
November 10, 1999 1

Machine Learning: Lecture 9

Rule Learning /
Inductive Logic Programming

November 10, 1999 2

Learning Rules
❧  One of the most expressive and human readable

representations for learned hypotheses is sets of
production rules (if-then rules).

❧ Rules can be derived from other representations (e.g.,
decision trees) or they can be learned directly. Here, we
are concentrating on the direct method.

❧ An important aspect of direct rule-learning algorithms is
that they can learn sets of first-order rules which have
much more representational power than the propositional
rules that can be derived from decision trees. Learning
first-order rules can also be seen as automatically
inferring PROLOG programs from examples.

November 10, 1999 3

Propositional versus First-Order Logic
❧  Propositional Logic does not include variables and

thus cannot express general relations among the values
of the attributes.

❧ Example 1: in Propositional logic, you can write:
IF (Father1=Bob) ^ (Name2=Bob)^ (Female1=True)
THEN Daughter1,2=True.

This rule applies only to a specific family!
❧ Example 2: In First-Order logic, you can write:

IF Father(y,x) ^ Female(y), THEN Daughter(x,y)
 This rule (which you cannot write in Propositional

Logic) applies to any family!

November 10, 1999 4

Learning Propositional versus
First-Order Rules
❧ Both approaches to learning are useful as they address

different types of learning problems.
❧ Like Decision Trees, Feedforward Neural Nets and IBL

systems, Propositional Rule Learning systems are suited
for problems in which no substantial relationship between
the values of the different attributes needs to be
represented.

❧ In First-Order Learning Problems, the hypotheses that
must be represented involve relational assertions that can
be conveniently expressed using first-order
representations such as horn clauses (H <- L1 ^…^Ln).

November 10, 1999 5

Learning Propositional Rules:
Sequential Covering Algorithms

Sequential-Covering(Target_attribute, Attributes,
Examples, Threshold)

❧  Learned_rules <-- { }
❧  Rule <-- Learn-one-rule(Target_attribute, Attributes,

Examples)
❧  While Performance(Rule, Examples) > Threshold, do

●  Learned_rules <-- Learned_rules + Rule
●  Examples <-- Examples -{examples correctly

classified by Rule}
●  Rule <-- Learn-one-rule(Target_attribute,

Attributes, Examples)
❧  Learned_rules <-- sort Learned_rules according to

Performance over Examples
❧  Return Learned_rules

November 10, 1999 6

Learning Propositional Rules:
Sequential Covering Algorithms

❧ The algorithm is called a sequential covering algorithm
because it sequentially learns a set of rules that together
cover the whole set of positive examples.

❧ It has the advantage of reducing the problem of learning a
disjunctive set of rules to a sequence of simpler problems,
each requiring that a single conjunctive rule be learned.

❧ The final set of rules is sorted so that the most accurate
rules are considered first at classification time.

❧ However, because it does not backtrack, this algorithm is
not guaranteed to find the smallest or best set of rules --->
Learn-one-rule must be very effective!

November 10, 1999 7

Learning Propositional Rules:
Learn-one-rule

General-to-Specific Search:
❧ Consider the most general rule (hypothesis) which

matches every instances in the training set.
❧ Repeat

●  Add the attribute that most improves rule
performance measured over the training set.

❧ Until the hypothesis reaches an acceptable level of
performance.

General-to-Specific Beam Search (CN2):
❧ Rather than considering a single candidate at each

search step, keep track of the k best candidates.

November 10, 1999 8

Comments and Variations regarding
the Basic Rule Learning Algorithms
❧ Sequential versus Simultaneous covering: sequential

covering algorithms (CN2) make a larger number of
independent choices than simultaneous covering ones (ID3).

❧ Direction of the search: CN2 uses a general-to-specific
search strategy. Other systems (GOLEM) uses a specific to
general search strategy. General-to-specific search has the
advantage of having a single hypothesis from which to start.

❧ Generate-then-test versus example-driven: CN2 is a
generate-then-test method. Other methods (AQ, CIGOL) are
example-driven. Generate-then-test systems are more robust
to noise.

November 10, 1999 9

Comments and Variations regarding the
Basic Rule Learning Algorithms,Cont’d

❧ Post-Pruning: pre-conditions can be removed
from the rule whenever this leads to improved
performance over a set of pruning examples
distinct from the training set.

❧ Performance measure: different evaluation can be
used. Example: relative frequency (AQ), m-
estimate of accuracy (certain versions of CN2)
and entropy (original CN2).

November 10, 1999 10

Learning Sets of First-Order
Rules: FOIL (Quinlan, 1990)

 FOIL is similar to the Propositional Rule learning approach
except for the following:
●  FOIL accommodates first-order rules and thus needs to

accommodate variables in the rule pre-conditions.
●  FOIL uses a special performance measure (FOIL-GAIN)

which takes into account the different variable bindings.
●  FOILS seeks only rules that predict when the target literal

is True (instead of predicting when it is True or when it is
False).

●  FOIL performs a simple hillclimbing search rather than a
beam search.

November 10, 1999 11

Induction as Inverted Deduction
❧ Let D be a set of training examples, each of the form

<xi,f(xi)>. Then, learning is the problem of discovering a
hypothesis h, such that the classification f(xi) of each
training instance xi follows deductively from the
hypothesis h, the description of xi and any other
background knowledge B known to the system.

Example:
❧ xi: Male(Bob), Female(Sharon), Father(Sharon, Bob)
❧ f(xi): Child(Bob, Sharon)
❧ B: Parent(u,v) <-- Father(v,u)
❧ we want to find h s.t., (B^h^xi) |-- f(xi).
 h1: Child(u,v) <-- Father(v,u)

h2: Child(u,v) <-- Parents(v,u)
Examples:

November 10, 1999 12

Induction as Inverted Deduction:
Attractive Features
❧ The formulation subsumes the common definition

of learning as finding some general concept that
matches a given set of examples (with no
background knowledge B, available)

❧ Incorporating the notion of Background
information allows for a richer definition of when
a hypothesis may be said to fit the data. It allows
the introduction of domain-specific information.

❧ Background information can help guide the search
for h, rather than merely searching the space of
syntactically legal hypotheses.

November 10, 1999 13

Induction as Inverted Deduction:
Difficulties
❧  The formal definition of learning does not naturally

accommodate noisy data.
❧ The language of first-order logic is so expressive that the

search through the space of hypotheses is intractable in
the general case. Recent work has sought restricted forms
of first-order expressions to improve search tractability.

❧ Despite the intuition that background knowledge should
help constrain the search for a hypothesis, in most ILP
systems, the complexity of the hypothesis space search
increases as background knowledge increases. [Chapters
11 and 12, however, discuss how background knowledge
can decrease this complexity]

November 10, 1999 14

An Example: CIGOL
Resolution Rule Inverse Resolution Rule

(Deductive) (Inductive)

C1: PassExam v
¬ KnowMaterial

C2: KnowMaterial v
 ¬ Study

C: PassExam v ¬ Study

C1: PassExam v
¬ KnowMaterial

C2: KnowMaterial v
 ¬ Study

C: PassExam v ¬ Study

This idea can also be applied to First-Order Resolution!

November 10, 1999 15

First-Order Multi-Step Inverse
Resolution Example

Father(Shannon, Tom)

GrandChild(Bob, Shannon)

GrandChild(Bob, x) v
¬ Father(x, Tom)

Father(Tom, Bob)
GrandChild(y, x) v
¬ Father(x,z) v
¬ Father(z,y)

GrandChild(y,x) <-- Father(x,z) ^ Father(z, y)

