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Machine Learning: Lecture 9 

Rule Learning / 
Inductive Logic Programming 
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Learning Rules 
❧  One of the most expressive and human readable 

representations for learned hypotheses is sets of 
production rules (if-then rules). 

❧ Rules can be derived from other representations (e.g., 
decision trees) or they can be learned directly. Here, we 
are concentrating on the direct method. 

❧ An important aspect of direct rule-learning algorithms is 
that they can learn sets of first-order rules which have 
much more representational power than the propositional 
rules that can be derived from decision trees. Learning 
first-order rules can also be seen as automatically 
inferring PROLOG programs from examples. 
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Propositional versus First-Order Logic 
❧  Propositional Logic does not include variables and 

thus cannot express general relations among the values 
of the attributes. 

❧ Example 1: in Propositional logic, you can write:            
IF (Father1=Bob) ^ (Name2=Bob)^ (Female1=True) 
THEN Daughter1,2=True. 

This rule applies only to a specific family! 
❧ Example 2: In First-Order logic, you can write:                 

IF Father(y,x) ^ Female(y), THEN Daughter(x,y) 
 This rule (which you cannot write in Propositional 

Logic) applies to any family! 
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Learning Propositional versus 
First-Order Rules 
❧ Both approaches to learning are useful as they address 

different  types of learning problems. 
❧ Like Decision Trees, Feedforward Neural Nets and IBL 

systems, Propositional Rule Learning systems are suited 
for problems in which no substantial relationship between 
the values of the different attributes needs to be 
represented. 

❧ In First-Order Learning Problems, the hypotheses that 
must be represented involve relational assertions that can 
be conveniently expressed using first-order 
representations such as horn clauses (H <- L1 ^…^Ln). 
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Learning Propositional Rules: 
Sequential Covering Algorithms 

Sequential-Covering(Target_attribute, Attributes, 
Examples, Threshold) 

❧  Learned_rules <-- { } 
❧  Rule <-- Learn-one-rule(Target_attribute, Attributes, 

Examples) 
❧  While Performance(Rule, Examples) > Threshold, do 

●  Learned_rules <-- Learned_rules + Rule 
●  Examples <-- Examples -{examples correctly 

classified by Rule} 
●  Rule <-- Learn-one-rule(Target_attribute, 

Attributes, Examples) 
❧  Learned_rules <-- sort Learned_rules according to 

Performance over Examples 
❧  Return Learned_rules 
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Learning Propositional Rules: 
Sequential Covering Algorithms 

❧ The algorithm is called a sequential covering algorithm 
because it sequentially learns a set of rules that together 
cover the whole set of positive examples. 

❧ It has the advantage of reducing the problem of learning a 
disjunctive set of rules to a sequence of simpler problems, 
each requiring that a single conjunctive rule be learned. 

❧ The final set of rules is sorted so that the most accurate 
rules are considered first at classification time. 

❧ However, because it does not backtrack, this algorithm is 
not guaranteed to find the smallest or best set of rules ---> 
Learn-one-rule must be very effective! 
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Learning Propositional Rules: 
Learn-one-rule 

General-to-Specific Search: 
❧ Consider the most general rule (hypothesis) which 

matches every instances in the training set. 
❧ Repeat 

●  Add the attribute that most improves rule 
performance measured over the training set. 

❧ Until the hypothesis reaches an acceptable level of 
performance. 

General-to-Specific Beam Search (CN2): 
❧ Rather than considering a single candidate at each 

search step, keep track of the k best candidates. 
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Comments and Variations regarding 
the Basic Rule Learning Algorithms 
❧ Sequential versus Simultaneous covering: sequential 

covering algorithms (CN2) make a larger number of 
independent choices than simultaneous covering ones (ID3). 

❧ Direction of the search: CN2 uses a general-to-specific 
search strategy. Other systems (GOLEM) uses a specific to 
general search strategy. General-to-specific search has the 
advantage of having a single hypothesis from which to start. 

❧ Generate-then-test versus example-driven: CN2 is a 
generate-then-test method. Other methods (AQ, CIGOL) are 
example-driven. Generate-then-test systems are more robust 
to noise. 
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Comments and Variations regarding the 
Basic Rule Learning Algorithms,Cont’d 

❧ Post-Pruning: pre-conditions can be removed 
from the rule whenever this leads to improved 
performance over a set of pruning examples 
distinct from the training set. 

❧ Performance measure: different evaluation can be 
used. Example: relative frequency (AQ), m-
estimate of accuracy (certain versions of CN2) 
and entropy (original CN2). 
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Learning Sets of First-Order 
Rules: FOIL (Quinlan, 1990) 

 FOIL is similar to the Propositional Rule learning approach 
except for the following: 
●  FOIL accommodates first-order rules and thus needs to 

accommodate variables in the rule pre-conditions. 
●  FOIL uses a special performance measure (FOIL-GAIN) 

which takes into account the different variable bindings. 
●  FOILS seeks only rules that predict when the target literal 

is True (instead of predicting when it is True or when it is 
False). 

●  FOIL performs a simple hillclimbing search rather than a 
beam search.  
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Induction as Inverted Deduction 
❧ Let D be a set of training examples, each of the form 

<xi,f(xi)>. Then, learning is the problem of discovering a 
hypothesis h, such that the classification f(xi) of each 
training instance xi follows deductively from the 
hypothesis h, the description of xi and any other 
background knowledge B known to the system. 

Example: 
❧ xi: Male(Bob), Female(Sharon), Father(Sharon, Bob) 
❧ f(xi): Child(Bob, Sharon) 
❧ B: Parent(u,v) <-- Father(v,u) 
❧ we want to find h s.t., (B^h^xi) |-- f(xi).                         
   h1: Child(u,v) <-- Father(v,u)                                                           

h2: Child(u,v) <-- Parents(v,u) 
Examples: 
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Induction as Inverted Deduction: 
Attractive Features 
❧ The formulation subsumes the common definition 

of learning as finding some general concept that 
matches a given set of examples (with no 
background knowledge B, available) 

❧ Incorporating the notion of Background 
information allows for a richer definition of when 
a hypothesis may be said to fit the data. It allows 
the introduction of domain-specific information. 

❧ Background information can help guide the search 
for h, rather than merely searching the space of 
syntactically legal hypotheses. 
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Induction as Inverted Deduction: 
Difficulties 
❧  The formal definition of learning does not naturally 

accommodate noisy data. 
❧ The language of first-order logic is so expressive that the 

search through the space of hypotheses is intractable in 
the general case. Recent work has sought restricted forms 
of first-order expressions to improve search tractability. 

❧ Despite the intuition that background knowledge should 
help constrain the search for a hypothesis, in most ILP 
systems, the complexity of the hypothesis space search 
increases as background knowledge increases. [Chapters 
11 and 12, however, discuss how background knowledge 
can decrease this complexity] 
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An Example: CIGOL  
Resolution Rule            Inverse Resolution Rule     

(Deductive)                         (Inductive) 

C1: PassExam v  
¬ KnowMaterial 

C2: KnowMaterial v 
 ¬ Study  

C: PassExam v ¬ Study  
  

C1: PassExam v  
¬ KnowMaterial 

C2: KnowMaterial v 
 ¬ Study  

C: PassExam v ¬ Study  
  

This idea can also be applied to First-Order Resolution! 
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First-Order Multi-Step Inverse 
Resolution Example 

Father(Shannon, Tom) 

GrandChild(Bob, Shannon) 

GrandChild(Bob, x) v 
¬ Father(x, Tom) 

Father(Tom, Bob) 
GrandChild(y, x) v 
¬ Father(x,z) v 
¬ Father(z,y) 

 

GrandChild(y,x) <-- Father(x,z) ^ Father(z, y) 


