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ABSTRACT
With the advances and increasing sophistication in data col-
lection techniques, we are facing with large amounts of data
collected from multiple heterogeneous sources in many ap-
plications. For example, in the study of Alzheimer’s Disease
(AD), different types of measurements such as neuroimages,
gene/protein expression data, genetic data etc. are often col-
lected and analyzed together for improved predictive power.
It is believed that a joint learning of multiple data sources
is beneficial as different data sources may contain comple-
mentary information, and feature-pruning and data source
selection are critical for learning interpretable models from
high-dimensional data. Very often the collected data comes
with block-wise missing entries; for example, a patient with-
out the MRI scan will have no information in the MRI data
block, making his/her overall record incomplete. There has
been a growing interest in the data mining community on
expanding traditional techniques for single-source complete
data analysis to the study of multi-source incomplete data.
The key challenge is how to effectively integrate informa-
tion from multiple heterogeneous sources in the presence of
block-wise missing data. In this paper we first investigate
the situation of complete data and present a unified “bi-
level” learning model for multi-source data. Then we give a
natural extension of this model to the more challenging case
with incomplete data. Our major contributions are three-
fold: (1) the proposed models handle both feature-level and
source-level analysis in a unified formulation and include
several existing feature learning approaches as special cases;
(2) the model for incomplete data avoids direct imputation
of the missing elements and thus provides superior perfor-
mances. Moreover, it can be easily generalized to other ap-
plications with block-wise missing data sources; (3) efficient
optimization algorithms are presented for both the complete
and incomplete models. We have performed comprehensive
evaluations of the proposed models on the application of AD
diagnosis. Our proposed models compare favorably against
existing approaches.
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1. INTRODUCTION
Recent advances in data collection technologies have made

it possible to collect a large amount of data for many ap-
plication domains. Very often, these data come from multi-
ple sources. For instance, in the study of Alzheimer’s Dis-
ease (AD), different types of measurements such as mag-
netic resonance imaging (MRI), positron emission tomogra-
phy (PET), cerebrospinal fluid (CSF), blood test, protein
expression data, and genetic data have been collected as
they provide complementary information for the diagnosis of
AD [31, 34]. In bioinformatics, different types of biological
data including protein-protein interactions, gene expression
and amino sequences have been collected for protein classi-
fication [19]. Extraction of the great wealth of information
from such multi-source (a.k.a multi-modality) data has be-
come a crucial step in knowledge discovery. Data mining
and machine learning methods have been increasingly used
to analyze multi-source data [26, 10, 29]. It is expected that
the performance can be significantly improved if informa-
tion from different sources can be properly integrated and
leveraged. Multi-source learning has thus attracted great
attentions in various application domains from biomedical
informatics [17, 31] to web mining [1, 29]. It is closely re-
lated to multi-view learning. However they differ in several
important aspects. More specifically, multi-view learning
mainly focuses on semi-supervised learning and using un-
labeled data to maximize the agreement between different
views [2, 11]. In this paper, we focus on the multi-source
learning in the supervised setting and we do not assume
there are abundant unlabeled data available. In addition,
we do not attempt to reduce the disagreement between mul-
tiple sources but try to extract complementary information
from them, as is often the case in biomedical applications
such as AD study.

In many applications, the data are also of very high di-
mension, e.g., medical images and gene/protein expression
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data. However, the high-dimensional data often contains re-
dundant information or even noisy or corrupted entries and
thus poses a potential challenge. In order to build a stable
and comprehensible learning model with good generaliza-
tion, it is critical to perform certain “feature-pruning”. A
simple approach is to pool data from multiple sources to-
gether to create a single data matrix and apply traditional
feature selection methods directly to the pooled data ma-
trix. However, such an approach treats all sources equally
important and ignores within-source and between-source re-
lationship. Another popular approach is to adopt multiple
kernel learning (MKL) to perform data fusion [19, 29, 31]
which provides a principled method to perform source-level
analysis, i.e., a particular source is considered relevant to
the learning task only if its corresponding kernel is selected
in MKL. However, MKL only performs source-level analysis,
ignoring feature-level analysis. Such an approach is subopti-
mal when the individual data sources are high-dimensional
and an interpretable model is desired. To fully take ad-
vantage of the multi-source data, it is desirable to build
a model which performs both individual feature-level and
source-level analysis. In this paper, we will use the term
“bi-level analysis” (this was first introduced in [8]) to refer
to the simultaneous feature-level and source-level analysis.
Besides the multi-modality and the high-dimensionality,

the existence of (block-wise) missing data source is another
big challenge encountered in most biomedical applications.
Figure 1 provides a typical situation in AD research. We
have 245 participants in total and 3 types of measurements
(PET, MRI and CSF) are taken for diagnosis. Therefore for
a single participant, there are at most three different mea-
surements, which are represented in different colors. The
blank region means that data from the corresponding source
is missing. In this example, participants 1 ∼ 60 have records
on PET and MRI but lack CSF information while partici-
pants 149 ∼ 245 have only MRI data. The block-wise miss-
ing data issue could emerge in several scenarios: inaccurate
data sources of certain sample may be discarded; some data-
collecting mechanisms (like PET) may be too costly to be
applied to every participant; participants may not be will-
ing to take certain measurements for various reasons. Notice
that the missing data emerges in a block-wise way, i.e., for
a patient, certain data source is either available or lost com-
pletely.
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Figure 1: An illustration of an incomplete multi-
source data with three sources.

1.1 Related Work
Considerable efforts have been made to deal with the miss-

ing data, both in data mining and biomedical informatics.
Some well-known missing value estimation techniques like
EM [12], iteratively singular value decomposition (SVD) and
matrix completion [21] have been extended to biomedical
applications by performing imputation on the missing part
of the data. Although these approaches have demonstrated
their effectiveness on handling random missing entries, they
often deliver sub-optimal performance in AD research [32]
for the following reasons: (1) these imputation approaches
fail to capture the pattern of the missing data, i.e., the miss-
ing elements are not randomly scattered across the data
matrix but emerge block-wisely. However, such prior knowl-
edge is completely discarded in imputation methods; (2) due
to the high-dimensionality of the data, these methods of-
ten have to estimate a significant amount of missing values,
which would result in unstable performances.

To overcome the aforementioned drawbacks of standard
imputation methods, Yuan et al. proposes an incomplete
Multi-Source Feature learning method (iMSF) which avoids
the direct imputation [32]. The iMSF method first parti-
tions the patients into disjoint groups such that patients
from the same group possess identical data source combina-
tions. Feature learning is then carried out independently in
each group and finally the results from all the groups are
properly combined to obtain a consistent feature learning
result. Such a mechanism enables iMSF to perform feature
selection without estimating the missing values, however,
the resulting model is unable to provide source-level analy-
sis, i.e., we cannot tell which data source is more important
for the diagnosis or which data source should be discarded in
a particular application. Such a drawback may limit the per-
formance of iMSF in applications where noisy or corrupted
data sources are frequently encountered.

1.2 Main Contributions
Although the importance of bi-level analysis in bioinfor-

matics has drawn increasing attention [8, 16, 28], how to
effectively extend these techniques to deal with block-wise
missing data remains largely unexplored. In this paper, we
fill in such a gap by proposing a bi-level feature learning
model for both complete and block-wise missing data. Our
contributions are three-fold: (1) we propose a unified feature
learning model for multi-source data, which includes several
existing feature learning approaches as special cases; (2) we
further extend this model to fit the block-wise missing data.
The resulting model avoids direct imputation of the miss-
ing data and is capable of bi-level feature learning; (3) the
proposed models for both of the complete and incomplete
data require solving non-convex optimization problems. We
present efficient optimization algorithms which find the so-
lution by solving a sequence of convex sub-problems.

The rest of the paper is organized as follows. In Section 2,
we present our unified framework for multi-source feature
learning for complete data. The relationship between our
model and existing works and the optimization algorithms
are also discussed. In Section 3, we provide a natural exten-
sion of this model to deal with the block-wise missing data
sources and propose an alternating minimization algorithm
for the optimization. Extensive empirical evaluations are
carried out in Section 4. We conclude the paper and point
out some future directions in Section 5.
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2. A UNIFIED FEATURE LEARNING MODEL
FOR MULTI-SOURCE DATA

Assume we are given a collection of m samples from S
data sources:

X = [X1,X2, · · · ,XS ] ∈ Rm×n, y ∈ Rm,

where Xi ∈ Rm×pi is the data matrix of the ith source
with each sample being a pi-dimensional vector, and y is
the corresponding outcome for each sample. We consider
the following linear model:

y =

S∑
i=1

Xiβi + ϵ = Xβ + ϵ, (1)

where each column of X is normalized to be zero mean and
standard deviation of 1 and ϵ represents the noise term.
β is the underlying true model and is usually unknown in
real-world applications. Based on (X,y), we want to learn

an estimator of β, denoted as β̂, whose non-zero elements
F = {j : β̂j ̸= 0} correspond to the relevant features. In
other words, features correspond to the zero elements of
β̂ are discarded. We consider the following regularization
framework:

minimize
β

L(β) + Ω(β),

where L(·) represents the data-fitting term and Ω(·) is the
regularization term which encodes our prior knowledge about
β. Specifically, the choice of Ω(·) should also enable us to
perform both feature-level and source-level analysis simulta-
neously. Towards this end, a natural approach is a two-stage
model. First we learn different models for each data source
and then combine these learned models properly. The reg-
ularization should be imposed independently on each stage
to provide the bi-level analysis. We formalize our intuition
as follows:

minimize
α,γ

1

2
∥y −

S∑
i=1

γi ·Xiαi∥22 +
S∑

i=1

λi

p
∥αi∥pp +

S∑
i=1

ηi
q
|γi|q,

(2)
where the minimization is taken with respect to (α,γ) jointly.
According to the intuition above, αi denotes the model
learned on the ith data source and γ is the weight that
combines those learned models together. The regularization
is taken independently over α and γ and therefore we have
the flexibility to choose different values of p and q to induce
sparsity on either feature-level or source-level. Notice that
model (2) is not jointly convex and direct optimization to-
wards (2) would be difficult. We provide an equivalent but
simpler formulation in the following theorem and discuss its
optimization in the next section.

Theorem 1. The formulation (2) is equivalent to the fol-
lowing optimization problem:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νi∥βi∥
pq

p+q
p . (3)

Proof. Without loss of generality, we assume that αi ̸=
0 for all i = 1, 2, · · · , S. Since if αi = 0 for some i, the
optimal γi must be 0 and therefore both αi and γi can be

removed from (2). Let βi = γi ·αi and replace γi with
∥βi∥p
∥αi∥p

,

we can obtain an equivalent formulation:

minimize
α,β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

λi

p
∥αi∥pp +

S∑
i=1

ηi
q

(
∥βi∥p
∥αi∥p

)q

.

(4)
Taking partial derivative with respect to αi and setting it

to zero leads to:

ηi∥βi∥qp = λi∥αi∥p+q
p , i = 1, 2, · · · , S. (5)

Plugging (5) back into (4) with the change of variables, we
get the formulation (3).

2.1 Relation to previous works
Formulation (2) (or its equivalent form (3)) is a very gen-

eral model. Assigning different values to p and q leads to
various kinds of regularization and feature learning models.
Next, we show several widely-used convex models are actu-
ally our special cases.

Let p = 1 and q = ∞. In this case, the regularization
term in (3) becomes the ℓ1-regularization and the resulting
model becomes Lasso [25]:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 + λ∥β∥1. (6)

It is well-known that the ℓ1-regularization leads to a sparse
solution, which coincides with the goal of feature selection.
However, it does not consider the source structure by treat-
ing all features from different sources equally.

On the other hand, if both p and q equal 2, then the ℓ2-
regularization is applied on each source. Letting νi = λ

√
pi

leads to the group lasso [33]:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 + λ

S∑
i=1

√
pi∥βi∥2. (7)

Similarly, if p = ∞ and q = 1, we obtain the ℓ1,∞-regularization
model [27, 23], which penalizes the largest elements of βi for
each source:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νi∥βi∥∞. (8)

Besides these common convex formulations, our general
model also includes a family of non-convex formulations
which have not been fully explored in the literature. Par-
ticularly, letting p = 1 and q = 2 leads to the following
non-convex model:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νi∥βi∥
2
3
1 . (9)

If p = 2 and q = 1, model (3) reduces to:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νi∥βi∥
2
3
2 . (10)

For the convex models such as lasso, the optimization algo-
rithms have received intensive studies [5, 7, 13, 4]. In order
to fully explore the functionality of our general model, we
shall provide further investigations on the non-convex for-
mulations in terms of optimization.
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2.2 Optimization
We first focus on formulation (10), which is clearly a non-

convex optimization problem. Gasso et al. has shown in [15]
that the ℓq-regularized least squares problem with q < 1
can be efficiently solved using the difference of convex func-
tions (DC) algorithm [24]. The DC decomposition presented
in [15] requires the regularization term to be a concave func-
tion with respect to the absolute value of the variable. How-
ever this is not the case in our formulation according to the
following proposition:

Proposition 1. Letf(β) = ∥β∥
2
3
2 . Then f is neither

convex nor concave w.r.t. |β| unless β is a scalar, where
| · | denotes the absolute value.

Proof. The proof is carried out by computing the Hes-
sian of f . Without loss of generality, we assume β ̸= 0. It
can be shown that:

∂f

∂|βi|
=

2

3
∥β∥−

4
3

2 |βi|

∂2f

∂|βi|∂|βj |
= −8

9
∥β∥−

10
3

2 |βiβj |+ 1{i=j} · 2
3
∥β∥−

4
3

2 ,

where 1 is the indicator function. It is clear that, unless β
is a scalar, in which case it is obvious that f is a concave

function, ∂2f
∂|βi|2

can be either positive or negative. In other

words, the sign of the diagonal elements of the Hessian of
f can be either positive or negative, which means that f is
neither convex nor concave.

To employ the DC algorithm, we need to avoid the non-
concavity of the regularization item. We introduce new vari-
ables ti, i = 1, 2, · · · , S and transform (9) into the following
formulation:

minimize
β,t

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νit
2
3
i

subject to ∥βi∥2 ≤ ti, i = 1, 2, · · · , S.

(11)

It is clear that (11) is equivalent to the original formula-
tion (9), however the regularization term in (11) is concave
with respect to ti, as shown in Proposition 1. We apply the

DC algorithm, i.e., for each t
2
3
i , we rewrite it as the difference

of two convex functions as follows:

t
2
3
i = ti − (ti − t

2
3
i ).

Therefore, (11) becomes:

minimize
β,t

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

νiti −
∑
i

νi(ti − t
2
3
i )

subject to ∥βi∥1 ≤ ti, i = 1, 2, · · · , S.
(12)

Next we replace the second convex item ti − t
2
3
i by its affine

minorant at the previous iteration. Specifically, suppose at
the previous iteration the value of ti is t̂i; now we approx-

imate ti − t
2
3
i by its first-order Talyor expansion at t̂i as

follows:

(t̂i − t̂i
2
3 ) + (1− 2

3
t̂i

− 1
3 )(ti − t̂i).

Plugging the above expression back to (12) and dropping
the constant, we get:

minimize
β,t

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

2

3
t̂i

− 1
3 νiti

subject to ∥βi∥2 ≤ ti, i = 1, 2, · · · , S.

(13)

Since νi and t̂i are nonnegative, all constraints in (13) must
be active at the optimal points. Thus, (13) is equivalent to
the following group lasso problem:

minimize
β

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

2

3
t̂i

− 1
3 νi∥βi∥2.

After β is obtained, we update t̂i with ∥βi∥2 and continue

the iteration until convergence. Notice that t̂i
− 1

3 can be
very large if ∥βi∥2 is small. For numerical stability, we add
a smoothing term θ to each t̂i as suggested by [15]. The
overall procedure is summarized in Algorithm 1.

Algorithm 1 DC algorithm for solving (10)

Input: X, y, ν
Output: solution β to (10)

1: Initialize θ, µ
(0)
i , i = 1, 2, · · · , S

2: for k = 1, 2, · · · do
3: Update β and µi by:

β̂k = argmin
β∈Rn

1

2
∥y −

S∑
i=1

Xiβi∥22 +
S∑

i=1

µk−1
i ∥βi∥2

µk
i =

2

3
νi(∥β̂k

i ∥2 + θ)−1/3, i = 1, 2, · · · , S.

4: if the objective stops decreasing then
5: return β = β̂k

6: end if
7: end for

Remark 1. Model (9) can be solved in exactly the same
way as above. The only difference is that in each iteration
we need to solve a weighted lasso problem to get β̂(ℓ).

Remark 2. Although we only consider the least squares
loss function here, the above derivations can be easily ex-
tended to other widely-used convex loss functions, such as
the logistic function.

3. INCOMPLETE SOURCE-FEATURE SE-
LECTION (ISFS) MODEL

In this section, we consider the more challenging and more
realistic situation with block-wise missing data, as shown in
Figure 1. In such situation, most patients do not have com-
plete data collected from every data source but lack one or
more data blocks. To apply existing feature learning ap-
proaches directly, we can either discard all samples that
have missing entries or estimate the missing values based
on the observed entries. However, the former approach may
significantly reduce the size of the data set while the lat-
ter approach heavily relies on our prior knowledge about
the missing values. Moreover, both approaches neglect the
block-wise missing patterns in the data and therefore could
lead to sub-optimal performance.
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As in the case of complete data, an ideal model performs
both feature-level and source-level analysis simultaneously.
Next, we show how to extend the model on complete data
presented in the previous section to a more general setting
with missing data. Our intuition of designing such Incom-
plete Source-Feature Selection (iSFS) model is illustrated in
Figure 2. We follow a similar strategy used in our com-
plete model (2): individual model is learned on each data
source and then all models are properly integrated via extra
regularizations/constraints. As shown in Figure 2, we try to
learn the model represented by β1, β2 and β3, corresponding
to measurements from PET, MRI and CSF, respectively. A
subtle issue is how to learn the coefficients α, since model (2)
is not applicable due to the presence of missing data blocks.
To address this issue, we partition the whole data set into
multiple groups according to the availability of data sources,
as illustrated in the red boxes in Figure 2. For this particu-
lar case, we partition the data into 4 groups, where the first
group includes all the samples that have PET and MRI, the
second group of patients possesses all three data sources, the
third group of patients has MRI and CSF measurements,
while the last group of patients only has MRI data. Note
that within each group we have the complete data and the
analysis from the previous section can be applied.
The proposed model is closely related to the iMSF model

proposed in [32], however, they differ in several significant
aspects: (1) the proposed method partitions the data into
multiple groups according to the availability of data sources.
The resulting groups are not disjoint compared to that of
the iMSF. Generally, our partition method results in more
samples for each group; (2) in the proposed approach, the
model learned for each data source is consistent across dif-
ferent data source combinations while iMSF does not; (3)
in every data source combination, we learn the weights of
each source from the data. The weights for a specific data
source may differ in different data source combinations. Un-
like iMSF, the proposed method achieves source selection by
discarding the data sources with a weight of 0. Thus, the
proposed method is expected to outperform iMSF especially
in the presence of noisy data sources.

3.1 Formulation
Before presenting the formal description of our iSFS model,

we first introduce some notations which will simplify the dis-
cussion. Suppose we have S data sources in total and each
participant has at least one data source available. Then
there are 2S −1 possible missing patterns: the number of all
possible combinations of S data sources except for the case
that all data sources are missing. For each participant, based
on whether a certain data source is present, we obtain a bi-
nary indicator vector I[1 · · ·S], where I[i] = 1 indicates the
ith data source is available. For example in Figure 1, partici-
pants 1 ∼ 139 possess the same indicator vector [1, 1, 0] while
the indicator vector of participants 149 ∼ 245 is [0, 1, 0]. Us-
ing such indicator vectors simplifies our analysis. Moreover,
we do not even need to store the complete vector for each
participant but just need to record a single decimal integer
if we convert this binary vector to a binary number, i.e., the
information in the indicator vector can be completely de-
scribed by a decimal integer, called profile. All these pro-
files are stored in an n-dimensional vector pf [1 · · ·n] where
n is the number of participants.

We are ready to give a concise description of our model.
Following the aforementioned intuitions, we learn a consis-
tent model (variable β) across different source combinations,
while within each combination, the weights (variable α) for
different sources are learned adaptively. Mathematically, the
proposed model solves the following formulation:

minimize
α,β

1

|pf |
∑

m∈pf

f(Xm,β,αm,ym) + λRβ(β)

subject to Rα(αm) ≤ 1 ∀m ∈ pf ,

(14)

where

f(X,β,α,y) =
1

n
L(

S∑
i=1

αiXiβi,y) (15)

and Rα, Rβ are regularizations on α, β respectively. The
m subscript in (14) denotes the matrix/vector restricted to
the samples that contain m in their profiles. Xi and βi

in (15) represent the data matrix and and the model of the
ith source, respectively. L can be any convex loss function
such as the least squares loss function or the logistic loss
function and n is number of rows of X.

3.2 Optimization
One of the advantages of iMSF is its efficient optimization

algorithm. In fact, iMSF can be solved by standard convex
multi-task learning algorithms [3, 20]. The proposed iSFS
model involves a more complicated optimization problem.
In fact, (14) is not jointly-convex w.r.t α and β, posing a
major challenge. We adapt the alternating minimization
method to solve (14). More specifically, we first initialize
β and compute the optimal α. Then β is updated based
on the computed α. We keep this iterative procedure until
convergence. For simplicity, we focus on the least squares
loss function in the following discussion. The techniques can
be easily extended to other loss functions, e.g., the logistic
loss function.

3.2.1 Computing α when β is fixed
As shown in Figure 2, we learn the weight α for each

source combination independently. Therefore, when β is
fixed, the objective function of (14) is decoupled w.r.t αm

and the optimal αm is given by the optimal solution of the
following problem:

minimize
α

∥
S∑

i=1

αiXiβi − y∥22

subject to Rα(α) ≤ 1.

(16)

For many choices of the regularization term Rα, such
as the ridge penalty, the ℓ1-norm penalty as well as other
sparsity-induced penalties [4], the optimal solution of (16)
can be efficiently computed via the accelerated gradient al-
gorithm [6].

3.2.2 Computing β when α is fixed
When we keep α fixed and seek the optimal β, (14) be-

comes an unconstrained regularization problem:

minimize
β

g(β) + λRβ(β) (17)
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Figure 2: Illustration of the proposed learning model. The data set is partitioned into four groups according
to the availability of data sources, as highlighted by the red boxes. The goal is to learn three models β1, β2

and β3 for each data source as well as the coefficient α that combines them. Notice that, for the ith data
source, βi remains identical while α may vary across different groups.

where

g(β) =
1

|pf |
∑
m∈pf

1

2nm
∥

S∑
i=1

(αi
mXi

m)βi
m − ym∥22.

and nm is number of rows of Xm. We can observe that g(β)
is a quadratic function of β and thus the overall formulation
is to minimize the summation of a quadratic term and a
regularization term: a typical formulation that can be solved
efficiently via accelerated gradient method provided that the
following proximal operator [9]:

minimize
β

1

2
∥β − v∥22 + λRβ(β)

can be computed efficiently. Indeed, this is the case for
many widely used regularization terms. In addition, in order
to apply standard first-order lasso solvers, we only need to
provide the gradient of β at any given point without knowing
the explicit quadratic form. For each data source i, we can
compute the gradient of the g(β) w.r.t βi as follows:

∇g(βi) =
1

|pf |
∑
m∈pf

1

nm
I(m & 2S−i ̸= 0)

(αi
mXi

m)T (
S∑

i=1

αi
mXi

mβi
m − ym),

(18)

where I(·) is the indicator function which equals 1 when
the condition is satisfied and 0 otherwise. The expression
m & 2S−i ̸= 0 ensures that the ith source exists in the
combination m, where & denotes the bit-wise AND opera-
tion. Then we can obtain ∇g(β) by stacking all the ∇g(βi),
i = 1, 2, · · ·S and finally obtain a global solution of (17)
via applying the accelerated gradient method. Algorithm 2
summarizes our alternating minimization scheme.

Algorithm 2 Iterative algorithm for solving (14)

Input: X, y, λ
Output: solution α, β to (14)
1: Initialize (βi)0 by fitting each source individually on the

available data.
2: for k = 1, 2, · · · do
3: Compute each (α)k via solving a constrained lasso

problem (16).
4: Update (β)k via solving a regularized lasso prob-

lem (17).
5: if the objective stops decreasing then
6: return β = (β)k

7: end if
8: end for

Remark 3. Our model can be easily extended to the logis-
tic loss function which is widely used in classification prob-
lems. Computing α in (16) amounts to solving a constrained
logistic regression problem while computing β in (17) re-
quires solving a regularized logistic regression problem. In
fact, any convex loss function can be applied to our model as
long as the gradient information can be efficiently obtained.

Remark 4. We may apply different forms of Rα and
Rβ in order to capture more complex structures, as long as
the associated proximal operator can be efficiently computed.
Particularly, we can employ the ℓ1-norm penalty to achieve
simultaneous feature-level and source-level selection.

Remark 5. A special case of the proposed iSFS model
can be obtained by setting αm to 1

nm
for every m, where nm

is the number of samples that have profile m. As a result,
the optimization (14) only involves β and becomes a convex
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programming problem. In fact, this is exactly an extension
of the classical lasso method to the block-wise missing data.
To the best of our knowledge, such an extension is not known
in existing literature.

4. EXPERIMENTS
To examine the efficacy of the proposed bi-level feature

learning models, we report the performance of the proposed
models for the complete and block-wise missing data, on
both synthetic data and real-world applications. Specif-
ically, the following aspects are evaluated: (i) model (9)
and (10) for complete data; (ii) model (14) for block-wise
missing data; (iii) the capability of source-level analysis.

4.1 Comparison on complete data
We first evaluate the effectiveness of the complete mod-

els (9) and (10) on synthetic data generated by the lin-
ear model (1). The parameter settings follow the similar
strategy described in [14, 30]. Specifically, we have S =
20 sources in total and the underlying true model β =
[βT

1 ,β
T
2 , · · · ,βT

S ]
T only takes non-zero values in the first six

sources, whose values are 10, 8, 6, 4, 2 and 1 respectively.
The data matrix X = [X1,X2, · · · ,XS ] and the noise term
ϵ all follow the Gaussian distribution with zero mean and
standard deviation of 0.5. To evaluate the performance of
bi-level feature learning, we consider the following two situ-
ations: (1) all features within the six sources are useful, i.e.,
the elements of βi, i = 1, 2, · · · , 6 are all non-zero; (2) not
all features within the six sources are useful, i.e., βi is sparse
for βi, i = 1, 2, · · · , 6. Specifically, only the first 3 features
within each βi are nonzero. Figure 3 illustrates these two
settings:

10 4 2 1 068

1
b

2
b 3

b
4

b 5
b

6
b
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207
bb -

Figure 3: Two scenarios of the underlying true
model β: the upper one corresponds to the situation
of non-sparse features and the lower one represents
the situation of sparse features. The white block
represents zero elements while the non-zero values
are represented by different colors, indicated in the
first row.

For each scenario, we partition the dataset into disjoint
training set and test set, and compare models (9) and (10)
with lasso, group lasso and sparse group lasso. 5-fold cross-
validation is employed to tune the parameters for each model.
Specifically, the set of tuning parameters for lasso, group
lasso, model (9) and model (10) are chosen from the interval
M = [10−8, 102]. For sparse group lasso, its parameters are
chosen from the product space of M × M . We report the
number of features and groups selected by each model and
the mean squared error (MSE) on the testing set. In addi-

tion, since we know the underlying true model β, we also
include the parameter estimation error: ∥β̂ − β∥22, where β̂
is the estimated model. All the results are averaged over
10 replications and are listed in Table 1. For simplicity, we
use FRAC(1, 2) to denote model (9) (p = 1, q = 2) and
FRAC(2, 1) to denote model (10). The experimental results
show that, in the situation of sparse features, model (9)
achieves the least MSE and estimation error, while for the
non-sparse feature case, model (10) outperforms the oth-
ers. In addition, in both cases, models (9) and (10) demon-
strate significant improvement over the lasso, group Lasso
and sparse group lasso.

4.2 Comparison on block-wise missing data
Next we consider the more realistic setting where block-

wise missing data is present. We evaluate our models us-
ing the classification of Alzheimer’s disease. We utilize the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set [22, 18] and choose 4 data sources for each patient: Pro-
teomics, PET, MRI and CSF. We investigate the classifica-
tion between AD patient, normal control (NC) subjects, sta-
ble MCI subjects (non-converter) and progressive MCI sub-
jects (converter). Imputation methods such as Mean-value
imputation, EM, KNN, iterative SVD and matrix comple-
tion as well as the iMSF feature learning model are included
for comparison. Notice that kernel learning algorithms are
not applicable here since the data are incomplete. All the
evaluations are done in a two-stage fashion. In the first
stage, we either apply the feature learning methods to select
informative features or the imputation methods to fill in the
missing entries in the data. Then in the second stage, the
Random Forest classifier is applied to perform the classifica-
tion. We use 10% of the ADNI data for training and report
the accuracy, sensitivity, specificity and the area under the
ROC curve (AUC value) on the remaining test data. 5-fold
cross-validation is used for selecting suitable parameters for
iSFS, iMSF, KNN and SVD. Particularly, for iSFS, iMSF
and matrix completion, we choose five values from [10−5, 10]
in the log scale as candidates. For KNN, the size of the
neighborhood is selected from [1, 5, 10, 15, 20, 25]. The rank
parameter in the SVD is chosen from [5, 10, 15, 20, 25, 30]. In
addition, we employ the ℓ1-norm penalty for both Rα and
Rβ . The results are presented in Table 2 to Table 4. All the
results are averaged over 10 repetitions. From the evaluation
results, we can observe that: (1) among all imputation meth-
ods, the mean-value imputation and EM demonstrate better
performance in terms of accuracy. However, their results are
not stable, as revealed by the low sensitivity/specificity value
in some tasks; (2) feature learning models such as iSFS and
iMSF provide superior results than the imputation methods
and often achieve uniform improvement across all the mea-
surements. This coincides with our intuition that estimating
the missing blocks directly is usually difficult and unstable
and approaches avoiding imputation are more preferred. In
particular, iSFS clearly delivers the best performance among
all approaches.

4.3 Capability of source selection
Motivated by the strategies used in [19], we add two ran-

dom (noisy) data sources to the ADNI data set to verify the
performance of source-level learning. We compare our iSFS
model with iMSF and report their performance in Figure 4.
Besides the previous tasks, two additional evaluations: AD
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Table 1: Performance on synthetic complete data. The MSE denotes the mean squared error of prediction
on the test set and ESTI stands for the parameter estimation error. For the scenario of sparse feature, the
underling true model has 6 groups and 18 features, while for the situation of non-sparse feature, the true
model takes 6 groups and 60 features. All results are averaged over 10 replications.

Methods
Sparse features Non-sparse features

MSE Esti # Group # Feature MSE Esti # Group # Feature
frac(1, 2) 17.04 15.36 6.1 30.6 1618.47 1245.87 12.6 94.0
frac(2, 1) 146.15 131.04 6.4 64.0 242.27 221.01 5.1 51.0
lasso 256.84 257.47 17.1 71.7 2007.61 1617.81 19.3 141.3

group lasso 165.55 162.35 13.5 135.0 669.80 493.23 12.4 124.0
sparse group glasso 71.69 80.93 13.1 77.9 729.22 552.79 13.8 137.9

Table 2: Classification results of AD patients and
normal controls. All results are averaged over 10
replications.

Accuracy Sensitivity Specificity AUC
iSFS 0.8103 0.8077 0.8124 0.8101
iMSF 0.7857 0.7671 0.8005 0.7838
SVD 0.7756 0.7770 0.7746 0.7758
KNN 0.7668 0.7161 0.8072 0.7617
Mean 0.7789 0.7845 0.7744 0.7795
EM 0.8089 0.7963 0.8189 0.8076
MC 0.5957 0.5710 0.6155 0.5932

Table 3: Classification results of AD patients and
stable MCI patients. All results are averaged over
10 replications.

Accuracy Sensitivity Specificity AUC
iSFS 0.7489 0.7032 0.7816 0.7424
iMSF 0.7172 0.6910 0.7359 0.7135
SVD 0.6942 0.6510 0.7250 0.6880
KNN 0.6774 0.6819 0.6742 0.6781
Mean 0.7338 0.6163 0.8177 0.7170
EM 0.7174 0.6323 0.7782 0.7052
MC 0.6234 0.6135 0.6304 0.6220

patients vs. MCI and MCI vs. normal controls, are also in-
cluded. We can see that our method outperforms the iMSF
model in most of the cases. Such a result again justifies the
importance of source-level analysis when noisy/corrupted
data sources are present.

5. CONCLUSION
In this paper, we investigate the bi-level feature learning

motivated by biomedical applications and propose system-
atic approaches for both complete and block-wise missing
data. Specifically, we introduce a unified feature learning
model for complete data, which contains several classical
convex models as special cases. We further show that the
model for complete data can be easily extended to handling
the more challenging block-wise missing data. The effec-

Table 4: Classification results of progressive MCI
patients and normal controls. All results are aver-
aged over 10 replications.

Accuracy Sensitivity Specificity AUC
iSFS 0.8754 0.9361 0.8297 0.8829
iMSF 0.8611 0.9190 0.8174 0.8682
SVD 0.7280 0.7222 0.7323 0.7273
KNN 0.7272 0.6381 0.7944 0.7162
Mean 0.7889 0.9531 0.6651 0.8091
EM 0.8027 0.8281 0.7836 0.8059
MC 0.7740 0.7728 0.7749 0.7738

tiveness of the proposed models are verified through both
synthetic data and the Alzheimer’s disease study.

In future work, we plan to apply the proposed algorithms
to other applications involving block-wise missing data. In
addition, we plan to analyze the generalization performance
of the proposed algorithms.
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