The generative process is as follows. First, choose how
many and which points are in pairs.

1. Generate r, the number of pairs:
r ∼ Binomial(n/2, 2q). (With this propor-
tion, r ∈ [0, n/2], and E(r) = qn.)

2. Generate C = {cij} uniformly from among all ma-
trices of r links where no point has > 1 link. Let
ai ∈ {0, 1} indicate the number of links incident
to point i in C.

At this stage, for each xi, we know whether it will be
a singleton or part of a pair with xj .

3. Generate x1, . . . ,xn:
(a) If ai = 0, then generate xi ∼ φ.
(b) For each pair (i, j) for which cij = 1, generate

(xi,xj) ∼ θ:
i. Generate mij ∼ φ

ii. Generate displacement vector dij ∼ ε.
iii. Set xi = mij + dij and xj = mij − dij

This is essentially a mixture model for the data: one
mixture component is a distribution of points (φ), the
other is a distribution of pairs (θ). The distributions
are connected in that θ uses φ: the pairs’ midpoints
are generated the same way as the singleton points.
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2.2. Inference

In this paper, we never explicitly infer r or C. Instead,
to make inference efficient, we reason about each pos-
sible link as if it were independent of the others. We
produce a likelihood ratio for each cij and evaluate
this ranking against the true set {cij}. The likelihood
ratio (below) is rank-equivalent to the probability of
the pair being positive: P (cij = 1 |x) = LR

1+LR .

We approximate, for every pair of points:

P (cij = 1 | x1, . . . ,xn)

P (cij = 0 | x1, . . . ,xn)
≈ P (cij = 1 | xi,xj)

P (cij = 0 | xi,xj)
(1)

=
P (xi,xj | cij = 1)P (cij = 1)

P (xi,xj | cij = 0)P (cij = 0)
(2)

=
1
2k
P (mij | φ)P (dij | ε)P (cij = 1)

P (xi | φ)P (xj | φ)P (cij = 0)
(3)

Line (2) is an application of Bayes’ Rule. In Line (3),
we use Step 3 of the generative model to write out the
likelihoods for positive and negative pairs, respectively.

The generative process for positive pairs was described
in terms of mij and dij , so the most natural way to
write its likelihood function would be P (mij ,dij | cij =
1) = P (mij |φ)P (dij | ε). Since Lines (2) and (3) are
written as functions of (xi,xj), we have to perform
a change of variables; the mapping is one-to-one but
introduces the constant 1

2k
(see Lemma 8.11).

The term for the prior P (cij = 1) is r divided by the to-
tal number of pairs, so 2r

n(n−1) when r is known. When
r is unknown, we compute the term by summing over
possible values2 of r (Eq. (4)). In Eq. (5), P (r = k | q)
is expanded using r ∼ Binomial(n/2, 2q). In either
case, P (cij = 0) = 1− P (cij = 1).

P (cij = 1 | q) =

n/2X
k=1

P (r = k | q)P (cij = 1 | r = k) (4)

=

n/2X
k=1

 
n/2

k

!
(2q)k(1− 2q)n/2−k 2k

n(n− 1)

(5)

2.3. Limitations of this Inference Method

The output of inference is a list of likelihood ratios,
one for each potential pair. We can turn this into a
discrete set of positive pairs, if desired, by threshold-
ing the scores. One drawback to treating each pair

1Section 8 is attached as Supplementary Material.
2Note that the summation omits the term k = 0. Al-

though our process can generate data sets having r = 0, we
discard those samples because our performance measure is
only defined in the presence of positive pairs.

as independent is that, in violation of the generative
model, the resulting (thresholded) adjacency matrix
Ĉ may assign points to more than one pair. We could
remedy this situation with additional post-processing
(instead of or in addition to the thresholding), keeping
only the highest-probability links. Alternatively, we
could reconsider the model’s assumptions: if a point is
matched to more than one pair, we may have under-
estimated φ in that region or the points may actually
belong to a group of more than two. It could be a
strength if the method is able to detect such groups
when the generative process only describes pairs.

Another way to avoid assigning any point to more
than one pair would be to infer the full C: compute
P (Cl | x1, . . . ,xn) for every valid matrix Cl and choose
the one with maximum likelihood. This would be com-
putationally challenging: for a typical data set in this
paper, there are more than 1.6× 1016 such matrices.

Another simplification is that we model all negative
pairs as if they were formed by singleton points. In
truth, of the n(n−1)

2 − r negative pairs, 2r(n− r−1) of
them involve at least one point from a positive pair. As
r rises from 1 to n

2 , the fraction of non-modeled pairs
increases from near-0 to near-all of them. In Section
5.4, we discuss how these non-modeled negatives can
under certain circumstances affect performance.

3. Related Work

This task differs from clustering in that our expected
clusters (links) are tiny and rare; if the data does con-
tain large-scale clusters, they should be modeled in φ
so that we can recognize deviations from them. The
task has more in common with significance testing: we
want to distinguish true pairs from singletons that are
close together by chance. It can also be seen as an
anomaly detection problem (Chandola et al., 2009),
not in the generic sense of “outlier detection” but in
the sense of “detecting a specific unusual pattern.” In
that vein it is similar to Eskin’s (2000) mixture model
of normal and anomalous elements.

One central related task is link prediction in social net-
works based on shared interests or behavior. Adamic
& Adar (2003) develop a score to combine rarity with
similarity of shared interests; Liben-Nowell & Klein-
berg (2007) compare a variety of distance measures
between nodes in an observed network; and Friedland
& Jensen (2007) compute the rarity of the shared com-
ponent of people’s job histories. Most similar to our
work is a generative model by Crandall et al. (2010)
in which pairs of friends travel to locations together.

The other closely related area is entity resolution, or
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record matching (Elmagarmid et al., 2007; Winkler,
2006). That literature, while extensive, makes some
key assumptions that prevent its methods from being
directly transferable here. Generally the duplicates to
identify are database records that correspond to the
same real-world entity, and the records consist of text
fields such as names and addresses. Although numer-
ous text comparison metrics have been developed, lit-
tle has been done with continuous data. Finally, that
work does not restrict links to be rare or disjoint.

One popular text matching function explicitly incor-
porates rarity: it weights each word (or substring) by
its tf · idf measure, then takes the cosine similarity of
the resulting vectors (Cohen et al., 2003). Chaudhuri
et al. offer a complementary approach in which, re-
gardless of the distance measure, clusters are required
to be both close together and in sparse regions (2005).

Much of probabilistic record matching is based on the
Fellegi-Sunter model (1969). It ranks pairs by the like-
lihood ratio P (γ|cij=1)

P (γ|cij=0) , where γ is some function of the
pair—a “comparison vector.” If γ is merely a distance
measure, then that model would be like our baseline
LR[d] (see Section 5.2). Since typically γ also encodes
which particular words match, the resulting score is
higher when matching strings are rare. Our likelihood
ratio of Eq. (3) could be seen as a general form of the
Fellegi-Sunter model, in which γ is the points them-
selves (xi,xj), and in which P (γ|cij) is provided by the
generative model rather than estimated from data.

Compared to related tasks, our work’s strength is in
abstracting away the domain-specific elements, allow-
ing a focus on the problem’s more general principles.

4. Evaluation

We evaluate performance by comparing a ranked list
of predicted pairs to the set of true pairs, calculating
the AUC (area under the ROC curve) of the ranking.
We considered other common measures of ranking such
as average precision or Hand’s H measure (2009), but
they were unsuitable because, unlike AUC, they fluc-
tuate when the number of true positives or negatives
does. In realistic scenarios it may also be important
to focus attention on the very top of the ranked list or
on the individual probability estimates. These paths
are left to future work.

For present purposes, the ranked list contains all pairs.
In larger data sets, efficiency would become a concern,
as it is in entity resolution. Existing techniques from
that literature address efficiency either by making the
score calculation faster or by scoring only those sub-
sets of pairs that are judged similar according to some

preliminary measure (Elmagarmid et al., 2007). Mc-
Callum et al. (2000) describe a method for continuous
data that could be used here: in each dimension, cre-
ate overlapping bins for the data, and only consider
pairs that lie within the same bin in some dimension.
For the data sets in this paper and practical values
of parameters, applying this method, i.e., filtering out
pairs with a high dij, would probably bring gains in
efficiency at little loss to performance.

5. Applying the Model to Synthetic
Data

In this section, we study the behavior of the algorithm
when the data has been generated by the model. For
the following analyses and experiments we set φ and
ε to be radially symmetric normal distributions: φ =
Normal(µ, σ2I), and ε = Normal(0, ν2I).

5.1. Simplifying the Score

Starting from Eq. (3), we plug in normal probability
density functions for the terms involving φ and ε:

P (mij | φ)P (dij | ε)

=
(

1√
2πσ

)k
e−
‖mij−µ‖2

2σ2

(
1√
2πν

)k
e−
‖dij‖

2

2ν2

(6)

P (xi | φ)P (xj | φ)

=
(

1√
2πσ

)k
e−
‖xi−µ‖2

2σ2

(
1√
2πσ

)k
e−
‖xj−µ‖2

2σ2

(7)

=
(

1√
2πσ

)2k

e−
m2+d2

σ2 . (8)

For Eq. (8), we have defined m = ‖mij − µ‖ =
‖ (xi+xj)

2 − µ‖ and d = ‖dij‖ = ‖ (xi−xj)
2 ‖ (dropping

the subscript ij when it is clear from context) and ap-
plied Lemma 8.2.

Substituting the densities back into Eq. (3)’s likeli-
hood ratio gives:

P (cij = 1 | xi,xj)
P (cij = 0 | xi,xj)

=
1
2k

(
1√
2πσ

)k
e−

m2

2σ2

(
1√
2πν

)k
e−

d2

2ν2 P (cij = 1)(
1√
2πσ

)2k

e−
m2+d2

σ2 P (cij = 0)

=
( σ

2ν

)k
e

1
2

“
m2+2d2

σ2 − d2
ν2

”
P (cij = 1)
P (cij = 0)

. (9)

The likelihood ratio in Eq. (9) is fairly simple: instead



Copy or Coincidence? A Model for Detecting Social Influence and Duplication Events

of depending on the full data vectors xi and xj—2k
coordinates in all—it uses just two measures of the
pair, m and d.

We assume (for now) that the model parameters are
available at inference time. Among them, n and r

(or q) affect only P (cij=1)
P (cij=0) . Changing them affects the

individual scores, but not the ranking. We also need σ
and ν. However, it turns out we can rewrite the score
as a function of their ratio t = ν

σ . Eq. (10) shows
the final, reparametrized LR as a function of m′ = m

σ ,
d′ = d

σ , and t = ν
σ without σ:

P (cij = 1 | xi,xj)
P (cij = 0 | xi,xj)

=
(

1
2t

)k
e

1
2 (m′2+d′2(2− 1

t2 ))P (cij = 1)
P (cij = 0)

.

(10)

In the rest of Section 5, we will address (a) how the
task’s difficulty is affected by model parameters (pri-
marily t, but also the dimensionality k, the number
of points n, and the number of pairs r or q); (b) how
the score for an individual pair varies as a function
of t and its (m′, d′) values (Section 5.3); and (c) how
performance is affected by changing the value t̂ used
during inference (Section 5.4).

5.2. Performance on Synthetic Data

For synthetic data experiments, given any parameter
setting of n, q and t, we generate 100 data sets from the
model. Within each data set, we score every pair and
evaluate the AUC of the ranked list compared to the
true pairs. These experiments use k = 2 dimensions
and (without loss of generality) σ = 1.

The likelihood ratio (“LR”) of Eqs. (3) and (10) is the
Bayes estimate for distinguishing positive from nega-
tive pairs, so it should perform close to optimally, de-
pending on how closely the data matches the two mod-
eled classes. We compare it to four baseline methods.

One, d, measures only the similarity of points in a
pair: it ranks by dij , the distance between the points,
with smaller distance meaning more likely positive.
The second, m, measures only the rarity (i.e., local
sparseness) of the pair: it ranks by mij , the distance
from the origin to their midpoint, with higher distance
meaning more likely positive. It can be seen from Eq.
(10) that using m (or m′) is rank-equivalent to using
LR if d′ is held constant. Likewise, using d (or d′) is
rank-equivalent to using LR if m′ is held constant—
provided that 1

t2 > 2, or t < 1/
√

2 ≈ 0.71. Generally
we will use t� 1, so this will be the case.

The third baseline, called LR[d], is a likelihood ratio
designed to take into account only d, not m. It is com-
puted as P (d|cij=1)

P (d|cij=0) . For the synthetic data, the score
is similar to Eq. (10), but the discriminant function
in the exponential reduces to d′2

(
2− 1

t2

)
. The fourth

baseline, P (d|ε)
P (m|φ) , is an intuitive if naive way to com-

bine the the terms for similarity and for rarity. But it
is actually a reasonable approximation to the full LR
of Eq. (3) when d is small enough, because in that
case P (m |φ) ≈ P (xi |φ) ≈ P (xj |φ) and the terms
cancel out. In the synthetic data, this method is rank-
equivalent to

(
m′2 + d′2

(−1
t2

))
.
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Figure 1. AUC as a function of t, for five methods. Each
point is the average of 100 trials. Inset shows a close-
up of the smallest values of t, with error bars indicating
95% confidence intervals. In the inset, P (d | ε)/P (m |φ)
would be visually indistinguishable from LR. Parameters
are n = 200, E(r) = 4, and σ = 1.

Figure 1 shows performance as we vary t for one set-
ting of (n, q). (Other settings were similar.) The re-
sults can be divided into three realms. First, when t
is very low (see inset), the AUCs of both LR and d
are almost perfect. LR is always above d, but they are
nearly indistinguishable. Next, as t approaches 1/

√
2,

both LR and d drop, and they diverge; at its mini-
mum value, LR matches m, while d is nearly 0.5, or
random. When t > 1/

√
2, LR increases again, while d

continues to decrease, now ranking pairs in the wrong
order. Meanwhile, m is much lower and steady. The
third and fourth baselines each partially augment d:
LR[d] is identical except that it changes the direction
of ranking at 1/

√
2, and P (d|ε)

P (m|φ) incorporates m, so it
performs near optimal for low t, but it does not change
direction at 1/

√
2.
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5.3. Understanding Performance

Conceptually, we can explain why t = 1/
√

2 is al-
ways a turning point, regardless of the form of φ. In
each dimension l, dl = xil−xjl

2 , so for negative pairs,

E(dl|−) = 0 and Var(dl|−) = 1
2Var(xl) = σ2

l

2 . For the
positive pairs, by definition Var(dl|+) = ν2

l = (tσl)2,
so when we set t = 1/

√
2, the positives’ Var(dl|+) = σ2

l

2
matches that of the negatives. In these experiments,
not only do the variances of d match at t = 1/

√
2, but

since φ and ε are normals and ε is centered at 0, the
distributions of dl are normals, identical for the posi-
tive and negative pairs. Therefore d contains no dis-
tinguishing information, and LR is only using m. At
higher t, the positives become farther apart, on aver-
age, than the negatives.

We next examine how the LR score of an individual
pair combines the two measures of it, m′ and d′. Figure
2 shows that the score increases when m′ increases; for
the boxes in which t < 1/

√
2, the score increases when

d′ decreases, and when t > 1/
√

2, the score increases
when d′ increases, as discussed above. At t ≈ 1/

√
2 the

contour lines are vertical, which shows visually that
the only information is contained in m. Now, con-
sider the smallest setting of t, in which empirically d
performs almost as well as LR. The contour lines in
the first box are almost horizontal, indicating that d′

contains almost all the information (in the LR score,
d′2

t2 � m2). This dominance of d′ explains why the
two methods are almost indistinguishably strong.

Figure 2 becomes more informative once we know not
only what score is assigned to a given position, but also
the distributions of positive and negative pairs along
these axes. It turns out that with normal distributions
for φ and ε in Rk, the distributions of positive and
negative pairs have closed forms (full derivations are
in Section 8.2). Each distribution is a product of two
independent χk distributions, one describing m′, one
describing d′:

P (m′ | φ)P (d′ | ε) =
(

1
t

)
χk(m′)χk

(
d′

t

)
(11)

P (m′ | φ)P (d′ | φ) = 2χk(m′
√

2)χk(d′
√

2). (12)

The peak of χk is at
√
k − 1. Since k = 2 here, that

peak is at (1, t) for the positive pairs and (1/√2, 1/
√

2)
for the negatives. As t changes, the only effect is on
the d′ dimension of the positives. Visually, it is clear
that the distributions are well separated at small t and
begin to overlap as t grows. In higher dimensions,
the distributions become better separated (see Section
8.3), so the task should become easier as k increases.

5.4. Sensitivity to Parameters and to
Assumptions

When n increases or q decreases, intuition suggests
that since true pairs are less frequent, the problem get
harder. However, since AUC is unaffected by changes
to class proportions, a glance at the class distributions
of Figure 2 should help solidify the (more relevant) in-
tuition that changing the number of positives or nega-
tives will not affect the separation between the classes.
At inference time, if we mis-guess q, the probability es-
timates for pairs change, but the LR ranking does not.

At data generation time, the situation is more subtle.
For a given n, as the number of pairs increases towards
n/2, the performance of LR can actually decrease—
but only for large t > 1/

√
2. This is due to interference

of the non-modeled pairs described in Section 2.3: at
large t, the positive points no longer resemble the sin-
gletons, so the majority of negatives no longer resemble
the modeled negatives. However, we observe no such
performance effects with smaller t.

In many realistic problem scenarios, we will not know
q nor, more importantly, t. Figure 3 shows how per-
formance degrades when using an incorrect value t̂ for
inference. For LR, t̂ determines the balance between
d′ and m′, and the direction of d′’s effect. When t̂ ap-
proaches 0, LR approaches d; when t̂ reaches 1/

√
2, LR

matches m, then continues to drop; and the optimal
is in between, at the true t. For P (d|ε)

P (m|φ) , performance
is surprisingly robust: when t̂ is underestimated, per-
formance drops just like LR’s, but when t̂ is overesti-
mated, P (d|ε)

P (m|φ) remains high. This is because P (d|ε)
P (m|φ)

has no turning point in its use of d: as t̂→∞, P (d|ε)
P (m|φ)

merely puts less weight on d and eventually converges
to m. Meanwhile, LR[d] simply matches d, and its
AUC flips to (1− d) when t̂ > 1/

√
2.

The implications for data sets with unknown param-
eters can be summarized as follows. Mis-guessing q
does not affect the ranking, and our inference meth-
ods seem to work well even when the data contains a
large number of pairs, as long as t < 1/

√
2. As long as

we know positive pairs are closer together than neg-
ative pairs, then when using LR, t̂ should always be
less than 1/

√
2. Finally, mis-guessing t can be harmful,

but there are several options for avoiding the perfor-
mance drop-off: (a) use d, which is parameter-free and
often performs well, (b) underestimate t, rather than
overestimate it, to ensure performance will not drop
below d, or (c) use P (d|ε)

P (m|φ) , which is more robust to
overestimates of t.
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Figure 2. Color and labeled contour lines: likelihood ratio assigned as a function of (m′, d′) when n = 25, E(r) = 10.
Higher P (cij = 1 |m′, d′) is whiter. Within each box: left contour lines: density function for negative pairs; bottom/middle
contour lines: density function for positive pairs. Top orange bar: relative values of t across (0.02, 0.1, 0.3, 0.5, 0.7, 2).
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Figure 3. Performance as t̂ varies. True parameters are
t = 0.3 (vertical dotted line), n = 200, and E(r) = 4.

6. Applying the model to real data

To apply this model to an arbitrary data set in Rk,
we need to specify several parameters. The distribu-
tion of singletons is straightforward: estimate φ (of
any desired form) from the entire data set. For pos-
itive pairs, we preserve the generative process θ in
which m ∼ φ and d ∼ ε. We let ε remain a nor-
mal, but it should no longer be radially symmetric,
since the variables might be at different scales. We
define the vector version of t such that tl = νl

σ̂l
in

each dimension l, where σ̂l is the (empirical) estimate
of the variance of the negatives. Then we can write
d ∼ ε =Normal(0, t′Σ̂−1t) where Σ̂ is a diagonal co-
variance matrix estimated from the data. As before,
the key parameter to specify is t, which describes the
distance between the positive pairs. That distance will

match the negative pairs when t = 1/
√

2(1, 1, . . . , 1).

The baseline methods d and m can be generalized
as P (d | ε) and 1

P (m |φ) , respectively. When all the
components of t are equal, P (d | ε) becomes rank-
equivalent to a natural k-dimensional measure, scaled
Euclidean distance. The method LR[d] requires an es-
timate of P (d | cij = 0); for this, we fit a normal to the
set of all pairwise displacement vectors d.

6.1. Data sets

The Matched Multiple Birth Data from the National
Center for Health Statistics (2000) contains infant
birth and mortality data for all twins and larger multi-
ples born in the U.S. from 1995–2000. In this data, two
variables could potentially serve to re-identify paired
infants: birthweight (grams) and Apgar score (a 0–10
assessment of newborn baby health). True pairs of
twins might be expected to have one baby larger and
healthier than the other. Yet tests of a sample of twins
show the pairs’ values are correlated (with a Pearson
correlation of 0.79 for weight, 0.44 for Apgar), so there
is at least some signal for the algorithm to work with.

The second data set is derived from the Reality Mining
data, cell phone data collected from 94 students and
faculty over a nine-month period (Eagle & Pentland,
2006). Our task instances address the question “Is an
individual’s phone usage pattern distinctive enough to
identify them?” We summarize each user’s weekly be-
havior with seven aggregate features: total commu-
nication events; number of distinct contacts; number
of calls made, received, and missed; number of SMS’s
received and sent. Each such person-week becomes a
point in a data set, and the pairs are defined as in-
stances of the same individual in two different weeks.
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Figure 4. Results (avg. AUC) on real data sets as t̂ varies.

From each data source, we construct 100 labeled in-
stances of the pair detection task. An instance of twins
data consists of five pairs of twins and 90 singleton
babies. An instance of cell phone data consists of five
pairs of person-weeks and 75 singletons. In the exper-
iments below, φ is always a normal distribution with
diagonal covariance.

6.2. Experiments and Results

Since we know ground truth, we can experiment here
with different values of t̂. It has one component for
each variable, and for these domains all we know in
advance is that pairs should be “close together”—i.e.,
each component is in the range (0, 1/√2). For the two-
variable twins data, we explore a grid of possible val-
ues. For the seven-variable cell phone data, the expo-
nential state space becomes a problem, so we restrict
t̂ to the form a · (1, 1, . . . , 1) for some constant a.

Figure 4 shows that the methods behave very much
the same way on real data as they do on synthetic. As
before, Best-LR > d > m, and P (d|ε)

P (m|φ) is an excellent
alternative when t̂ is unknown.

The grid search on twins data reveals that when we
vary the individual components of t̂, this affects the
relative strengths of the variables. For instance, set-
ting t̂weight = 0.001 (stringently small) but leaving

t̂apgar = 0.7 (flexible) is almost equivalent to ranking
only by dweight. For a fixed ratio among the compo-
nents of t̂, the relative strengths of the variables are
held constant, and only the balance with m will vary.

As a comparison, we also estimate a best fit t from
a large sample of twins: that (tweight, tapgar) =
(0.33, 0.57) is not far from the t̂ = (0.3, 0.5) found by
searching. Separate experiments with single variables
show that for twins, weight is a strong feature, but Ap-
gar is not. With Reality Mining, the strongest features
are number of SMS’s sent and number of contacts.

It is not surprising that both these tasks turn out to
be difficult given their respective feature sets; in par-
ticular, it has been noted that for the Reality Mining
data, phone communication is not nearly as consistent
as proximity patterns (Eagle et al., 2009). If the trends
of Figure 1 generalize to here, then the relatively low
AUCs may go hand in hand with the high values of t̂
and the performance boost of LR over P (d | ε).

7. Conclusions

This paper introduces a simple model for the task
of distinguishing tightly linked pairs from singleton
points, given a mixture of both. This task has not been
previously described in a general form, although spe-
cific instances have been studied in numerous contexts.
From the generative model, we derive a likelihood ra-
tio incorporating both the similarity and rarity of the
pairs. A single parameter describing the distances be-
tween pairs turns out to govern the task’s difficulty;
at inference time, this same parameter describes how
to trade off a pair’s similarity with its rarity. This
method always outperforms using only similarity, but
in a certain parameter range, similarity turns out to
be surprisingly competitive. We discuss how to apply
the model to real-world data sets having unknown pa-
rameters. In the future, we intend to explore versions
of this model for more complex domains.
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