
Efficient Visualization of Large-scale Data Tables

through Reordering and Entropy Minimization

Nemanja Djuric

Dept. of Computer and Information Sciences

Temple University, Philadelphia, USA

e-mail: nemanja@temple.edu

Slobodan Vucetic

Dept. of Computer and Information Sciences

Temple University, Philadelphia, USA

e-mail: vucetic@temple.edu

Abstract—Visualization of data tables with n examples and m

columns using heatmaps provides a holistic view of the original
data. As there are n! ways to order rows and m! ways to order
columns, and data tables are typically ordered without regard
to visual inspection, heatmaps of the original data tables often
appear as noisy images. However, if rows and columns of a data
table are ordered such that similar rows and similar columns
are grouped together, a heatmap may provide a deep insight into
the underlying data distribution. We propose an information-
theoretic approach to produce a well-ordered data table. In
particular, we search for ordering that minimizes entropy of
residuals of predictive coding applied on the ordered data table.
This formalization leads to a novel ordering procedure, EM-
ordering, that can be applied separately on rows and columns.
For ordering of rows, EM-ordering repeats until convergence
the steps of (1) rescaling columns and (2) solving a Traveling
Salesman Problem (TSP) where rows are treated as cities. To
allow fast ordering of large data tables, we propose an efficient
TSP heuristic with modest O

(

n log(n)
)

time complexity. When
compared to the existing state-of-the-art reordering approaches,
we show that the method often provides heatmaps of higher
visual quality, while being significantly more scalable. Moreover,
analysis of real-world traffic and financial data sets using the
proposed method, which allowed us to readily gain deeper insights
about the data, further confirmed that EM-ordering can be a
valuable tool for visual exploration of large-scale data sets.

I. INTRODUCTION

Data visualization has a long history in scientific research
[1] as it allows researchers to get a better insight into data
they are studying. Visualization is used for exploratory analysis
prior to application of statistical methods, it can also be used
as a confirmatory tool to disprove or confirm hypotheses, while
sometimes visual presentation is an ultimate goal [2]. However,
despite its long history and significant advantages of visual
analysis of data [3], there still remains a need for further devel-
opment of visualization methods. This is particularly evident
when working with large-scale, high-dimensional data, where
commonly used visualization tools are either too simplistic to
gain a deeper insight into the data properties (e.g., histograms,
scatter plots, pie and bar charts), or are too cumbersome and
computationally costly in large-scale setting, such as parallel
coordinates [4], [5], correlation matrix plots [6], and biplots
and star plots [3]. Inadequacy of standard tools has been
recognized in a number of recent papers, as summarized in
the statement from [7]: Data in high dimension are difficult
to visualize and understand. This has always been the case
and is even more apparent now with the availability of large
high-dimensional datasets and the need to make sense of them.

In this paper, we focus on visualizing data sets that can
be represented as an n ×m data table, where rows represent
n examples and columns represent m features. Standard data
exploration tools such as histograms and scatter plots provide
only a basic understanding of the data; histogram is a tool
for understanding distributions of each feature, while scatter
plot is a tool for understanding correlations between pairs
of features. A more advanced visualization approach is low-
dimensional data projection, where examples are projected into
a two-dimensional subspace and visualized using a scatter plot,
such as Principal Component Analysis (PCA), Locally Linear
Embedding (LLE) [8], or Stochastic Neighborhood Embedding
(SNE) [9]. However, projecting examples into a 2-D subspace
and visualizing them using a scatter plot often implies a
significant loss of information. Moreover, while the resulting
2-D or 3-D scatter plots can provide insight into an underlying
manifold structure, they may be difficult to interpret and
provide actionable knowledge. This is evident when examining
related publications that typically use non-linear projection
methods to project a set of images (e.g., faces, digits) to a
2-D scatter plot, and then plot the original image next to
the corresponding projected point to illustrate the quality of
visualization. However, practical problem is that there are only
several types of data sets where the projected examples can be
conveniently annotated in a lower-dimensional plot.

An alternative to showing two- and three-dimensional
scatter plots of the projected data is to plot the original data.
By observing that a data set can be represented as a two-
dimensional matrix, it becomes evident that is could be plotted
as a heatmap (e.g., using imagesc command in Matlab and
Octave). Since examples and features in a typical data set are
sorted in an arbitrary order (e.g., randomly, or by example
or feature ID), heatmap of the original data might not be
informative. There are two possible alternatives for improving
the heatmap. One is to perform clustering (e.g., k-means
clustering) and sort all examples based on which cluster they
are assigned to. However, the outcome greatly depends on the
chosen number of clusters, and could result in artifacts where it
might appear that there are clear clusters even when this is not
the case. More appropriate strategy for plotting data heatmaps
is to first reorder its rows (columns), such that similar rows
(columns) are placed next to each other [10], [11], [12].

There are many possible approaches for ordering of data
tables. One is to project examples onto the largest principal
component obtained by PCA or to a principal curve obtained
by LLE, and to order the examples by traversing the line or

the curve. However, ordering is not an explicit objective of
either PCA or LLE but only a byproduct of a manifold search,
and may result in lower-quality visualization. An alternative,
very popular in gene expression analysis, is to perform hier-
archical clustering and to order examples by traversing leaves
of the binary tree [13]. However, the resulting algorithm is
computationally expensive and can be applied only to data
sets with several thousand examples. Moreover, there are
2n−1 ways to order the resulting hierarchical tree, which may
open a costly optimization problem [14]. Another interesting
approach presented in [15] is ordering based on spectral
clustering. Similarly to hierarchical clustering approaches and
unlike the method proposed in this paper, in large-scale setting
spectral analysis becomes time- and memory-intensive, and
the algorithm may also give suboptimal results when the data
consists of several clusters that are not well separated.

Data table reordering can also be seen as the Traveling
Salesman Problem (TSP) [16], where examples represent
cities, and the task is to find a path through all the cities such
that the traversal cost is minimized. While TSP is an NP-
complete problem that requires exponential computation time,
there are efficient heuristics that in practice give high-quality
tours. The Lin-Kernighan (LK) method [17] has been widely
accepted as the method providing the best trade-off between
tour quality and computational speed, scaling as O(n2.2);
as such, it is applicable only to moderately-sized data sets.
Moreover, treating reordering directly as TSP carries a strong
assumption that the features were properly scaled from the
perspective of visual quality of heatmaps.

We propose a novel ordering method that addresses short-
comings of the existing methods. Our main contributions are:

• Ordering is formalized as finding a permutation of rows
(or columns) that results in a maximally compressible data set,
as defined by the entropy of the residuals of predictive coding.

• The problem is solved by an Expectation-Maximization
(EM)-like algorithm, which alternatively solves a TSP and
reweights features based on the quality of the resulting tour.

• A fast O
(

n log(n)
)

TSP solver is proposed, called the
TSP-means, that finds tours with lengths comparable to those
found by the LK algorithm. It is based on a construction of
a binary tree by recursive use of k-means (with k = 2) and
subsequent reordering of the tree nodes by the LK algorithm.

II. BACKGROUND

In this section we describe the works and ideas that led
to the proposed visualization method. We first introduce the
existing approaches for visualization of high-dimensional data,
and then present matrix reordering and data seriation tech-
niques. Lastly, we give an overview of the TSP and the existing
methods for solving this classical combinatorial problem.

A. Data visualization

Visualization of data has been an integral part of scientific
research from the earliest times, with visual representations
of data appearing in scientific literature from as early as
the 10th century [1]. A great number of approaches for data
visualization has been introduced since (see [18], [19]), with
visualization methods most commonly used in our everyday

lives, such as histograms and pie charts often encountered in
newspaper and weather reports, being in use for more than a
century in a nearly unchanged form [1], [20], [21]. However,
recent technological advances and emergence of large-scale
data sets have clearly indicated limitation of the existing
methods in this new setting [2], [7], and there remains a clear
need for the development of novel visualization approaches.

Visualization of high-dimensional data is of particular
interest [7], and this problem has received significant attention
in the visualization community. Often explored direction is
finding lower-dimensional representation of the data, which
could then be more easily visualized using the standard visu-
alization tools. In [22] and [23], the authors propose methods
that explore interactions between examples in subspaces of
the original high-dimensional space, and plot these lower-
dimensional representations in a form of similarity matrices
or scatter plots in order to gain better understanding of the
data. However, the methods become intractable as number
of examples and dimensions grows, and may not be suitable
for large-scale visualization tasks. Instead of using subspace
search, another idea is to compute more involved projections
of the data into 2- or 3-D spaces. This approach includes PCA,
where examples are projected along the directions describing
most of the variance, and non-linear projections such as LLE
[8], SNE and its extension t-SNE [9], [24], Self-Organizing
Maps (SOM) [25], Isomap [26] or Laplacian eigenmaps [27],
which attempt to project examples to a lower-dimensional,
non-linear manifold. However, lower-dimensional projection
methods in most cases imply a significant loss of information,
and the resulting plots may also be difficult to interpret by non-
experts for whom the visualization results are often intended.

To address this issue, an interesting approach is to represent
examples in their original, high-dimensional space. A very
popular technique implementing this idea are parallel coor-
dinates [4], [5], which have been used for data visualization
for more than a century [1]. However, although parallel coordi-
nates can be used to quickly discover trends in moderate-sized
data sets, they become cluttered when number of examples or
dimensions becomes large [28], [29], [30], thus significantly
limiting the quality of visualization. On the other hand, an
alternative visualization tool are heatmaps, with very long
and rich history [20], [21]. In contrast to parallel coordinates,
heatmaps do not suffer from the deficiencies related to extreme
data sizes, and can be used in large-scale setting to provide
a holistic view of the data. We use this insight and propose
a scalable algorithm for generating high-quality, large-scale
heatmaps, obtained by data preprocessing through reordering.

B. Data reordering

Data reordering or seriation is an important step in ex-
ploratory data analysis. This family of unsupervised methods is
based on the following observation: assuming that a data set is
represented in a form of a two-dimensional reorderable matrix,
any permutation of its columns or rows does not lead to loss
of information [11]. Therefore, by permuting rows (columns)
so that similar rows (columns) are close, followed by visual-
ization of the modified data matrix, we can reveal unknown
regularities and patterns in the data without modifying the
data. Data ordering has deep roots in a number of disciplines
in social studies (e.g., archeology [31], anthropology [32];

for an excellent overview see [33] and references therein).
Beyond social sciences, data ordering has been popular in
gene expression data analysis in bioinformatics [13], [14] and
analysis of geographical data [34]. It is also important in
bandwidth minimization [35] and data compression [36], [37].

We describe in more detail several popular methods for
data ordering. As baseline methods we can consider LLE
and PCA, two popular low-dimensional projection algorithms.
One-dimensional projection by either PCA or LLE effectively
induces a linear ordering in the new 1-D space, and can be used
to reorder rows and columns of the data matrix. LLE method
first finds k nearest neighbors in the original high-dimensional
space for each example, then attempts to project the data
to lower-dimensional space while keeping the relationships
between neighbors the same. Due to the fact that all distances
between examples need to be computed, the time complexity of
the algorithm amounts to O(n2). Regarding PCA, we can use
the first principal component and project the data onto it. As we
only need to compute the first principal component (found in
O(n) [38]), this algorithm is very fast, and projection of the
data to the first principal component and subsequent sorting
of the projected values result in modest O

(

n log(n)
)

time
complexity. We can also consider ordering based on spectral
clustering (SC) [15], which can be seen as a low-dimensional,
non-linear projection method. In their work, the authors show
that linear ordering of examples can be found by computing
the second largest eigenvector of the normalized similarity
matrix. However, similarly to LLE, time and space complexity
of O(n2) render the method infeasible in large-scale setting.

Two approaches popularized in bioinformatics are hierar-
chical clustering (HC) [13] and hierarchical clustering with
optimal leaf ordering (HC-olo) [14]. Hierarchical clustering
is a bottom-up method, which starts by clustering two most
similar examples and represents this new cluster with its cen-
troid. Examples and centroids are repeatedly grouped together
until all examples belong to a single, root cluster. The method
finds binary tree representation of the data, resulting in O(n2)
time complexity as distances between all examples need to be
calculated. In order to find ordering of examples, we simply
read leaves of the tree from left to right. However, there are
2n−1 linear orderings of tree nodes that obey the obtained tree
structure (i.e., we can flip each of n−1 internal nodes and still
have the same tree structure). To solve this issue, in [14] the
authors present a dynamic programming approach to find the
optimal leaf ordering for a given tree structure in O(n3) time,
which makes the algorithm intractable for larger data sets.

C. Traveling salesman problem (TSP)

Traveling Salesman Problem is a classical problem in
computer science. The problem can be described as follows:
given n cities, along with non-negative costs of traveling from
the ith city to the jth city d(i, j), i, j ∈ {1, 2, ..., n}, find a
shortest path such that each city is visited exactly once and the
path completes in the starting city. More formally, letting π be
permutation (or ordering) of n cities, the task is to find optimal
permutation π∗ so that the total tour length is minimized,

π∗ = argmin
π∈Πn

(

d
(

π(n), π(1)
)

+

n
∑

i=2

d
(

π(i− 1), π(i)
)

)

,

(1)

where Πn is the set of all permutations of the first n integers,
and π(i) denotes the ith city to be visited. The TSP is NP-
complete [39], thus very difficult to solve optimally.

Due to the NP-completeness of the problem, TSPs were
historically very hard to solve with limited computational
resources. One of the first large TSP problems solved to opti-
mality involved only 49 cities, and the solution was described
in 1954 in [40]. Interestingly, the authors solved the problem
by manually applying ideas that later led to the cutting-plane
algorithm [41]. Several polynomial-time heuristic methods
with upper bounds on performance have been proposed since
to approximately solve the TSP, including nearest neighbor,
nearest insertion, furthest insertion [42], Christofides heuristic
[43], and LK heuristic (see [44] for a comprehensive overview
of methods). Currently, the largest TSP instance solved to
optimality comprises nearly 86,000 cities [45].

One of the most powerful heuristics for finding optimal
or near-optimal solutions to TSP is the LK method, having
O(n2.2) time complexity. The method introduces a variable
λ-opt move (where λ ≥ 2) to reach a better tour, meaning that
at each iteration we search for increasing λ number of links on
the current tour that could be broken and replaced by the same
number of links currently not on the tour. The λ-opt move is
performed if the resulting, modified tour has lower cost than
the current solution. The method starts with a random tour,
and then iteratively applies λ-opt moves, until no such move
leads to a better solution (it is then said that the current tour
is λ-optimal). An efficient implementation of LK heuristic is
presented in [46], which achieved the best results on all known
large-scale TSP problems.

An interesting application of TSP solvers is in matrix
reordering and clustering, where each data example is con-
sidered a city. Interestingly, one of the first matrix reordering
techniques, the Bond Energy Algorithm (BEA), is in fact a
simple nearest insertion TSP heuristic [47]. In [16], the authors
propose adding several ”dummy” cities which have distances
equal to 0 to all other cities. In this way, after computing
the shortest tour through all cities, the ”dummy” cities act as
boundaries between different clusters. However, as discussed
in [48] and as shown in the experimental section of this paper,
directly applying TSP to the whole data set can lead to ordering
that is very sensitive to noise inherent in the data set, and
consequently to poor data visualization. In [49] the authors
propose a TSP-based biclustering method, which first finds
clusters across rows, followed by clustering across columns of
a data matrix to obtain meaningful biclusters. As the proposed
methods apply TSP solvers directly on the whole data set, they
are not scalable to large data sets due to super-quadratic time
complexity of the best available TSP solvers. In contrast to the
existing methods, we present an effective algorithm with time
requirement of only O(n log(n)), allowing for high-quality,
scalable reordering and visualization of large data matrices.

III. METHODOLOGY

An intuitive goal of ordering is to find permutation of rows
so that similar examples are grouped together. We propose a
principled approach for ordering that finds permutation of rows
producing a maximally compressible data set. We will explain
how to order rows, while noting that columns can be ordered
using the same procedure on the transposed data table.

A. Differential Predictive Coding (DPC)

Let us assume a data set D is given in a form of an n×m
data table, D = [xij]i=1,...,n,j=1,...,m, where the ith row vector
xi = [xi1, . . . , xim] is the ith example having m numeric
features. DPC replaces the ith example xi with its difference
from the previous example, εi = xi−xi−1, where εi is called
the DPC residual. Therefore, DPC transforms the data table
D = [xT

1 ,x
T
2 , . . . ,x

T
n]

T into DDPC = [xT
1 , ε

T
2 , . . . , ε

T
n]

T

without the loss of information, as the original data set D
can be reconstructed from DDPC .

If the data table D is ordered such that similar rows
are placed next to each other, DPC residuals ε would be
smaller than the original examples xi. As a result, the en-
tropy of rows in DDPC would be smaller than the entropy
of rows in D, indicating that DDPC is more compressible
than D. The entropy of the original examples is defined as
HD(x) = E[− log(PX (x))], where PX (x) is the probability
density of vectors x, and entropy of DPC residuals is defined
as HDPC(ε) = E[− log(PE(ε))], where PE(ε) is a probability
density of vectors ε. Thus, small entropy HDPC(ε) implies
that DPC residuals are small, which in turn implies that D
is a well-ordered data set. As a result, entropy of the DPC
residuals is a good measure of ordering quality. We note that
HDPC(ε) can be estimated as

HDPC(ε) = −
1

n− 1

n
∑

i=2

logPE(xi − xi−1). (2)

B. Relationship between entropy minimization and ordering

In data mining, data sets can often be considered as arbi-
trarily ordered collections of examples and features. As a con-
sequence, any permutation π of rows from D = [xi]i=1,...,n,
resulting in Dπ = [xπ(i)]i=1,...,n, does not lead to loss of
information. We propose that the optimal permutation π∗ is the
one that results in minimization of entropy of DPC residuals,

π∗ = argmin
π∈Πn

Hπ
DPC , (3)

where we used superscript π to denote the specific permutation
of rows of the data table D.

We observed that when applying DPC on a number of well-
ordered data sets with numerical features PE often resembles
multivariate Gaussian or Laplacian distribution with diagonal
covariance matrix. Let us first consider the case when PE is a
multivariate Gaussian distribution,

PE(ε) = (2 · π)−m/2|Σ|−1/2 · exp(−0.5 · ε
T

· Σ−1 · ε), (4)

where Σ is a diagonal covariance matrix with the jth element
on a diagonal equal to the variance σ2

j of the DPC residuals

of the jth feature. Hπ
DPC(ε) could then be expressed as

Hπ
DPC(ε) =

n

2(n− 1)

m · log(2π) +
m
∑

j=1

log σj

+

1

2(n− 1)

n
∑

i=2

m
∑

j=1

(xπ(i),j − xπ(i−1),j)
2

σ2
j

.

(5)

When PE is modeled as a Laplacian distribution, and
assuming independence of elements of ε, PE(ε) is equal to

PE(ε) =

m
∏

j=1

1

2bj
exp(−

|εj |

bj
), (6)

where b2j = σ2
j /2. The corresponding Hπ

DPC(ε) is similar to

(5), with the main difference being that |σj | is used instead of
σ2
j in the third term of (5).

Upon modeling PE as Gaussian or Laplacian distribution,
and observing that this results in introduction of m new
parameters {σj}j=1,...,m, we can restate (3) as

(π∗, {σ∗
j }j=1,...,m) = argmin

π,{σ∗

j
}j=1,...,m

Hπ
DPC(ε). (7)

Solving (7) requires finding the best ordering and the best
estimate of variance of DPC residuals for each feature.

C. Reordering for entropy minimization

We propose to solve (7) in an iterative manner similar to
the EM algorithm. The method is given as Algorithm 1. In
the M-step (line 2), by assuming that values of σj are known,
the problem reduces to finding ordering π that minimizes the
last term from (5), which is equivalent to solving the TSP on
examples whose features are downscaled using {σj}j=1,...,m.
Given the current ordering π, the goal of the E-step (line 3)
is to find {σj}j=1,...,m that minimizes Hπ

DPC(ε). It is evident
that the E-step is equivalent to finding σj using the maximum
likelihood approach, where σj is found as

σ2
j =

1

n− 1

n
∑

i=2

(xπ(i),j − xπ(i−1),j)
2. (8)

Algorithm 1 converges to a local minimum, since both E-
and M-steps lead to decrease in Hπ

DPC(ε). As the algorithm
resembles the EM and is based on an information-theoretic
principle of Entropy Minimization, we call it the EM-Ordering.

Note that successful ordering will result in small σj for
features that are correlated to others, and large σj for noisy
or uncorrelated features. Intuitively, if the jth feature cannot
be ordered well during the procedure, its DPC entropy, and
thus σj will be increased. As a result, its importance will be
reduced due to larger downscaling in (5).

D. Feature scaling

We observe that the proposed algorithm allows for cases
when for some features and for some orderings it holds
that HD(xj) < Hπ

DPC(εj), where HD(xj) and Hπ
DPC(εj)

are entropies of the jth feature and of its DPC residuals,
respectively. If this is the case, it might be preferable to ignore
the jth feature during ordering. Considering this observation,
we propose two strategies:

1. Hard feature scaling. In this case, features for which
holds that HD(xj) < Hπ

DPC(εj) are scaled down to zero
by introducing σj → ∞, in order to prevent their adverse
influence on the overall entropy minimization.

2. Soft feature scaling. In this case, no action is being
taken for features where HD(xj) < Hπ

DPC(εj).

1

4 5 76

10 151423221716 1918

1

4 5 67

23 1522101917 1816 14

2

11

3

10

5 76

l = 2

l = 2

(a)

(b)

(c)
151498

23221716 1918

1

4

Fig. 1. (a) Binary tree after recursive k-means, with k = 2; (b) Resulting 2l-ary tree (l = 2), obtained after line 3 in Algorithm 2; (c) TSP defined on node 5
is solved on its children, together with left and right neighbor nodes 18 and 7, see Algorithm 3

Algorithm 1 EM-ordering

Inputs: data set D; initial guess for {σj}j=1,...,m

Output: ordered set D; learned {σj}j=1,...,m

1. repeat until convergence
2. run TSP solver for current σj to find π
3. calculate σj for current ordering of D

Algorithm 2 Generation of 2l-ary tree T l

Inputs: binary tree T ; subtree depth parameter l
Output: 2l-ary tree T l

1. extend leaf nodes of T at levels
(

(i− 1) · l + 1
)

through (i · l − 1) to level i · l, i > 0
2. select nodes of T at levels i · l, i ≥ 0

for inclusion in tree T l

3. connect nodes in T l originating from level i · l in T ,
i > 0, to their predecessor at level (i− 1) · l from T

4. add children to every leaf of T l, where the children
are individual examples in that leaf’s cluster

Hard scaling results in a removal of the features that cannot
be successfully ordered and, as such, can be considered a
feature selection algorithm. However, to prevent removing
features that at a given iteration just barely satisfy the condition
HD(xj) < Hπ

DPC(εj), but could be successfully ordered in
future iterations of Alg. 1, we can use the following criterion:

3. Hard feature scaling with tolerance. The jth feature
is removed if, for some α > 1, Hπ

DPC(εj) > αHD(xj).

E. TSP-means algorithm

In this section, we propose a TSP solver used in M-step of
Algorithm 1, called TSP-means. By combining data clustering
and efficiently solving a number of small-scale TSPs defined
on the cluster centroids, we obtain a highly scalable algorithm.
In addition, as will be discussed later, by its design TSP-means
often results in a more informative visualization than when LK
is directly used on all examples.

The solver, summarized in Algorithm 3, begins by recur-
sively applying k-means clustering with k = 2 (line 1), to
create a binary-tree T representation of the data set D, as
shown in Figure 1(a). The root of the tree corresponds to

Algorithm 3 TSP-means

Inputs: data set D; subtree depth parameter l
Output: ordered list L

1. create binary tree T by recursively splitting D
2. run Algorithm 2 on T to generate T l

3. set L ← root r of T l

4. while (not all leaf nodes of T l in L)
5. for each z in L in left-to-right order
6. if (z has children)
7. solve local TSP defined on children of z and

immediate neighbors of z in the list L
8. replace z in L by its children, in

order given by the TSP solution

the whole data set and is represented by its centroid. Internal
nodes correspond to clusters found by running k-means on
their parents, and are represented by the cluster centroids. The
k-means on a node is not performed if a node contains less than
or exactly 2l examples, where l is a user-defined parameter.

In the next step, as formalized in Algorithm 2 and illus-
trated in Figure 1(b), we transform binary tree T into 2l-ary
tree T l by keeping only nodes at every lth tree level, starting
with a root node. Each node at level (i · l), i > 0, becomes a
child of its predecessor at ((i−1)·l)th level (e.g., nodes 22 and
23 become children of node 5). In addition, leafs at any level in
the tree T also become leafs in the tree T l. For example, node
10 becomes a child of node 5, as shown in Figure 1(b). Note
that leafs of the 2l-ary tree T l represent clusters with no more
than 2l examples, and are the same as leafs of T . Finally, we
add another tree level to T l by making its current leaf nodes
parents of examples in their cluster. This results in the final
2l-ary tree whose leaf nodes are the individual examples.

After the creation of 2l-ary tree, we perform a breadth-
first traversal of the tree from left to right (Alg. 3, lines 3 - 8).
The main idea is to reorder the internal and leaf nodes so that
similar clusters and examples are closer, resulting in a good
ordering of the data set. For this purpose we create a list L,
which initially holds only the root of the tree (Alg. 3, line 3).
Then, we visit nodes in the list L sequentially from left to right
and solve a local TSP defined on centroids of children of the
current node in L, giving us an ordering where similar children
are close (Alg. 3, lines 4 - 7). Before moving on to the next

TABLE I. COMPLEXITIES OF THE REORDERING ALGORITHMS

Algorithm Time Space

PCA O
(

n log(n)
)

O(n)
LLE O(n2) O(n2)
SC O(n2) O(n2)
HC O(n2) O(n)
HC-olo O(n3) O(n2)
LK O(n2.2) O(n)
TSP-means O

(

n log(n)
)

O(n)

node of the list L, we replace the current node in the list L
with its children reordered according to the TSP solution (Alg.
3, line 8). Once we reach the end of the list L, we start again
from the beginning. For example, for the tree in Figure 1(b),
we initialize L = [1]. We traverse the list from left to right,
and, after solving TSP defined on children of the current node
of the list (there is only node 1 at the moment), we replace
node 1 in the list L with its children in the order given by
the TSP solution, resulting in L = [4, 5, 7, 6], see Figure 1(c).
As we reached the end of the list, we start from the beginning
and the current node of L becomes node 4, whose children
define the next TSP to be solved. The algorithm completes
when L contains only individual examples, and ordered data
set is returned in a form of the resulting list L.

TSP tour computed only on children of the current node
of L would result in discontinuity between tours of the
neighboring nodes in L, as each local tour would be computed
irrespectively of the neighboring nodes. Therefore, to ensure
that the ordering is smooth, when solving a TSP defined
on children of the current node in L we also include its
left and right neighbors from L if they exist. We set the
distance between left and right neighbor nodes to 0, so that
they are guaranteed to become neighbors on the found tour.
After solving thus defined TSP, the found tour is cut at these
neighbors to obtain an ordered list, and the children of the
current node are reordered according to the TSP solution.
For example, given L = [17, 19, 16, 18, 5, 7, 6], obtained after
solving TSP defined by the previous current node 4, we need
to solve the TSP defined by the new current node 5. The
TSP being solved includes nodes {18, 10, 22, 23, 7}, and the
resulting tour is [18, 23, 10, 22, 7]. Before moving on to node
7, we replace node 5 with its ordered children to obtain the
updated list L = [17, 19, 16, 18, 23, 10, 22, 7, 6], see Fig. 1(c).

F. Further details

There are several important advantages that TSP-means
offers over the existing algorithms. First, it has very favorable
time complexity. As k-means clustering has time requirement
linear in number of examples, it takes O

(

n log(n)
)

time to
build the binary tree T , assuming k-means results in nearly
balanced clusters. After creating T l in O(n) time, there are
O(n

2l
) nodes in T l, assuming a nearly balanced tree T l of

expected depth close to log(n). Each non-leaf node in T l re-
quires solving a single TSP whose size is bounded by (2l+2).
Therefore, if LK algorithm is used for TSP, time complexity
of solving each TSP is O(22.2l). It follows that the overall
time requirement of TSP-means is only O

(

21.2ln log(n)
)

.
Summary of time and space complexities of TSP-means and
the competing methods is given in Table I.

TSP-means is also amenable to parallelization. In particu-
lar, clustering of non-root nodes can be distributed over mul-

TABLE II. EVALUATION OF PERFORMANCE ON waveform DATA OF

SIZE 10,000; LISTED LK TIME IS REQUIRED FOR SOLVING ONE TSP

l # LK LK time [sec] # k-means FOM L

2 4,721 0.000 5,224 0.234 31,663
4 2,496 0.002 3,541 0.235 31,244
6 2,304 0.035 3,604 0.233 30,925
7 533 0.067 1,369 0.229 29,840
8 257 0.253 255 0.228 30,823
9 504 0.516 506 0.233 30,420
10 985 1.093 1,019 0.230 30,007

tiple processors, while solving TSPs defined on higher-level
nodes can be performed concurrently with clustering of lower-
level nodes. In addition, the algorithm allows for interactive vi-
sualization of large data sets. Unlike the competing algorithms,
where a user can plot the results only once the algorithm
completes, TSP-means provides meaningful output during the
execution at each depth of the tree. It can visualize the data
during runtime, by first showing coarse data ordering, and then
transitioning (or ”zooming in”) towards finer resolutions as the
algorithm descends further down the tree. In particular, as the
list L is expanded we can show centroids currently in the list,
weighted by the number of examples in the cluster that they
represent. In this way, useful local and global patterns can be
discovered even before completely traversing the tree T l. Note
that TSP-means can be further sped up by running k-means
on a sub-sampled data for each node in the tree T instead on
the whole data set, resulting in constant-time calls to k-means.

IV. EXPERIMENTS

In all experiments, initial values of variances {σj}j=1,...,m

in EM-ordering were initialized to standard deviation of fea-
tures. We used hard feature scaling with tolerance of α = 1.1,
and run EM-ordering for 5 iterations. We assumed a Gaussian
distribution from (4) for DPC residuals. To build a tree T ,
at each step of recursion we run k-means (k = 2) on 100
randomly sampled examples. For HC and HC-olo we used the
Bioinformatics toolbox in Matlab (with average linkage). SC
was implemented in Matlab (similarity matrix computed using
Gaussian kernel), while codes for LLE1 (number of neighbors
was set to 15), and Lin-Kernighan2 were found online.

It is not obvious how to measure quality of visualization.
As a proxy measure we used Figure of Merit (FOM) [50]
when labeled examples are available. Denoting label of the ith

example as y(i), FOM score of ordering π is computed as

FOM(π) =
1

n− 1

n−1
∑

i=1

I

(

y
(

π(i)
)

6= y
(

π(i+ 1)
)

)

, (9)

where binary indicator function I(·) returns 1 if the argument
is true, and 0 otherwise. As a result, lower values of FOM
indicate higher-quality ordering π. To evaluate TSP-means, we
also report tour cost L, equal to the sum of Euclidean distances
between neighboring examples in the final ordering.

A. Validation of TSP-means

We first evaluated influence of parameter l in Alg. 3. The
results for waveform data set of size 10,000, for l ranging

1http://cs.nyu.edu/∼roweis/lle/code.html, accessed June 2013
2http://www.tsp.gatech.edu/concorde.html, accessed June 2013

�� �� � � �
��

��

��

��

�

�

�

�

�

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Fig. 2. Performance of ordering algorithms on circles data (n = 500, path length L is given in parentheses): (a) PCA (1,131.9); (b) LLE (956.3); (c) SC (432.1);
(d) HC (164.5); (e) HC-olo (94.5); (f) LK (83.2); (g) TSP-means (84.5)

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�	
	��
����

�
�
�

�
�
�
�
�

�
�
�
�
�
�

�

������

�������

�������

�� ��	��

� � � � � ��

����
	

�

����

����

����

����

�����

�����

�����

�����

�����

�
�

�
�
�
�
�
�

�
�
�
�
�
�

������������

������������

�������

����������� �

Fig. 3. Execution times on 2-D and 3-D uniform data set: (a) logarithmic
scale; (b) linear scale

from 2 to 10, are given in Table II, where we report number
of calls to LK and k-means sub-routines, time required to solve
a single TSP, as well as FOM and L performance measures.
As can be seen, setting l to 7 led to good results. This can be
explained by the fact that depth of the tree T (after step 1 in
Algorithm 3) was 14, as expected since ⌈log2(10,000)⌉ < 14,
meaning that the depth of T l was only 2. For l < 7 the depth
of T l was larger than 2, leading to more calls to LK and
k-means subroutines. On the other hand, for l > 7 the TSP
of root node of T l had 2l children, while TSPs of non-root
nodes had less than 214−l children, thus not fully exploiting
near-optimal ordering found by LK at the lower levels. Taking
this result into consideration, in the remaining experiments we
set l = ⌈0.5 log2(n)⌉ as a default value.

To get an insight into relative performance of the competing
algorithms, we generated 2-dimensional data set called circles.
We uniformly at random sampled half of the examples from
a circle of radius 3, and the second half from the circle of
radius 4. We also added small noise to all examples. We
set the size of the circles data set to 500 for the clarity of
visualization. The resulting ordering of all methods is shown
in Figure 2, where neighboring examples in the final linear
ordering are connected by a line. Performance of PCA was
expected (Figure 2(a)), as the method projects examples onto
a straight line. We can see that LLE failed to find a desired
principal curve that would consist of two connected circles
(Figure 2(b)). As can be seen in Figure 5(c), SC found better
ordering than PCA and LLE and clearly separated upper and
lower parts of the data set, but failed to find good ordering
within the clusters. HC resulted in relatively smooth ordering
with occasional jumps between circles, see Figure 2(d). We
can see in Figure 2(e) that HC-olo reordered the HC tree to
provide smoother ordering. As expected, LK had the shortest
route, while the proposed TSP-means was very close to LK
(Figures 2(f) and 2(g), respectively).

To compare the execution times for HC-olo, LK and TSP-
means, we uniformly sampled 2-D and 3-D examples from a
square and a cube of width 1, respectively, and increased data
size from 500 to 1,000,000. In Figure 3 we show times in

both logarithmic and linear scale in order to better illustrate
the performance of algorithms for small- and large-scale data
sets. In Figure 3(a) we can see that HC-olo method required
prohibitively long processing time as n increased, and that
it could not process data sets with more than few thousand
examples. For 1 million examples TSP-means completed in
around 20 minutes for both 2- and 3-D data, while for LK
it took around 1 and 5 hours, respectively. We note that HC-
olo and TSP-means scale linearly with the data dimensionality.
On the other hand, LK algorithm uses k-d trees to speed up
computations in lower-dimensions, but for higher-dimensional
data the benefit of k-d trees decreases sharply. That is why
results for LK in Figure 3 are representative only for 2- and 3-
D data, while the execution time scaling for higher dimensions
would be higher than shown and scale as O(n2.2). We did
not run experiments for higher-D data since in that case the
LK implementation we used requires distance matrix, which
becomes infeasible for large n.

As observed in [48], although using LK on the whole data
table results in the smallest tour length, it does not necessarily
translate into the visually informative ordering. This can be
explained by the fact that, unlike TSP-means, LK is not
constrained by the underlying clustering structure in the data,
rendering it sensitive to noisy examples. This is illustrated
in Figure 4, where we generated 200 examples from each
of the 2-D clusters representing 4 classes sampled from two-
dimensional Gaussians centered at (0, 0), (0, 4.5), (4.5, 0) and
(4.5, 4.5), with identity covariance matrices. We can see that
LK achieved smaller tour length than TSP-means. However,
TSP-means first visited examples from cluster 1, followed by
cluster 2, then cluster 3, to finish by visiting examples from
cluster 4 (see Figure 4(b)). On the other hand, in Figure 4(a)
we see that LK jumped between clusters visiting them in the
{3, 4, 1, 2, 1, 4, 3, 2, 3} order, resulting in a lower quality of
visualization. As discussed previously, this indicates that TSP-
means accounts for clustering structure present in the data.

B. Validation of EM-ordering

In this section, we present performance of algorithms on
benchmark labeled sets from UCI repository. Noisy waveform
was created by appending 21 noise features to waveform. All
data sets were normalized to zero-mean and unit variance. We
limited ourselves to data sets of size n = 1,500 in order to be
able to compare our method with resource-intensive SC and
HC methods, and report average FOM after 5 experiments.

In Table III we report FOM performance of ordering
methods on 11 classification data sets. Interestingly, in nearly
all tasks the three lower-dimensional projection methods (PCA,
LLE, and SC) were significantly outperformed by the compet-
ing techniques. EM-ordering was best on 7 out of 11 data
sets, with the additional advantage of being much faster than

TABLE III. FOM SCORES FOR BENCHMARK DATA SETS (EM-1 AND EM-5 DENOTE EM-ORDERING AFTER 1 AND 5 ITERATIONS OF ALGORITHM 1,
RESPECTIVELY, BASELINE RESULT IS FOM BEFORE REORDERING; ALSO SHOWN SIZE n, DIMENSIONALITY m, AND NUMBER OF CLASSES c)

data set n m c baseline PCA LLE SC HC HC-olo LK EM-1 EM-5

iris 150 3 3 0.637 0.188 0.161 0.187 0.181 0.134 0.114 0.121 0.114

wine 178 13 3 0.649 0.225 0.531 0.056 0.062 0.056 0.045 0.047 0.032

breast 277 9 2 0.413 0.337 0.324 0.330 0.344 0.340 0.344 0.339 0.338
adult 1,500 123 2 0.374 0.267 n/a 0.235 0.276 0.267 0.252 0.238 0.232

banana 1,500 2 2 0.514 0.348 0.356 0.279 0.151 0.152 0.147 0.147 0.148

covertype 1,500 54 7 0.630 0.620 0.612 0.583 0.430 0.395 0.382 0.424 0.438
gauss 1,500 2 2 0.491 0.316 0.286 0.286 0.263 0.269 0.260 0.266 0.267
madelon 1,500 500 2 0.506 0.447 0.494 0.489 0.464 0.449 0.444 0.439 0.399

magic 1,500 10 2 0.464 0.416 0.451 0.360 0.258 0.235 0.243 0.244 0.259
waveform 1,500 21 3 0.680 0.462 0.461 0.461 0.266 0.250 0.249 0.239 0.238

wave noisy 1,500 42 3 0.680 0.472 0.493 0.466 0.344 0.309 0.310 0.282 0.237

�4 �2 0 2 4 6 8
�4

�2

0

2

4

6

8

1

2

4

3

(a)
�4 �2 0 2 4 6 8
�4

�2

0

2

4

6

8

1

2

4

3

(b)

Fig. 4. FOM and L measures on a 2-D toy data set (color encodes the order of an example in the ordered data set, ranging from white to black): (a) LK
(0.038; 181.44); (b) TSP-means (0.033; 199.86)

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

5 10 15 20 25

200

400

600

800

1000

1200

1400

Fig. 5. Visualization of waveform, the last 3 columns are class assignments averaged over sliding window of length 20; FOM and L measures given in
parentheses: (a) PCA (0.462; 7,231); (b) LLE (0.461; 7,211); (c) SC (0.461; 7,244); (d) HC (0.266; 5,265); (e) HC-olo (0.250; 4,817); (f) LK (0.249; 4,577);
(g) EM-ordering (0.239; 4,921)

the closest competitors HC-olo and LK. Results after one
iteration of Algorithm 1 were better than after five iterations
in only two cases, indicating the benefits on feature scaling.
Feature scaling was especially beneficial for wine, madelon
and noisy waveform, where FOM dropped by the highest
margin. Moreover, on madelon and noisy waveform data, for
which irrelevant, noisy features were known beforehand, EM-
ordering detected more than 90% of noisy features.

In Figure 5 we show heatmaps of reordered waveform data
set, where rows correspond to examples, columns correspond
to features, and color intensity represents a numeric value.
As the data set has 3 classes, in the 3 rightmost columns
we encode the class membership of examples. We averaged
class membership over a column-wise sliding window of
length 20 for easier interpretation of the results. Darker pixels

indicate that examples within the window had the same label,
thus indicating successful ordering. As seen in Figures 5(a),
5(b), and 5(c), lower-dimensional projection methods PCA,
LLE, and SC obtained similar visualization results with very
smooth-appearing heatmaps, but FOM results and the last three
columns suggest that they did not provide compact grouping of
examples with the same class labels. In contrast, HC and HC-
olo resulted in better ordering, as shown in Figures 5(d) and
5(e), respectively. However, similarly to the results in Figure
2, tours often jumped between classes, reducing FOM and the
quality of visualization. LK algorithm found the shortest path,
as illustrated in Figure 5(f), which did not translate into good
ordering. LK frequently jumped between classes, resulting in
visually unappealing ordering. On the other hand, EM-ordering
had the best FOM, as can be seen from Figure 5(g).

���������	

�
�
�

�
�

��	�����������

���� ���� ����� ����� ����� ����� �����

���

����

����

����

����

����

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	�
�����������

���

����

����

����

����

����

	��������
�
���� ���� ����� ����� ����� ����� �����

�

�

�

�

�

�

�

�

�

��

��

��� ���
������ ����� ������ ����� ������ ����� ������ ����� ����	�

���
�

����

�����

����

�����

��

���	�

����

�����

����

��������

�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

��

�	

Fig. 6. Traffic data: (a) the original data set (brighter pixels denote higher volumes); (b) the ordered data set (white lines denote user-selected cluster boundaries);
(c) color-coded sensor locations in Minneapolis road network (neighboring clusters were assigned similar colors)

�� ��� ��� ��� ���

��

��

��

��

��

��

��

	�

��

�
�
�
�
�
�
�
�

����������������

��������

�
�
�

�
�
�
�

�
�

�
�
�

�
�

�
�
�
�
�

�
�
�
�

�

!
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

"
�
�
�
�
�
�
�
�
�
�

�
�
#
�
�
�
�
�
�
�
�

$
�
�
�
�
%
�
�
�
�
�

&
�
�
�
�
�
�
�

���
�� ��� ��� ��� ���

��

��

��

��

��

��

��

	�

��

�
�
�
�
�
�
�
�

����������������

��������

�
�
�

�
�
�
�

�
�

�
�
�

�
�

�
�
�
�
�

�
�
�
�

�

!
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�

"
�
�
�
�
�
�
�
�
�
�

�
�
#
�
�
�
�
�
�
�
�

$
�
�
�
�
%
�
�
�
�
�

&
�
�
�
�
�
�
�

� �

�

�

�

�

����������	��

�������������

������

���
���	������������������
���������

������� �!�����

"�������
������#

!����

���#����!���#��$��%%
&���#����&���#��

�	�'��

��������������#

������	�(������
��������)���*��������

(��������+,���##

-�!

���

���������������� �����

!����#�	�
-����
!�������

!������.���������

�������/������

0
0

0

0

�

����+�����

��*��+��������(
��������"�������

���#��� ��� �+ �#��1
�����#����������������

2%3

Fig. 7. stocks data set (9 rightmost columns encode industries; dark pixels in the heatmap encode high negative returns, while bright pixels encode high positive
returns): (a) the original data set; (b) the data set after reordering and clustering upon inspection of the heatmap

C. Applications of EM-ordering

To illustrate the usefulness of ordering, we applied EM-
ordering on two real-world data sets. The first is a set of
traffic volumes (number of cars per minute) reported every
10 minutes by 3,265 sensors on highways in Minneapolis,
MN, on December 23rd, 2005. The original, unordered data
set is shown in Figure 6(a), from which little can be seen
beyond presence of heavy traffic volume during early morning
and late afternoon. In Figure 6(b) we show an ordered data
matrix, where it becomes clear that there are several types of
traffic patterns (heavy traffic during morning or afternoon only,
light or heavy traffic during most of the day, etc.). To further
illustrate the benefits of ordering, upon visual inspection we
split the ordered sensors manually into 11 clusters. In Figure
6(c) we show the geographical locations of sensors, colored
according to their cluster labels. We can see that the sensors
along the same road segments were clustered together, and that
nearby road segments were assigned to similar clusters. This
example illustrates how ordering can be used for interactive
exploration and visualization of data, which could be very
useful to traffic engineers and planners. We note that this
modestly-sized data set cannot be ordered using HC-olo and
LK algorithms on a regular computer.

We also ran EM-ordering on stocks data set, representing
252 daily stock returns of 89 companies from 9 sectors of
industry. Not much can be seen from the original data set

shown in Figure 7(a) (the companies were sorted alphabet-
ically). After reordering rows and columns of the data table
interesting patterns emerged, as seen in Figure 7(b), which may
provide useful insights to stock traders. We can observe that the
ordering revealed several clusters of companies operating in in-
dustrials, health care, financials, and information technologies
sectors (clusters 1 - 4, respectively), having specific patterns
of daily returns. We also detected companies from energy
and utilities sectors in cluster 5, whose daily returns, unlike
returns of the companies from other sectors, did not fluctuate
much. Lastly, after reordering the transposed data matrix (i.e.,
ordering days instead of companies), bear and bull trading days
can be easily detected (clusters 6 and 7, respectively).

V. CONCLUSION

We proposed EM-ordering, an efficient reordering algo-
rithm for data visualization, naturally emerging from entropy-
minimization framework. In addition to finding a near-optimal
ordering of the examples, the algorithm can automatically
detect noisy features and decrease their influence on the final
ordering. Moreover, unlike commonly used data visualization
methods, our algorithm has very favorable time and space
complexity, allowing efficient visualization of data tables with
millions of examples. Empirical evaluation showed that the
algorithm outperformed existing methods while being much
faster, confirming that EM-ordering can present a powerful
tool for analysis and visualization of large-scale data sets.

REFERENCES

[1] M. Friendly, “A Brief History of Data Visualization,” in Handbook of

Computational Statistics: Data Visualization, C. Chen, W. Härdle, and
A. Unwin, Eds. Springer-Verlag, 2006, vol. III, pp. 15–56.

[2] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, “Chal-
lenges in visual data analysis,” in International Conference on Infor-

mation Visualization. IEEE, 2006, pp. 9–16.

[3] M. Friendly and E. Kwan, “Effect ordering for data displays,” Compu-

tational Statistics & Data Analysis, vol. 43, no. 4, pp. 509–539, 2003.

[4] A. Inselberg, “The plane with parallel coordinates,” The Visual Com-

puter, vol. 1, no. 2, pp. 69–91, 1985.

[5] A. Inselberg and B. Dimsdale, “Parallel Coordinates,” in Human-

Machine Interactive Systems. Springer, 1991, pp. 199–233.

[6] M. Friendly, “Corrgrams: Exploratory displays for correlation matrices,”
The American Statistician, vol. 56, no. 4, pp. 316–324, 2002.

[7] S. S. Vempala, “Modeling high-dimensional data: Technical perspec-
tive,” Comm. of the ACM, vol. 55, no. 2, pp. 112–112, 2012.

[8] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by
Locally Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323–
2326, 2000.

[9] G. Hinton and S. Roweis, “Stochastic neighbor embedding,” Advances

in Neural Information Processing Systems, vol. 15, pp. 833–840, 2002.

[10] J. Bertin and M. Barbut, Sémiologie graphique: les diagrammes, les

réseaux, les cartes. Mouton Paris, 1967.

[11] E. Mäkinen and H. Siirtola, “Reordering the reorderable matrix as
an algorithmic problem,” in Theory and Application of Diagrams.
Springer, 2000, pp. 453–468.

[12] M. Hahsler, K. Hornik, and C. Buchta, “Getting Things in Order: An
introduction to the R package seriation,” 2007.

[13] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” PNAS USA,
vol. 95, no. 25, pp. 14 863–14 868, 1998.

[14] Z. Bar-Joseph, E. D. Demaine, D. K. Gifford, A. M. Hamel, T. Jaakkola,
and N. Srebro, “K-ary Clustering with Optimal Leaf Ordering for Gene
Expression Data,” ser. WABI ’02, 2002, pp. 506–520.

[15] C. Ding and X. He, “Linearized cluster assignment via spectral order-
ing,” in International Conference on Machine learning. ACM, 2004,
pp. 30–37.

[16] S. Climer and W. Zhang, “Take a walk and cluster genes: a TSP-
based approach to optimal rearrangement clustering,” in International

Conference on Machine Learning. ACM, 2004.

[17] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
498–516, 1973.

[18] D. A. Keim, “Visual exploration of large data sets,” Communications

of the ACM, vol. 44, no. 8, pp. 38–44, 2001.

[19] ——, “Information visualization and visual data mining,” IEEE Trans.

on Visualization and Computer Graphics, vol. 8, no. 1, pp. 1–8, 2002.

[20] L. Wilkinson and M. Friendly, “The history of the cluster heat map,”
The American Statistician, vol. 63, no. 2, 2009.

[21] T. Loua, Atlas statistique de la population de Paris. J. Dejey & Cie,
1873.

[22] S. Vadapalli and K. Karlapalem, “Heidi matrix: Nearest neighbor driven
high dimensional data visualization,” in ACM SIGKDD Workshop on

Visual Analytics and Knowledge Discovery. ACM, 2009, pp. 83–92.

[23] A. Tatu, F. Maass, I. Färber, E. Bertini, T. Schreck, T. Seidl, and D. A.
Keim, “Subspace Search and Visualization to Make Sense of Alternative
Clusterings in High-Dimensional Data,” in IEEE Symposium on Visual

Analytics Science and Technology. IEEE CS Press, 2012, pp. 63–72.

[24] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.

[25] G. J. Williams, P. Christen et al., “ReDSOM: relative density visual-
ization of temporal changes in cluster structures using self-organizing
maps,” in International Conference on Data Mining. IEEE, 2008, pp.
173–182.

[26] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[27] M. Belkin and P. Niyogi, “Laplacian Eigenmaps for dimensionality
reduction and data representation,” Neural Computation, vol. 15, pp.
1373–1396, June 2003.

[28] Y.-H. Fua, M. O. Ward, and E. A. Rundensteiner, “Hierarchical parallel
coordinates for exploration of large datasets,” in IEEE Conference on

Visualization. IEEE Computer Society Press, 1999, pp. 43–50.

[29] J. Walter, J. Ontrup, D. Wessling, and H. Ritter, “Interactive visual-
ization and navigation in large data collections using the hyperbolic
space,” in International Conference on Data Mining. IEEE, 2003, pp.
355–362.

[30] A. O. Artero, M. C. F. de Oliveira, and H. Levkowitz, “Uncovering
clusters in crowded parallel coordinates visualizations,” in IEEE Sym-

posium on Information Visualization. IEEE, 2004, pp. 81–88.

[31] W. M. F. Petrie, Sequences in prehistoric remains, ser. Reprint series
in the social sciences. Bobbs-Merrill, 1899.

[32] J. Czekanowski, “Zur differential Diagnose der Neandertalgruppe,”
in Korrespondenz-blatt der Deutsche Gesellschaft für Anthropologie,

Ethnologie und Urgeschichte, vol. XL(6/7), 1909, pp. 44–47.

[33] I. Liiv, “Seriation and matrix reordering methods: An historical
overview,” Statistical Analysis and Data Mining, vol. 3, no. 2, pp. 70–
91, 2010.

[34] D. Guo, “Visual analytics of spatial interaction patterns for pandemic
decision support,” International Journal of Geographical Information

Science, vol. 21, pp. 859–877, 2007.

[35] G. M. Del Corso and G. Manzini, “Finding exact solutions to the
bandwidth minimization problem,” Computing, vol. 62, pp. 189–203,
July 1999.

[36] D. Blandford and G. Blelloch, “Index Compression through Document
Reordering,” ser. DCC ’02, 2002.

[37] A. Pinar, T. Tao, and H. Ferhatosmanoglu, “Compressing Bitmap
Indices by Data Reorganization,” ICDE05, pp. 310–321, 2005.

[38] S. Roweis, “EM algorithms for PCA and SPCA,” ser. NIPS ’97. MIT
Press, 1998, pp. 626–632.

[39] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Com-

plexity of Computer Computations, R. E. Miller and J. W. Thatcher,
Eds. Plenum Press, 1972, pp. 85–103.

[40] G. Dantzig, R. Fulkerson, and S. Johnson, “Solution of a large-scale
traveling-salesman problem,” Oper. Research, vol. 2, pp. 393–410, 1954.

[41] R. E. Gomory, “Outline of an algorithm for integer solutions to linear
programs,” Bulletin of the American Mathematical Society, vol. 64,
no. 5, pp. 275–278, 1958.

[42] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II, “An Analysis of
Several Heuristics for the Traveling Salesman Problem,” SIAM Journal

on Computing, vol. 6, no. 3, pp. 563–581, 1977.

[43] N. Christofides, “Worst-case analysis of a new heuristic for the traveling
salesman problem,” SIAM Journal on Computing, vol. 6, no. 3, pp. 563–
563, 1976.

[44] G. Gutin and A. P. Punnen, The traveling salesman problem and its

variations. Springer, 2002, vol. 12.

[45] D. Applegate, R. E. Bixby, V. Chvátal, W. Cook, D. G. Espinoza,
M. Goycoolea, and K. Helsgaun, “Certification of an optimal TSP tour
through 85,900 cities,” Operations Research Letters, vol. 37, pp. 11–15,
2009.

[46] K. Helsgaun, “An Effective Implementation of the Lin-Kernighan Trav-
eling Salesman Heuristic,” European Journal of Operational Research,
vol. 126, pp. 106–130, 2000.

[47] W. T. McCormick, P. J. Schweitzer, and T. W. White, “Problem decom-
position and data reorganization by a clustering technique,” Operations

Research, vol. 20, no. 5, pp. 993–1009, 1972.

[48] T. Biedl, B. Brejova, E. D. Demaine, A. M. Hamel, and T. Vinar,
“Optimal Arrangement of Leaves in the Tree Representing Hierarchical
Clustering of Gene Expression Data,” Tech. Rep. CS-2001-14, 2001.

[49] P. A. DiMaggio, S. R. McAllister, C. A. Floudas, X.-J. Feng, J. D.
Rabinowitz, and H. A. Rabitz, “Biclustering via optimal re-ordering of
data matrices in systems biology: rigorous methods and comparative
studies,” BMC Bioinformatics, vol. 9, no. 1, p. 458, 2008.

[50] K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo, “Validating clustering
for gene expression data,” Bioinformatics, vol. 17, no. 4, pp. 309–318,
2001.

