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Abstract—We consider the problem of using a large amount
of unlabeled data to improve the efficiency of feature selection
in high dimensional datasets, when only a small set of labeled
examples is available. We propose a new semi-supervised
feature importance evaluation method (SSFI for short), that
combines ideas from co-training and random forests with a new
permutation-based out-of-bag feature importance measure.
We provide empirical results on several benchmark datasets
indicating that SSFI can lead to significant improvement over
state-of-the-art semi-supervised and supervised algorithms.
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I. INTRODUCTION

The identification of relevant subsets of random variables
among thousands of potentially irrelevant and redundant
variables is a challenging topic of pattern recognition re-
search that has attracted much attention over the last few
years. In supervised learning, feature selection algorithms
use only information from labeled data to find the relevant
subsets of variables, i.e., those that conjunctively prove
useful to construct an efficient classifier from data. It enables
the classification model to achieve good or even better
solutions with a restricted subset of features [1], [2], [3].
However, in many real-world applications, the amount of
labeled data is very limited and it becomes difficult to iden-
tify and remove the redundant and irrelevant variables from
the feature set, especially in high dimension. This situation
arises naturally in many real-world applications, where large
amount of data can be collected cheaply and automatically,
but when manual labeling of samples remains extremely
time consuming and/or cannot be taken for granted. In
this case, unsupervised feature selection methods could be
envisaged to exploit the information conveyed by the a large
amount of unlabeled training data [4], [S], [6], [7]. Broadly
speaking, the feature selection in unsupervised learning
aims at finding relevant subsets of variables that produce
“natural” groupings by grouping “similar” objects together
based on some similarity measure. Clearly, the combination
of both paradigms (supervised and unsupervised) allows the
merging of sophisticated semi-supervised approaches that

can handle both labeled and unlabeled data. The problem of
semi-supervised feature selection has attracted a great deal
of interest recently and its effectiveness has already been
demonstrated in many applications [8], [9], [10], [11].

On the other hand, databases have increased many fold in
recent years. Important recent problems (i.e., DNA data in
biology) often have the property that there are hundreds or
thousands of features, with each one containing only a small
amount of information. A single learner is known to produce
very bad results as the learning algorithms break down with
high dimensional data. Ensemble learning paradigms train
multiple component learners and then combine their output
results. Ensemble techniques are considered as an effective
solution to overcome the dimensionality problem and to im-
prove the robustness and the generalization ability of single
learners, and therefore has been a hot topic during the past
years. Although considerable attention has been given on the
problem of constructing an accurate and diverse ensemble
committee for supervised and unsupervised learning, and
using this committee to estimate the feature importance
[12], [6], [5], little attention has been given to exploiting
the power of ensemble with a view to identify and remove
the irrelevant features in a semi-supervised setting.

The way internal estimates are used to measure variable
importance in the Random Forests (RF) paradigm [12] have
been influential in our thinking. In this study, we show that
these ideas are also applicable to semi-supervised feature
selection. We propose a novel semi-supervised feature im-
portance evaluation method termed SSFI as a shorthand.
The algorithm ranks features through an ensemble frame-
work, in which a feature’s relevance is evaluated by its
predictive accuracy using both labeled and unlabeled data.
SSFI combines both data resampling (bagging) and random
subspace strategies for generating an ensemble learner using
a co-training style algorithm. A combination of these two
main strategies for producing ensemble of classifiers leads
to exploration of distinct views of inter-pattern relationships.
Once each ensemble member is obtained, an extension of the
RF permutation importance measure [12], using the labeled
and unlabeled data together, is proposed to measure feature’s
relevance. A ranking of all features is finally obtained with



respect to their relevances in all obtained semi-supervised
classifiers.

The rest of the paper is organized as follow: Section 2
reviews recent studies on semi-supervised feature selection
and ensemble methods. Section 3 introduces the SSFI frame-
work and describes how variable importance used in RF
can be extended in semi-supervised context by using both
labeled and unlabeled data. Experiments using relevant high-
dimensional benchmarks and real datasets are presented in
Section 4.

II. RELATED WORK

In this section, we briefly review the semi-supervised
feature selection and semi-supervised ensemble learning
approaches that appeared recently in the literature.

A. Semi-Supervised feature selection

The key for designing an effective semi-supervised feature
selection algorithm is to develop a framework, under which
the relevance of a feature can be evaluated by both labeled
and unlabeled data in a natural way. Recently, several
studies have focused on semi-supervised feature selection.
Like in supervised and unsupervised FS, these methods can
be divided into three categories, depending on how they
interact with the learning algorithm: filter, wrapper and
embedded approaches. Filter methods discover the relevant
and redundant features through analyzing the correlation and
dependence among features without involving any learning
algorithms [10], [11]. The most common filter strategies
are based on feature ranking. Feature ranking is a relaxed
version of feature selection which ranks all features with re-
spect to their relevances and chooses the top ranked features
as the working feature vector manually. Therefore, feature
ranking can be viewed as a kind of flexible feature subset
selection approach. Feature ranking has been well studied
for semi-supervised classification. Zhao et al. [10] proposed
a semi-supervised feature ranking algorithm, referred to as
Sselect, based on the spectral graph theory. Their method
first constructs a neighborhood graph using original data, and
then evaluates each feature vector by transforming it into a
cluster indicator and checking whether it is consistent with
label information. It has demonstrated promising results on
some benchmark datasets. In [11], a semi-supervised feature
selection algorithm, called Locality Sensitive Discriminant
Feature (LSDF) was proposed. Unlike Fisher score which
makes use of only labeled data points and Laplacian score
which makes use of only unlabeled data points, the proposed
algorithm makes use of both labeled and unlabeled data
points. It tries to discover both geometrical and discrimi-
nant structure in the data. using two graphs, i.e., within-
class graph and between-class graph. The within-class graph
connects data points which share the same label or are
sufficiently close to each other, while the between-class
graph connects data points which are sufficiently close to

each other but have different labels. The importance of the
features is characterized by its degree of preserving these
graph structures. Specifically, a feature is considered as
”good” if at this dimension nearby points, or points sharing
the same label, are close to each other, while points with
different labels are far apart. However, the presence of a
large amount of irrelevant features often leads to inexact
neighborhood mapping and causes both aforementioned
methods to fail [8].

On the other hand, wrapper methods perform a search
in the space of feature subsets, guided by the outcome of
the learning model. Typically, a criterion is firstly defined
for evaluating the quality of a candidate feature subset and
wrapper approaches aim to identify a feature subset such
that the learning algorithm trained on this feature subset can
achieve the optimal value of the predefined criterion. In [9],
a forward search based semi-supervised feature ranking
method is proposed. It uses the mechanism of random
selection on unlabeled data to form new training sets, and the
most frequently selected feature, using supervised sequential
forward search strategy, is added to the result feature subset
in each iteration. In this method, the subset of features
derived from the random training sets used may not be
adequate, but once the feature is chosen, it will never be
eliminated.

In contrast to filter and wrapper approaches, the search for
an optimal subset of features with embedded methods is built
into the model construction making these techniques specific
of a given learning algorithm. Recently, Zenglin et al. [13]
proposed a semi-supervised feature selection method that
works in an embedded way. The feature selection process
is integrated to the semi-supervised classifier by taking ad-
vantage of manifold regularization. In the proposed method,
an optimal subset of features is identified by maximizing
a performance measure that combines classification margin
with manifold regularization. The manifold regularization
in the proposed feature selection method assures that the
decision function is smooth on the manifold constructed by
the selected features of the unlabeled data.

B. Semi-supervised ensemble learning

Semi-supervised learning has been widely applied in
many real-world application domains such as medical di-
agnosis, fraud detection and pattern recognition. Semi-
supervised learning methods are used in order to make
use of unlabeled data in addition to the labeled data for
better classification. According to the feature spaces used,
semi-supervised learning (SSL) algorithms can be divided
into single-view and multiple-view algorithms. One of the
most successful single-view algorithms is the Self-Training
algorithm in which a single classifier is initially trained
using a small amount of labeled data. Then it adds the
most confident unlabeled data incrementally into the la-
beled dataset and retrains the underlying classifier with



the augmented training set. On the other hand, Co-training
is one of the most attractive multi-view SSL algorithms.
Introduced by Blum and Mitchell in [14], in Co-training
two classifiers are initially trained using two redundant and
independent sets of features (views). Then in each further
iteration, each classifier classifies the unlabeled examples,
adds the examples about which it is most confident into the
training set. The aim is that the most confident examples
with respect to one classifier can be informative with respect
to the other. Although co-training has emerged as a powerful
method in some fields, the requirement on two sufficient and
redundant attribute subsets is too strong to be met in many
real-world applications. Therefore, many extensions of co-
training have been proposed in the literature to deal with this
problem. The proposed alternatives are generally ensemble-
based and differ on the strategy they used to generate
component classifiers. Methods for constructing ensembles
include manipulation of the training samples by resampling
(bootstrap aggregation or bagging) [15], [16], [17], [18],
[19], [20] or using random subspaces [15], [19], [21], [22].

In [18], an ensemble co-training style method named
Co-Forest is proposed. It extends the co-training paradigm
by incorporating a well-known ensemble learning algorithm
named Random Forest [12] to tackle the problems of how
to determine the most confident examples to label and how
to produce the final hypothesis. Co-Forest uses bootstrap
sample data from training set and trains random trees. At
each iteration each random tree is reconstructed by newly
selected examples for its concomitant ensemble. Further-
more, [16] gives another extension of the usage of RF to
semi-supervised learning problems. In order to incorporate
unlabeled data, the main idea consists to use the predicted
labels of the unlabeled data as additional optimization vari-
ables. The authors in [16] perform an iterative determinis-
tic annealing-style training algorithm maximizing both the
multi-class margin of labeled and unlabeled samples.

Another ensemble semi-supervised learning approach is
given by the work in [15] named Co-training By Committee
(CoBCQ). In this work, an ensemble of diverse classifiers is
used instead of redundant and independent views. The com-
mittee of diverse accurate classifiers is initially constructed
by using a successful ensemble learning algorithms: Bagging
or random subspace method. At each iteration and for each
classifier, a subset of unlabeled examples are drawn ran-
domly from the whole unlabeled dataset and classified using
the concomitant ensemble. The most confident examples to
label are then determined and the committee members are
retrained using their updated training sets.

It should be noted that all extensions of Co-training that
requires bootstrapping may need a lot of labeled samples
in order to be successful. For high dimensional datasets,the
classifiers trained on small bootstrapped data samples using
single feature view may face the “large p, small n problem”
(the size of the training set is much smaller than the number

of dimensions in the feature vector) and, thus, may cause an
overfitting problem.

As a solution, random subspace methods (RSM) are one
of the successful methods used for producing an ensemble
of classifiers and dealing with high dimensional datasets.
RASCO [21] algorithm combines the ideas of Co-training
and random subspace methods. Instead of using two feature
subspaces, it uses random feature splits in order to train
different classifiers. The unlabeled data samples are labeled
and added to the training set based on the combination of
decisions of the classifiers trained on different feature splits.
The intuition behind this is that each classifier can com-
plement another one. RASCO has been shown to perform
better than Co-training method. In [22], instead of totally
random feature subspaces, the authors propose to produce
relevant random subspaces by means of drawing features
with probabilities proportional to their relevances measured
by the mutual information between features and class labels.
The results obtained on different datasets show that the
proposed algorithm, termed as Rel-RASCO, outperforms
both RASCO and Co-training methods.

Another similar semi-supervised learning approach to
RASCO, that uses support vector machines, was proposed
to be used for content based image retrieval [19]. Authors
in [19] propose to use bagging and random subspace strategy
in the same framework since they are especially effective
when the original classifier is not very stable and can
generate more diversified classifiers.

III. THE METHOD

In this section, we discuss our semi-supervised feature
importance evaluation method, that combines ideas from co-
training and RF with a new permutation-based out-of-bag
feature importance measure.

A. Committee construction

As discussed before, the most important condition for a
successful ensemble learning method is to combine models
which are different from each other, i.e. that make error
on different training examples. Thus, to maintain diversity
between committee members, we have employed two strate-
gies. Firstly, a well known ensemble method named RSM,
is employed to face the curse of dimensionality problem by
constructing multiple classifiers each one trained on different
subset of examples projected on a smaller feature set RSM®.
Secondly, the diversity is further maintained, by applying
the bootstrapping method. The formal description of our
approach is given in Algorithm 1. Given a set of labeled
training examples L, and a set of unlabeled training examples
U, described over the input space F' = {f1,..., fp}, our
approach constructs a committee according to the following
steps.

First, as described in the steps from 3 to 11 of the
Algorithm 1, the initial committee is constructed as follows :



Algorithm 1 SSFI(L,U, F, K, N,n, maziter, BaseLearn)

Require:
set of labeled training examples (L), set of unlabeled training examples (U), input space (F' = {f1,..., fp}), number of
classes (K'), committee size (/V), sample size (n), maximum number of iterations (maxiter) and base learning algorithm
(BaseLearn)
1: Get the class prior probabilities, {Pr}5_;
2: Set the class growth rate, ny =n X Pry where k =1,... K

Initial committee construction H

3 H=10

4: fori=1: N do

5. RSM® = randomly draw m features from F

6:  Lj,, = bootstrap sample from L projected onto RSM*
7 Uga = boot_strap s_ample from U projected onto RSM"*
8 L:)ob = L\Léag’ ;oly = U\Ugag

9 h'= BaseLearn(Ly,,)

1. H=HUAR'
11: end for

Committee refinement using SSL. ensemble method

12: t=1

13: repeat

14:  for each h' € H do

15: Tl'i‘ =SelectConfidentExamples(i, H, Ulfag, {ni Y )
16: Lyag = Loy U, Upgg = Upgg\'

17: h* = BaseLearn(Ly,,)

18:  end for

190 t=t+1

20: until (¢t > maxiter OR no committee member changes)

Feature relevance estimate
21: tmp =0
22: for each h' € H do
23 [Olatar Olapers Olen ) =BuildOOBMatrix(i, H, L}, ., U}, K)
24:  for each f € RSM"® do

25: randomly permute the values of f over the Olara examples to form OF .
26: for each = € O),,,,, do

27: if (h*(x) # O} pe(2)) then

2. imp(f) = imp(f) + O, ()

29: end if

30: end for

31:  end for

32: end for

33: rank the features f according to imp(f)
34: return F' and imp




For each committee member h’, Llim 9 and U, éa g are selected
with replacement, from L and U respectively, and projected
over RSM*, a feature subspace with m randomly selected
features (m < p). Then, each component h’ is constructed
according to a given baseLearner based on its corresponding
labeled training examples L o

Second, according to the steps from 12 to 20 in the Algo-
rithm 1, the co-training method trains each h‘, by asking a
subset of the concomitant classifiers to label examples from
Uéag for it, then a set m%, which consists of the 7n; most
confident examples assigned to each class k, is removed
from U, 4> and incrementally added into L, g+ Then a new
h' is retrained over the augmented set Li,,- A formal
description is given in the Algorithm 2, to describe how
the most confident examples are selected.

The co-training steps are repeated until a maximal num-
ber of iteration is reached or the committee is no longer
changing.

B. Confidence Measure

An important factor that affects the performance of any
Co-Training style algorithm is how to measure the confi-
dence about the labeling of an unlabeled example which
determines its probability of being selected. An inaccurate
confidence measure leads to adding mislabeled examples
to the labeled training set which leads to performance
degradation during the SSL process.

In the Algorithm 2, a formal description is given, to
explain how the most confidant examples are selected. In
order to improve the accuracy of a committee member
h*, its unlabeled examples, Uy, will be labeled by the
other components. More specifically, for a given unlabeled
example z, let H, be the concomitant ensemble of h*, which
contains only members where x is out of bag. In order to
guarantee the consistence of the learning process and an
accurate labeling for unlabeled data, we have chosen to label
a given unlabeled example x, only by the members h/ of
its corresponding H,. Thus, a given example z, in a given
iteration ¢, will have the same label for all the committee
members h' € H, where z is € Ugag.

Then, for each unlabeled example z € Uga o each commit-
tee member h’ € H,, will label it, in order to generate the
class probability distribution for the given x. Then a majority
voting method is applied over H,, in order to attribute the
final class label of x: As described in the Algorithm 3, each
classifier from H, is asked to label z, in order to generate
the class probability distribution for the given x. Then the
class which receives the maximal votes, is assigned to the
example x, with a label confidence equal to the degree of
agreement on the labeling, i.e. the number of classifiers that
agree on the label assigned by H,.

C. Out-of-bag based feature relevance measure

In our approach, the Random subspace method is com-
bined to bootstrapping. Actually, in each bootstrapped la-
beled and unlabeled set, almost 33% are left oob, i.e., they
are not used for the construction of the corresponding model.
We refer to them as U, and L! ,. Thus, these patterns can
be used to estimate non biased feature relevancies. The first
step consists to build the Out Of Bag information structure
O" = [Oliata> Olapers Okeny) as described in the Algorithm
4. For each classifier, we select the well predicted instances
from L! , and U! , using h' to form the set O'. Clearly,
for the labeled examples, an example is well predicted, if
the class label given by h’ corresponds to the real label. Its
label confidence is set to 1. For the unlabeled examples, the
right label is unknown. Also, the key idea is to assume that
an unlabeled example x is “well labeled” by A, if the label
given by h' is the label given by the majority vote given by
the committee H,. In that case, its label confidence will be
set to the degree of agreement for winning label among the
members of H,. Second, the values of the fth feature in
the O},,,» are randomly permuted to form O}, and h' is
used to predict the label of the new Out Of Bag patterns. The
procedure is repeated for every feature f € {f1,..., fp}. At
the end of the run, the sum of all the example’s confidence
for which the predicted label in the O;'Wm differs from the
initial predicted label in the initial O}, ,,, is computed. The
latter value is averaged over [V, i.e., the committee size. The
resulting value is taken as the importance of the feature f.
The key idea in our approach is the use of label’s confidence
in the evaluation of the feature importance. So the unlabeled
examples play an important role in the feature importance
evaluation.

Algorithm 2 SelectConfidentExamples(i, H, U}, {nx} KD

Require:
a committee (H), current committee member index
(?), pool of unlabeled examples (Ulfag), growth rate
({nk}f£,) and number of classes (K)
7wt =0)
for each z € U}, do

H,={hi € Hlz € U ,}

[label(z), con f(x)] =MeasureConfidence(x, H,, K)
end for
Rank the examples in U}, , by decreasing order of
confidence and select the n; most confident examples
for each class k
7: for each x € Uy, , do

if (x is selected as confident) then

AN AN R e

9: 7l =t U {xz,label(r)}
10:  end if
11: end for

12: return 7t




Algorithm 3 MeasureConfidence(x, H,,, K)
Require:
an unlabeled training example (z), a committee of
classifiers for which x is out-of-bag (H,) and number
of classes (K)
1: Apply H, to generate the class probability distribution
for z as P(x) = {pr(z) : k=1,..., K}
2: conf(x) = mazi<k<i P(x)
3: label(x) = argmazi<p<k P(x)
4: return conf(x) and label(x)

Algorithm 4 BuildOOBMatrix(i, H, L?

oob?’

Utﬁob’ K)

Require:
a committee (H), current committee member index (z),
out-of-bag labeled examples of h* (L! ,), out-of-bag
unlabeled examples examples of k' (U! ;) and number
of classes (K)
Ofiata = O’ O?abel = 0’ Oionf =0
for each x € L} , do
if (h'(z) ==L ,(z)) then
Otl,iata = O;iatq U {x}
Ozabel(x) = hl(x)
zonf (JJ) =1
end if
end for
for each z € Ul , do
H,={W € Hlz €U’}
[label(x), conf(x)] =MeasureConfidence(x, H,, K)
12 if (hi(x) == label(x)) then

R A A R ol e

_..—
= @

13: Oélata = OZlatq U {CC}

14 Olyp() = h(2)

5. Ol(e) = conf(a)

16:  end if

17: end for

18: return O}, Ofyyy and O,

D. Why should our approach work

There are several advantages with the proposed method.
First, SSFI will outperform RF when the available labeled
training set is small. RF relies on the available training data
for encouraging diversity. So if the size of the training set
is small as for semi supervised setting, then the diversity
among the ensemble members will be limited. Consequently,
the ensemble error reduction will be small. SSFI incre-
mentally adds newly-labeled examples to the training set.
Therefore, it can improve the diversity and the average error
of ensemble members constructed by RF and then improve
the feature ranking paradigm. Second, since SSFI uses a
diverse ensemble creation method, the measure of feature
importance based on ensemble is more accurate than using
a single classifier. Third, It is also worth mentioning that

Table I
THE DATASETS USED IN THE EXPERIMENTS

Datasets # patterns | # features | # classes | Reference
Baseshock 1993 4862 2 [24]
Colon 62 2000 2 [25]
Leukemia 73 7129 2 [26]
Madelon 2598 500 2 [23]
Orlraws 100 10304 10 [24]
Ovarian 54 1536 2 [27]
Pcmac 1943 3289 2 [24]
SMK-CAN 187 19993 2 [24]
Toxicology 171 5748 2 [24]
Warpar10P 130 2400 10 [24]

the way feature importance measure is performed, in our
approach differs, from the feature importance measure in RF
as well as its recent extensions: Co-forest [18] and semi-
supervised random forest [16]. In Co-forest, the variable
importance measure can not be estimated from OOB samples
since the bootstrap sample used to train each random tree
is discarded after the first iteration. In semi-supervised RF,
OOB data are all labeled. However, since the amount of
labeled data is very small, the diversity of oob data is
not sufficient. The out-of-bag estimates are biased as they
depend on too few data.

IV. EXPERIMENTS

In this section, we provide empirical results on several
benchmark and real high-dimensional datasets and com-
pare SSFI against over state-of-the-art semi-supervised and
supervised algorithms feature ranking algorithms. SSFI is
compared with three other feature selection methods : (1)
Breiman’s supervised random forests (RF) [12] taken as our
gold standard ensemble supervised feature ranking approach,
(2) the wrapper-type Forward Semi-Supervised Feature Se-
lection (FWES) [9], and (3) the filter-type Semi-Supervised
Feature Selection via Spectral Analysis (sSelect) [10]. Ten
benchmark and real labeled datasets, mostly selected from
the UCI Machine Learning Repository [23], and from ASU
feature selection Repository [24], were used to assess the
performance of SSFI. They are described in Table I. We se-
lected these datasets as they contain thousands features with
comparatively much smaller sample size (e.g., Leukemia,
Toxicology, Orll0p, ovarian, colon and SMK-CAN) and are
thus good candidates for feature selection. Most of these
datasets have already been used by other authors for testing
the performance of their feature selection algorithms [5],
(101, [9], [6].

A. Evaluation framework

To make fair comparisons, the same experimental settings
in [10] was adopted here for sSelect approach, i.e., a
neighborhood graph with a neighborhood size of 10, and
the \ value is set to 0.1. For FwFS, we set sizeF'S = 10,
SamplingRate = 0.5, SamplingTimes = 10, fnsteps =



6 and startfn = 5, as suggested by the authors in [9]. RF
and SSFI are tuned similarly. The number of features per
bag is |/p. The committee size N is computed using the
following formula:

ey

N =10 x ceil ( log(0.01) ) .

log(1—1/,/p)

This formula ensures that each feature is drawn ten times
at a confidence level of 0.01. Furthermore, the number of
iterations maxiter and the sample size n in our approach
are set to 10, and 1, respectively. As we have to compare
our approach with RF that uses decisiontree, the treefit
Matlab implementation of decision tree is used as the base
classifier in FwFS and SSFI for fair comparison. For each
dataset, experimental results are averaged over 10 runs. At
each run, the whole dataset is splitted (in a stratified way)
into a training partition with 2/3 of the observations and a
test partition with the remaining 1/3 observations. Training
set is further splitted into labeled and unlabeled datasets. As
in [9], [10], the labeled sample set L consists of randomly
selected 3 patterns per class, and the remaining patterns are
used as unlabeled sample set U.

In order to assess the quality of a feature subset ob-
tained with the aforementioned semi-supervised procedure,
we train a classifier (a decision tree) on the whole labeled
training data and evaluate its accuracy on the test data. The
latter is taken as the score for the feature subset. The details
of the evaluation framework are shown in Algorithm 5. As
mentioned above, the process specified in Algorithm 5 is
repeated 10 times. The obtained accuracy is averaged and
used for evaluating the quality of the feature subset selected
according to each algorithm. In Figure 1, we plotted the
accuracies of the above four approaches against the 10 most
important features.

B. Results

Figure 1 shows the plots for accuracy vs. different
numbers of selected features. As may be observed, SSFI
outperforms the other three methods by a noticeable margin,
especially on BaseHock, Leukemia, Madelon, PC-Mac and
Toxicology, and sSelect performs the worst. SSFI seems
to combine more efficiently the labeled and unlabeled data
for feature evaluation and it shows promise for scaling to
larger domains in a semi-supervised way in view of the
good performance on Leukemia, SMK-CAN and Orlraws.
More importantly, SSFI outperforms RF on most datasets
except on WarparlOP. However, we would like to mention
that the labeled training examples in Warpar1OP contains 30
examples for this dataset, which is an important amount of
data (25% of the whole dataset). As expected, we a general
trend that is observed in Figure 1 is that the more features
we select, the better accuracy we achieve. Again, this is
not surprising. However, it is worth mentioning that the
accuracy of SSFI generally increases swiftly at the beginning

Algorithm 5 Feature Evaluation Framework

1: for each dataset X do

2:  build a randomly stratified partition (7'r,Te), from
X where |Tr| = 2.|X| and |Te| = £.|X]|;

3:  Generate labeled data L by randomly sampling from
T'r 3 instances per class;

4 U=Tr\L;

5. SFsseiect = Apply sSelect with L 4+ U;

6: SFpyrs = Apply FwFS with L + U;

7.

8

9

SFsspr = Apply SSFI with L + U;
SFrr = Apply RF with L;
for i =1 to 10 step 1 do

10: Select top i features from SFsseiect, SFruwrs,
SFsspr and SFrp;

11 Trssetect = IIsF, gerees (TT);

12: Trrwrs = HSFFU/FS (T’l”);

13: Trssrr = HSFSSFI (T?”);

14: Trrr = HSFRF (TT);

15: Train the Baselearner using T7rsseciects 1 TFwFS,
Trssrr and Trrp and record accuracy obtained
on Te;

16:  end for

17: end for

(the number of selected feature is small) and slows down
at the end. These experiments suggest that SSFI ranks the
features properly and that a classifier can achieve a very
good classification accuracy with the top 5 features while the
other methods require more features to achieve comparable
results. Note also that the high computational complexity of
FwFS is a major drawback with large dimensional data. In
addition, the accuracy of FwFS often tend to decrease as
more features are included.

Fore sake of completeness, we also averaged the accuracy
for different numbers of selected features. The averaged
accuracies between SSFI and the other methods over the
top 10 features are depicted in Table II. Again, as may
be observed, SSFI clearly outperforms RF, Sselect and Fw-
semiFS by a noticeable margin, on all datasets except for
Warpar10P where RF works the best. SSFI is significantly
better then all three approaches (p < 0.02) according to the
Wilcoxon signed-rank test (unsufficient number of datasets
and classifiers to apply the Friedman test) [28]. Finally, these
experiments confirm the ability of the proposed permutation
feature importance measure to rank the relevant features ac-
curately, compared to a powerful fully supervised approach
like RF, by exploiting efficiently the information from the
unlabeled data.

V. CONCLUSION

We discussed a new semi-supervised feature importance
evaluation method, called SSFI, combining ideas from co-



Table II
ACCURACY AVERAGED OVER THE 10 MOST IMPORTANT FEATURES

data SSFI FwFS RF sSelect
Basehock 0.6080 | 0,5193 | 0,5445 | 0,5064
Colon 0,5645 | 0,5404 | 0,5327 | 0,5431
Leukemia 0,7707 | 0,6396 | 0,6950 | 0,6246
Madelon 0,5580 | 0,5024 | 0,5076 | 0,5008
Orlraws 0,6952 | 0,6200 | 0,6563 | 0,6145
Ovarian 0,8372 | 0,7444 | 0,7583 | 0,6327
Pcmac 0,5953 | 0,5312 | 0,5120 | 0,5123
SMKCAN | 0,5671 | 0,5339 | 0,5408 | 0,5275
Toxicology | 04777 | 0,3656 | 0,4008 | 0,3435
WarparlOP | 0,4432 | 0,3952 | 0,4876 | 0,2966

training and random forests with a new permutation-based
out-of-bag feature importance measure. Both labeled and
unlabeled out-of-bag instances were used to evaluate the
relevance of the features. Empirical results on ten benchmark
datasets indicated that SSFI lead to significant improvement
over state-of-the-art semi-supervised algorithms. More im-
portantly, SSFI was shown to outperform Random Forests
on several datasets in terms of feature selection accuracy.
The method also shows promise to deal with very large
domains. Future substantiation through more experiments
on biological databases containing several thousands of
variables are currently being undertaken.
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Figure 1. Accuracy evaluated on a test set as the number of most relevant features fed as input to the classifier is varied.



