
CSCI 4152— Natural Language Processing
Project 2000

 A comparison of Four Keyphrase extraction
Algorithms

Atreya Basu
April 14, 2000

A comparison of four Keyphrase extraction Algorithms Page ii

Abstract
Keyphrase extraction is becoming an important topic in computing. Keyphrases are not

only useful in searching for documents but in also for cataloguing documents and they are

important for Machine Learning tasks. Instead of generating Keyphrases by hand it would

be ideal to automate this process. There are numerous methods of keyword and keyphrase

extraction, and most perform well. In this report I examine the performance of four

Keyphrase extraction algorithms; KEA, Microsoft Word 2000 AutoSummarize, NRC

Extractor and the Lazy Heading Search. The performance of the algorithms is measured

using the ‘recall’, ‘precision’, ‘F-measure’ and ‘fallout’. The training data for the

experiment was the last 8 chapters of the book, ‘Boilers and Burners— Design and theory’

(Basu et. al. 1999b). The test data was the first 10 chapters of the same book. Only the

KEA and NRC Extractor algorithms were learning algorithms and needed training. The

experiment showed that on the test data the non-learning algorithms, specifically Microsoft

Word 2000’s AutoSummarize and the Lazy Heading Search, gave the overall best

extractions.

Table of Contents

Introduction ___ 1

Applications of keyphrases___ 4

Keyphrases for Metatdata ___ 4

Keyphrases for Highlighting ___ 4

Keyphrases for Indexing___ 4

Keyphrases for Interactive Query Refinement ____________________________ 5

Keyphrases for Web Log Analysis_______________________________________ 5

Criteria ___ 6

Corpora___ 8

Algorithms __ 9

KEA ___ 9

Microsoft Word 2000 AutoSummarize ___________________________________ 10

NRC’s Extractor ___ 11

Lazy Heading Search ___ 13

Results__ 15

Raw numbers__ 15

Remark on the results___ 15

Performance of the algorithms__ 16

The affect of corpus size ___ 16

Conclusions ___ 17

References __ 19

A comparison of four Keyphrase extraction Algorithms Page 1

Introduction

A person searching for a document in a library often does not know specific details about

their target. That is, a person could be searching for documents related to ‘Gardening’ may

not know the exact title of the document, its author, or the subject/category it is located or

filed under. What they do know is that the body of the document contains information

about Gardening. This is the case for most of our document searches; we know the content

we are searching for but nothing else. It is unrealistic for searcher to know anything but the

content they are looking for— However it is also impractical for cataloguing systems to

search the body of a document to see if its content matches the subject or contents in

question.

Document keywords are a solution to the above dilemma. Cataloguing systems simply

need to keep a list of keywords for every document; where the keywords imply the content

of the document.

The problem with keywords is two fold. Keywords are arduous to encode by hand, and a

bag of keywords do not always give precise matching. Take our previous query as an

example. I wish to find documents relating to Gardening— As in home gardening. A

search of keywords in a catalogue produces many documents including some with the

following titles, ‘Ancient Babylonian Gardens’, ‘The rise and fall of Gardenia, a corporate

story’, ‘Home Gardening, a how-to book’, and ‘Louis Garden, comic genius or bad social

taste’. Although fictions this example illustrates a likely scenario. Only one of the

returned documents is of use to us, ‘Home Gardening, a how-to book’. Of course the

A comparison of four Keyphrase extraction Algorithms Page 2

search could have been more precise if we added the search-word, ‘home’ to ‘gardening’.

However to narrow the search scope the searcher must have some knowledge about the

documents they are searching for; more precisely the searcher must know which keywords

could occur in ‘other’ documents.

Our problem, therefore, is two fold; Automatic generation of keywords and a precise way

of searching for documents.

An obvious solution to the problem of search results outside your domain of interest is to

match more keywords. For better results we could match a series of keywords called a

keyphrase. A keyphrase has the advantage of containing not just keywords but also word

order. A keyphrase is simply a phrase such as, ‘Home networking’, or ‘Efficiency of coal

burning boilers’.

The problem of automatically generating keywords is now the problem of automatically

generating keyphrases.

Keyphrase extraction is becoming an important topic in computing. Usually an author

provides a list of keyphrases for their document. A keyphrase captures the main topics

discussed in a document. Although not an overly laborious task, it would be useful to have

an automated process. This has been one of the promises of computers— Message

understanding. While other promises, such as speech understanding or even speech

A comparison of four Keyphrase extraction Algorithms Page 3

reorganization has yet to bear true fruitarian keyphrase extraction appears to be very

promising.

 Keyphrases are not only useful in searching for documents but in also for cataloguing

documents and message understanding in Machine Learning tasks.

 Instead of generating Keyphrases by hand it would be ideal to automate this process. There

are numerous methods of keyword and keyphrase extraction, and most perform well. In

this report I examine the performance of four Keyphrase extraction algorithms; KEA,

Microsoft Word 2000 AutoSummarize, NRC Extractor and the Lazy Heading Search.

The performance of the algorithms is measured using the ‘recall’, ‘precision’, ‘F-measure’,

and ‘fallout.’ The training and test data for the experiment was the book, ‘Boilers and

Burners— Design and theory’ (Basu et. al. 1999b). Each algorithm was tested with one

chapter at a time against the hand created keyphrases. The KEA and NRC Extractor

algorithms were learning algorithms and could perform better after being trained. To

accommodate these algorithms the last eight chapters were used as training data. This

provided sufficiently large training copra while leaving enough material to give statistically

valid test data. The last eight chapters were used because they were narrower in scope

leading to better extraction. The testing data was the first ten chapters— as these chapters

were more general, they should be more difficult extraction.

A comparison of four Keyphrase extraction Algorithms Page 4

Applications of keyphrases

It is important to know the motivation behind the research. For that reason this section

looks at some applications of Keyphrase extraction1.

Keyphrases for Metatdata
The growth of the Internet and corporate intranets has created a document management

problem. Many researchers believe that Metadata is essential to address this problem.

Metadata is meta-information about a document or set of documents. There are several

standards for document metadata, including the Dublin Core Metadata Element Set

(championed by the US Online Computer Library Center), the MARC (Machine-Readable

Cataloging) format (maintained by the US Library of Congress), the GILS (Government

Information Locator Service) standard (from the US Office of Social and Economic Data

Analysis), and the CSDGM (Content Standards for Digital Geospatial Metadata) standard

(from the US Federal Geographic Data Committee). All of these standards include a field

for keyphrases (although they have different names for this field).

Keyphrases for Highlighting
Keyphrases can be used to highlight interesting passages in a document automatically. This

helps human readers skim the document.

Keyphrases for Indexing
An alphabetical list of keyphrases, taken from a collection of documents or from parts of a

single long document, can serve as an index.

1 Turney 1999.

A comparison of four Keyphrase extraction Algorithms Page 5

Keyphrases for Interactive Query Refinement
Using a search engine is often an iterative process. The user enters a query, examines the

resulting hit list, modifies the query, then tries again. Most search engines do not have any

special features that support the iterative aspect of searching however.

Keyphrases for Web Log Analysis
Web site managers often want to know what visitors to their site are seeking. Most web

servers have log files that record information about visitors, including the internet address

of the client machine, the file that was requested by the client, and the date and time of the

request. There are several commercial products that analyze these logs for web site

managers. Typically these tools will give a summary of the general traffic patterns and

produce an ordered list of the most popular files on the web site.

A comparison of four Keyphrase extraction Algorithms Page 6

Criteria

The algorithms in this project are evaluated on four criteria, precision, recall, fallout and F-

measure (Rijsbergen. 1979:174).

true negative (d)

False
positive
 (c)

True
positive
(a)

False
negative
(b)

Table 1: The confusion matrix for keyphrase classification.
 Classification as a Keyphrase by

the Human
Classified as Not a Keyphrase by
the Human

Classified as a Keyphrase by the
Machine a b

Classified as Not a Keyphrase by
the Machine c d

precision =
ba

a
?

 (1)

Precision is an estimate of the probability that, a keyphrase (as chosen by the computer)

will be an actual keyphrase (as chosen by a human). I can also be thought of as the

proportion of the selected items that the system got right.

recall =
ca

a
?

 (2)

Recall is an estimate of the probability that, a keyphrase for a document (as chosen by the

human) will be classified as such by the set of keyphrases chosen by the computer. It can

also be thought of as the proportion of the target items that the system selected.

A comparison of four Keyphrase extraction Algorithms Page 7

 fallout =
db

b
?

 (3)

Fallout is the measure of falsely identified keyphrases. In our case fallout is an important

measure because the extraction must produce keyphrases that represent the document.

Getting a wrong keyphrase might have dire consequences for an application. In the case of

classification, incorrect keyphrases would lead to improper classification of a document.

F-measure =
cba

a
??

?
? 2

2
recallprecision
recall*precision*2

 (4)

The F-measure can be thought of as the combination of precision and recall into a single

measure of overall performance. The F-measure seems to give preference to true positive

results, and in our case this is exactly what we are interested in.

The use of these measures is justifiable criteria because of the following reasons (Manning,

Schutze, 1999)

? ? Accuracy figures are not very sensitive to the small, but interesting numbers a, b,
and c, where as precision and recall are. You can get high accuracy simply by
selecting nothing.

? ? Other things being equal, the F measure prefers results with more true positives,
whereas accuracy is sensitive only to the number of errors. This bias normally
reflects our intuitions: We are interested in finding things, even at the cost of also
returning some junk.

? ? Using precision and recall, one can give a different cost to missing target items
versus selecting junk.

These four criteria are used to rate the performance of the four algorithms.

A comparison of four Keyphrase extraction Algorithms Page 8

Corpora

The corpora for the project is, ‘Boilers and Burners— Design and theory’ by Basu, Jestin

and Kefa. The book is composed of eighteen chapters. The book is a textbook on fossil

burning boilers and their burners. This book was chosen for testing because the one of

authors (Basu) could build the keyphrases for each chapter.

The first ten chapters of the book were used to test each algorithm. This is because the

beginning chapters are more general than the later chapters. A general chapter should be

more difficult to extract keyphrases from, as there is a greater number of possible

keyphrases for the chapter. The last eight chapters were used as training data for the

learning algorithms, KEA and NRC’s Extractor. The last eight chapters were on specific

topics, and therefore should be relatively easy to extract keyphrases from. That is the

reason they were used for training.

Both training and testing consisted of extracting one chapter at a time. The extracted

keyphrases for a chapter was compared against what the author gave as the keyphrase for

the same chapter.

A comparison of four Keyphrase extraction Algorithms Page 9

Algorithms

KEA
The KEA algorithm, named after one of New Zealand’s native parrots, is a learning

algorithm. KEA automatically extracts keyphrases form the full text of documents. The

set of all candidate-parses in a document are identified using rudimentary lexical

processing. Features are computed for each candidate, and machine learning is used to

generate a classifier that determines which candidate should be assigned as keyphrases.

Two features are used in the standard algorithmi; TF.IDF and position of the first

occurrence. The TF.IDF require a corpus of text from which document frequencies can be

calculated; the machine-learning phrase requires a set of training documents with

keyphrases assigned.

The tables below show the titles and keyphrases for three computer science technical

reports. Keyphrases extracted by Kea are listed, along with those assigned by the author.

Phrases that both the Author and Kea chose are in italics. Generally, the author phrases

look a lot better. Kea occasionally chose simple phases like cut and gauge that are not

really appropriate. Kea assigns the keyphrase garbage to the third paper, a classification the

author is unlikely to agree with.

Protocols for secure,
atomic transaction
execution in electronic
commerce

Neural multigrid for gauge
theories and other
disordered systems

Proof nets, garbage, and
computations

Author Kea Author Kea Author Kea
anonymity atomicity disordered disordered cut- cut

A comparison of four Keyphrase extraction Algorithms Page 10

atomicity
auction
electronic
commerce
privacy
real-time
security
transaction

auction
customer
electronic
commerce
intruder
merchant
protocol
security
third party
transaction

systems
gauge fields
multigrid
neural
multigrid
neural
networks

gauge
gauge fields
interpolation
kernels
length scale
multigrid
smooth

elimination
linear logic
proof nets
sharing
graphs
typed
lambda-
calculus

cut
elimination
garbage
proof net
weakening

KEA was available for download from the author’s site and installed on Borg. The

program consists of a Perl program that performs some pre-parsing, a C implementation of

the Lovins stemmer and finally a Java implementation of the algorithm. Some slight

modifications were needed to the Perl code and the Lovins stemmer had to be compiled for

Solaris.

To run the program I first had to covert all of the chapters to text files, as the authors

suggest gives the best performance. KEA is capable of batch processing, so for training, I

simply provided, on the command-line, the names of the chapter files and KEA produced

the keywords. Similarly, for testing I provided the chapter filenames on the command-line

and KEA produced the keyphrases in a separate file for each chapter.

Microsoft Word 2000 AutoSummarize
Very little can be said about MS Word’s AutoSummarize function. There is no literature

discussing the algorithm Microsoft uses for keyphrase extraction.

A comparison of four Keyphrase extraction Algorithms Page 11

Word’s AutoSummarize feature was the most convenient of all the algorithms to use. This

is because the corpus was written in Word. To perform keyphrase extraction I had to select

Tools ? AutoSummarize and a dialog with extraction options was presented.

I chose to display the extracted keyphrases on a separate document. Word also has the

option of highlighting keyphrases in the document.

It should be noted that although Word’s AutoSummarize feature was the easiest to use it

was the most inconsistent. Word would extract table rows for example. All other

algorithms ignored tables. This is especially troubling since the original format of the

corpus was native to Word.

NRC’s Extractor
The National Research Council of Canada’s Extractor algorithm was available on their web

site. Extractor works in the following manner:

A comparison of four Keyphrase extraction Algorithms Page 12

1. Find Single Stems: Make a list of all the words in the input text. Drop words with
less than three characters. Drop stop words. Convert all remaining words to lower
case.

2. Score Single Stems: For each unique stem, count how often the stem appears in the
text and note when it first appears. Assign a score to each stem. The score is the
number of times the stem appears in the text, multiplied by a factor. If the stem first
appears before FIRST_LOW_THRESH, then multiply the frequency by
FIRST_LOW_FACTOR. If the stem first appears after FIRST_HIGH_THRESH, then multiply
the frequency by FIRST_HIGH_FACTOR.

3. Select Top Single Stems: Rank the stems in order of decreasing score and make a list
of the top NUM_WORKING single stems.

4. Find Stem Phrases: Make a list of all phrases in the input text. Stem each phrase by
truncating each word in the phrase at STEM_LENGTH characters.

5. Score Stem Phrases: For each stem phrase, count how often the stem phrase appears
in the text and note when it first appears. Assign a score to each phrase, exactly as in
step 2.

6. Expand Single Stems: For each stem in the list of the top NUM_WORKING single
stems, find the highest scoring stem phrase of one, tow or three stems that contain the
given single stem. The result is a list of NUM_WORKING stem phrases. Keep this list
ordered by the score calculate din step 2.

7. Drop Duplicates: The list of the top NUM_WORKING stem phrases may contain
duplicates. Delete duplicates form the ranked list of NUM_WORKING stem phrases,
preserving the highest ranked phrase.

8. Add Suffixes: For each of the remaining stem phrases, find the most frequent
corresponding whole phrase in the input text.

9. Add Capitals: For each of the whole phrases find the best capitalization.

A comparison of four Keyphrase extraction Algorithms Page 13

10. Final Output: We now have an ordered list of mixed-case phrases with suffixes

added. The score calculated in step 2 orders the list. The top phrases in the list are
returned.

Lazy Heading Search
The lazy heading search algorithm is of my own design. It works on the assumption that

the headings in a document give some information about the content of text beneath it. The

Lazy Heading Search algorithm looks at the headings in an HTML document and ranks

them using the method described below.

The program searches for an occurrence of h1 tags. The region between two h1 tags, or

between a h1 tag and the bottom of a document (in the case of the last tag) is considered a

frame. The frame includes the text of the h1 tag on top of it but not below it because we

are interested in a title and t he text under it. The text in the frame has all stop words

removed and the remaining words stemmed. Then a score is attached to the title by looking

at the words remaining in the title’s text and calculating their frequency over the entire

frame. If the frequency is high a higher score is given to the title.

Pre-processing of this process was more difficult then first considered, as I had to manually

ensure that each heading title was properly placed in the h1 tag and sub headings were in

the h2 tag etc. I also needed to ensure that the body text was in the ‘normal’ format;

otherwise my program would ignore it. This problem is caused by the conversion of a

chapter from Word format to HTML. For example, the author for a chapter might have

defined his own style for some text and when the chapter is converted, that style is stored in

a stylesheet (because it wasn’t one of the default styles). My program was unable to read

A comparison of four Keyphrase extraction Algorithms Page 14

stylesheets to parse a document.

A comparison of four Keyphrase extraction Algorithms Page 15

Results

Raw numbers

Remark on the results
I was quite surprised at the quality of the extracted keyphrases in general. With the

exception of Microsoft Word’s AutoSummarize every algorithm extracted sensible

keyphrases. That is keyphrases that could arguably be valid for a chapter. NRC’s

University of Waikato NRC Microsoft
Kea Extractor AutoSummarize Lazy heading search

Chapter 1 Recall 0.70 0.50 1.00 1.00
Precision 0.70 0.57 1.00 0.77
Fmeasure 0.70 0.53 1.00 0.87

Chapter 2 Recall 0.20 0.63 0.80 0.80
Precision 0.25 0.50 0.73 0.62
Fmeasure 0.22 0.56 0.76 0.70

Chapter 3 Recall 0.20 0.20 0.60 1.00
Precision 0.29 0.29 0.67 0.67
Fmeasure 0.24 0.24 0.63 0.80

Chapter 4 Recall 0.30 0.63 0.80 0.90
Precision 0.60 0.71 1.00 0.82
Fmeasure 0.40 0.67 0.89 0.86

Chapter 5 Recall 0.20 0.75 0.30 0.80
Precision 0.33 0.75 0.43 0.80
Fmeasure 0.25 0.75 0.35 0.80

Chapter 6 Recall 0.40 0.75 0.30 0.80
Precision 0.44 0.60 0.50 0.67
Fmeasure 0.42 0.67 0.38 0.73

Chapter 7 Recall 0.40 0.50 0.30 1.00
Precision 0.36 0.44 0.43 0.67
Fmeasure 0.38 0.47 0.35 0.80

Chapter 8 Recall 0.40 0.25 0.40 1.00
Precision 0.57 0.33 0.57 0.71
Fmeasure 0.41 0.29 0.47 0.83

Chapter 9 Recall 0.70 0.25 0.30 0.60
Precision 0.64 0.29 0.50 0.55
Fmeasure 0.67 0.27 0.38 0.57

Chapter 10 Recall 0.50 0.38 0.50 1.00
Precision 0.56 0.43 0.56 0.71
Fmeasure 0.53 0.40 0.53 0.83

A comparison of four Keyphrase extraction Algorithms Page 16

Extractor algorithm would have preformed much better had it not given out as many

keywords. The Extractor algorithm often would produce keywords instead of proper

keyphrases, especially for the first few testing chapters.

Performance of the algorithms
Surprisingly, NRC’s Extractor algorithm was the best performer in terms of speed. This is

surprising because the Extractor program was web based. Microsoft Word’s

AutoSummarize was the second best performer in terms of speed. My algorithm was

relatively slow, mostly due to the reading operation. I suspect that if I had used some sort

of buffered input stream the algorithm would have preformed faster. The actual parsing

and extraction was relatively fast because I used Sun Microsystem’s

javax.swing.text.HTMLEditorKit parser, which is a relatively fast parser. KEA

preformed the slowest, even though it was run locally on Borg. Although I was unsure of

the load on Borg at the time, I doubt that is too much of a factor as the Perl pre-processing

probably caused most of the slow down.

The affect of corpus size
NRC’s extractor algorithm and my Lazy heading search algorithm performed well the

regardless of corpus size. Microsoft’s AutoSummarize was the most affected by size. The

larger the corpus the worse the results were using AutoSummarize. Similarly KEA

performed worse when the corpus size was large.

A comparison of four Keyphrase extraction Algorithms Page 17

Conclusions

Of the four algorithms evaluated the non-learning algorithms preformed best overall. This

is odd considering the learning algorithms were trained on the same corpus. The Extractor

algorithm was the most consistent in producing good keyphrases, although the

AutoSummarize produced more correct keyphrases.

The AutoSummarize algorithm was the most interesting for two reasons, its inconsistency

and the fact that I knew nothing of the way the algorithm worked.. AutoSummarize would

produce wonder keyphrases in one instance then return a table row. This is very strange,

considering that the original document was in Word’s native format. The inconsistency of

AutoSummarize discourages me from using it for future work.

The KEA algorithm was a bit of a disappointment also. Even though it ran on a local

machine it was slow and preformed in the middle of the pack in terms of extracted

keyphrases. The KEA algorithm is currently being used at the New Zealand Digital

Library.

My Lazy Heading Search algorithm worked well for this specific corpus. I ran it using a

Ethics paper on software piracy and although it produced some intelligible keyphrases, it

was the worst performer. The other three algorithms extracted more sensible keyphrases.

The reason is obvious. Because my algorithm assumes that the heading of a section will be

the keyphrase for the preceding text— something valid only for technical documents and

not always that too. If I restrict the domain of extraction to technical documents, then this

A comparison of four Keyphrase extraction Algorithms Page 18

makes a more valid algorithm. Currently there are some additions to the algorithm that

could possibly make it better. One is to rate a heading text higher if there are sub-headings

under it. This works with the assumption that important sections will probably have more

sub-sections.

Overall, keyphrase extraction seems very promising as a field of research. It appears to be

close to fulfilling a part of the promise of computer message understanding. I suspect in

the near future keyphrase creation will be a wholly automatic process.

A comparison of four Keyphrase extraction Algorithms Page 19

References

Turney, P. (1999). Learning to Extract Keyphrases from Text. Internal paper, Institute for

Information Technology, National Research Council Canada, NRC-41622

Turney, P., (1999). Learning Algorithms for Keyphrase Extraction. Submitted to

Information Retrieval – INRT 34-99

Turney P., (1997). Extraction of Keyphrases from Text: Evaluation of Four Algorithms.

Institue for Information Technology, National Research Council Canada, ERB-1051.

Belew, R., Amy, M. Exporting Phrases: A statistical Analysis of Topical Language.

Cognitive Computer Science Research Group, Computer Science & Engr. Dept.
(0114) University of California – San Diego

Frank E., Paynter, G., Witten, I., Gutwin, C., and Nevill-Manning, C. (1999) Domain-

Specific Keyphrase Extraction. Proc. DL '99, pp. 254-256. (Poster presentation.)

i Witten I.H., Paynter G.W., Frank E., Gutwin C. and Nevill-Manning C.G. (1999) “KEA: Practical automatic
keyphrase extraction”

