Introduction to Matlab

By:Mohammad Sadeghi

*Dr. Sajid Gul Khawaja Slides has been used partially to prepare this presentation

Outline:

- What is Matlab?
- Matlab Screen
- Basic functions
- Variables, matrix, indexing
- Operators (Arithmetic, logical)
- Basic Plotting

What is Matlab?

- Matlab is basically a high level language which has many specialized toolboxes for making things easier for us
- How high?

What is Matlab?

- MatLab : Matrix Laboratory
- Numerical Computations with matrices
- Every number can be represented as matrix
- Why Matlab?
- User Friendly (GUI)
- Easy to work with
- Powerful tools for complex mathematics
- Matlab has extensive demo and tutorials to learn by yourself
- Use help command

What are we interested in?

- Matlab is too broad for our purposes in this course.
- The features we are going to require is

Matlab

Matlab Screen

Variables

- No need for types. i.e.,

- All variables are created with double precision unless specified and they are matrices.

```
Example:
>>x=5;
>>x1=2;
```

- After these statements, the variables are 1×1 matrices with double precision

Variables (con't...)

Special variables:

- ans : default variable name for the result
- pi: $\pi=3.1415926 \ldots \ldots \ldots$.
- eps: $\in=2.2204 \mathrm{e}-016$, smallest amount by which 2 numbers can differ.
- Inf or inf : ∞, infinity
- NaN or nan: not-a-number

Elementary Math Function

- Abs(), sign()
- $\operatorname{Sign}(\mathrm{A})=\mathrm{A} . / \operatorname{abs}(\mathrm{A})$
$-\operatorname{Sin}(), \cos (), \operatorname{asin}(), \operatorname{acos}()$
$-\operatorname{Exp}(), \log (), \log 10()$
- Ceil(), floor()
- Sqrt()
- Real(), imag()
\wedge

Array, Matrix

- a vector $\quad x=\left[\begin{array}{llll}1 & 2 & 5 & 1\end{array}\right]$
$\mathrm{x}=$ $1 \quad 2 \quad 5 \quad 1$
- a matrix $\quad \mathrm{x}=\left[\begin{array}{llllllll}1 & 2 & 3 ; & 5 & 1 & 4 ; & 3 & -1\end{array}\right]$
$x=$

1	2	3
5	1	4
3	2	-1

- transpose $y=x^{\prime}$

$$
y=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 5 \\
& 1
\end{aligned}
$$

Long Array, Matrix

$$
\begin{aligned}
& \text { - } \quad t=1: 10 \\
& t= \\
& \begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& \mathrm{k}=2:-0.5:-1 \\
& \mathrm{k}= \\
& 21.5 \quad 1 \quad 0.5 \quad 0 \quad-0.5 \quad-1 \\
& B=[1: 4 ; 5: 8] \\
& \mathrm{x}= \\
& \begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}
\end{aligned}
$$

Vectors (con’t...)

Some useful commands:

$x=$ start:end	create row vector x starting with start, counting by one, ending at end
$x=$ start:increment:end	create row vector x starting with start, counting by increment, ending at or before end
linspace(start,end,number)	create row vector x starting with start, ending at end, having number elements
length (x)	returns the length of vector x
$y=x^{\prime}$	transpose of vector x
dot (x, y)	returns the scalar dot product of the vector x and y.

Vectors (con't...)

- Vector operation:
$\square \operatorname{Max}(), \min (): \max /$ min element of a vector
- Mean(), median()
- Std(), var(): standard deviation and variance
- Sum(), prod(): sum/product of elements
- Sort(): sort in ascending order

Generating Vectors from functions

- zeros(M,N) MxN matrix of zeros

$$
\begin{array}{rlr}
\mathrm{x}= & \operatorname{zeros}(1,3) \\
\mathrm{x}= & \\
0 & 0 & 0
\end{array}
$$

- ones(M,N) MxN matrix of ones

$$
\begin{array}{rll}
\mathrm{x} & = & \operatorname{ones}(1,3) \\
\mathrm{x} & = & \\
1 & 1 & 1
\end{array}
$$

- rand(M,N) MxN matrix of uniformly distributed random numbers on $(0,1)$

$$
\begin{aligned}
& x=\operatorname{rand}(1,3) \\
& x= \\
& 0.9501 \quad 0.2311 \quad 0.6068
\end{aligned}
$$

Matrix Index

- The matrix indices begin from 1 (not 0 (as in C))
- The matrix indices must be positive integer

Given:

$A(-2), A(0)$
Error: ??? Subscript indices must either be real positive integers or logicals.
A $(4,2)$
A(:, 2)=[]

Error: ??? Index exceeds matrix dimensions.
Delete second column

Concatenation of Matrices

- $x=\left[\begin{array}{ll}1 & 2\end{array}\right], y=\left[\begin{array}{ll}4 & 5\end{array}\right], z=\left[\begin{array}{ll}0 & 0\end{array}\right]$

$$
A=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

1245
$B=[x ; y]$

12
45
$\mathrm{C}=[\mathrm{xy} ; \mathrm{z}]$
Error:
??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

+ addition
- subtraction
* multiplication
/ division
^ power
- complex conjugate transpose

Matrices Operations

Addition	Subtraction	Product	Transpose
> ${ }^{\text {P }}=A+\mathrm{B}$	$\rangle \mathrm{Y}=\mathrm{A}-\mathrm{B}$	>> $\mathrm{Z}=\mathrm{A} * \mathrm{~B}$	> ${ }^{\text {a }}=\mathrm{R}^{\prime}$
$\mathrm{x}=$	$\mathrm{Y}=$	$\mathrm{z}=$	$\mathrm{T}=$
$4 \quad 7 \quad 5$	$\begin{array}{lll}-2 & -3 & 1\end{array}$	$\begin{array}{lll}22 & 27 & 45\end{array}$	14
$9 \quad 7 \quad 14$	$\begin{array}{llll}-1 & 3 & -2\end{array}$	$55 \quad 66 \quad 102$	258
$10 \quad 14 \quad 18$	$4 \quad 2 \quad 0$	$88 \quad 105159$	$3 \quad 6 \quad 9$

Matrices (con't...)

more commands

Transpose	$B=A^{\prime}$
Identity Matrix	eye $(\mathrm{n}) \rightarrow$ returns an $\mathrm{n} \times \mathrm{n}$ identity matrix eye $(m, n) \rightarrow$ returns an $m \times n$ matrix with ones on the main diagonal and zeros elsewhere.
Addition and subtraction	$\begin{aligned} & C=A+B \\ & C=A-B \end{aligned}$
Scalar Multiplication	$B=\alpha A$, where α is a scalar.
Matrix Multiplication	$\mathrm{C}=\mathrm{A}^{*} \mathrm{~B}$
Matrix Inverse	$B=\operatorname{inv}(A), A$ must be a square matrix in this case. rank $(A) \rightarrow$ returns the rank of the matrix A.
Matrix Powers	$B=A .^{\wedge} \rightarrow$ squares each element in the matrix $C=A^{*} A \rightarrow$ computes $A^{*} A$, and A must be a square matrix.
Determinant	$\operatorname{det}(A)$, and A must be a square matrix.

A, B, C are matrices, and m, n, α are scalars.

Operators (Element by Element)

.* element-by-element multiplication
./ element-by-element division
.\wedge element-by-element power

The use of "." - "Element" Operation

$$
\begin{aligned}
& A=[123 ; 514 ; 321] \\
& \text { A = } \\
& \begin{array}{rrr}
1 & 2 & 3 \\
5 & 1 & 4 \\
3 & 2 & -1
\end{array} \\
& \left.\begin{array}{lll}
x=A(1,:) \\
1 & 2 & 3
\end{array} \left\lvert\, \begin{array}{lll}
y=A(3,:) \\
y= & 4 & -1
\end{array}\right.\right) \\
& d=x . \wedge 2 \\
& d= \\
& \mathrm{K}=\mathrm{x}^{\wedge} 2 \\
& \text { Erorr: } \\
& \text { ??? Error using ==> mpower Matrix must be square. } \\
& B=x^{*} y \\
& \text { Erorr: } \\
& \text { ??? Error using ==> mtimes Inner matrix dimensions must agree. }
\end{aligned}
$$

Solutions to Systems of Linear Equations

- Example: a system of 3 linear equations with 3 unknowns (x_{1}, x_{2}, x_{3}):

$$
\begin{aligned}
3 x_{1}+2 x_{2}-x_{3} & =10 \\
-x_{1}+3 x_{2}+2 x_{3} & =5 \\
x_{1}-x_{2}-x_{3} & =-1
\end{aligned}
$$

Let :

$$
A=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-1 & 3 & 2 \\
1 & -1 & -1
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad b=\left[\begin{array}{c}
10 \\
5 \\
-1
\end{array}\right]
$$

Then, the system can be described as:

$$
A x=b
$$

Integral and derivative

- $\operatorname{int}\left(-2^{*} x /\left(1+x^{\wedge} 2\right)^{\wedge} 2, x\right)$
- $\operatorname{int}\left(-2^{*} x /\left(1+x^{\wedge} 2\right)^{\wedge} 2, x, 2,4\right)$
- quad(@(x)x.^5.*exp(-x).**in(x),2,4)
- $\operatorname{Diff}\left(-2^{*} x /\left(1+x^{\wedge} 2\right)^{\wedge} 2, x\right)$
- $\operatorname{Diff}\left(-2^{*} x /\left(1+x^{\wedge} 2\right)^{\wedge} 2, x, 2,4\right)$

Solve equations

- $\operatorname{solve}(@(x) \sin (x)==1, x)$
- syms u v
- [solv, solu] = solve([2* $u^{\wedge} 2+v^{\wedge} 2==0, u-v==$ 1], [$v, u]$)

Solutions to Systems of Linear Equations (con't...)

- Solution by Matrix Inverse:

$$
\begin{aligned}
& A x=b \\
& A^{-1} A x=A^{-1} b \\
& x=A^{-1} b
\end{aligned}
$$

- MATLAB:

$$
\left.\begin{array}{l}
\gg A=\left[\begin{array}{ll}
3 & 2
\end{array}-1 ;-132 ; 1-1-1\right.
\end{array}\right] ;
$$

- Solution by Matrix Division:

The solution to the equation

$$
A x=b
$$

can be computed using left division.

- MATLAB:

$$
\left.\left.\begin{array}{l}
\gg A=\left[\begin{array}{ll}
3 & 2
\end{array}-1 ;-132 ; 1-1-1\right] ; \\
\gg b \\
\gg x
\end{array}\right]=\text { Alb; } 5 ;-1\right] ;
$$

Answer:
$x_{1}=-2, x_{2}=5, x_{3}=-6$

$$
\begin{aligned}
& \text { Answer: } \\
& x_{1}=-2, x_{2}=5, x_{3}=-6
\end{aligned}
$$

Save/Load Data

- Save fname
- Save all workspace data into fname.mat
- Save fname x y z
- Save(fname): when fname is a variable
- Load fname
- Load(fname)

Operators (relational, logical)

- == Equal to
- ~= Not equal to
- < Strictly smaller
- > Strictly greater
- <= Smaller than or equal to
- >= Greater than equal to
- \& And operator
- | Or operator

Basic Task: Plot the function $\sin (\mathrm{x})$
between $0 \leq x \leq 4 \pi$

- Create an x-array of 100 samples between 0 and 4π.
>>x=linspace($0,4 * \mathrm{pi}, 100$);
- Calculate $\sin ($.$) of the x$-array

$$
\gg y=\sin (x)
$$

- Plot the y-array
>>plot(y)

Plot the function $\mathrm{e}^{-\mathrm{x} / 3} \sin (\mathrm{x})$ between $0 \leq x \leq 4 \pi$

- Create an x-array of 100 samples between 0 and 4π.

```
>>x=linspace( \(0,4 * \mathrm{pi}, 100\) );
```

- Calculate $\sin ($.$) of the x$-array
$\gg y=\sin (x)$;
- Calculate $e^{-x / 3}$ of the x-array
$\gg y 1=\exp (-x / 3)$;
- Multiply the arrays y and y1

$$
\gg y 2=y^{*} y 1 ;
$$

Plot the function $\mathrm{e}^{-\mathrm{x} / 3} \sin (\mathrm{x})$ between $0 \leq x \leq 4 \pi$

- Multiply the arrays y and y1 correctly

$$
\gg y 2=y . * y 1 ;
$$

- Plot the y2-array

```
>>plot(y2)
```


Display Facilities

- plot(.)

```
Example:
\ggx=linspace(0,4*pi,100);
\(\gg y=\sin (x)\);
\(\gg \operatorname{plot}(\mathrm{y})\)
\(\gg\) plot \((x, y)\)
```

- stem(.)

```
Example:
>>stem(y)
>>stem(x,y)
```


Plotting function

- Plot(X, Y):
- Plots vector Y versus vector X
- Hold: next plot action on the same figure
- Title('title text here')
- Xlabel('...’), ylabel('...')
- Axis([XMIN XMAX YMIN YMAX])
- Legend('...')
- Grid

Plotting example

$x=0: p i / 10: 2^{*} \mathrm{pi} ;$
$\mathrm{y} 1=\sin (\mathrm{x})$;
$y 2=\sin (x-0.25) ;$ $\mathrm{y} 3=\sin (\mathrm{x}-0.5)$;

plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

Plotting example $\mathrm{x}=0$:pi/10:2*pi; $\mathrm{y} 1=\sin (\mathrm{x})$; plot(x,y1,'g') hold on
$\mathrm{y} 2=\sin (\mathrm{x}-0.25)$; Plot($\mathrm{x}, \mathrm{y} 2, \mathrm{~b}-\mathrm{-o}$) y3 $=\sin (x-0.5)$;
Plot($\left.x, y 3,{ }^{\prime *} c^{\prime}\right)$

subplot

subplot(3,1,1);"
 plot(x,y1,'g') subplot($3,1,2$); $\operatorname{plot}\left(x, y 2, ' b--o^{\prime}\right)$
 subplot(3,1,3); plot(x,y3,'c*')

Display Facilities

title(.)
\gg title('This is the sinus function')
xlabel(.)
>>xlabel('x (secs)')
ylabel(.)
>>ylabel('sin(x)')

semilogy

- $x=0: 0.1: 10 ;$
- $\mathrm{y}=\exp (\mathrm{x})$;
- semilogy (x, y)

$\log \log$

- $x=0.01: 0.01: 100 ;$
- $y=\exp (x)$;
$-\log \log (\mathrm{x}, \mathrm{y})$

- $[\mathrm{X}, \mathrm{Y}]=$ meshgrid(-8:.5:8);
- R = sqrt(X. $\left.{ }^{\wedge} 2+\mathrm{Y} .^{\wedge} 2\right)$;
- $Z=\sin (R) / R$; mesh(Z)

The for Loop in MATLAB

In MATLAB, a for loop begins with the statement indicating how many times the statements in the loop will be executed

- A counter is defined within this statement
- Examples:

```
    for k = 1:100
```

(counter $=k$, the loop will be executed 100 times)

```
for i = 1:2:7
```

(counter $=i$, the counter will be incremented by a value of 2 each time until its value reaches 7 . Therefore, the loop will be executed 4 times ($i=1,3,5$, and 7)

for Loop Example

$$
\begin{aligned}
& 1 \begin{array}{ll}
1 & \text { for } j=1: 10 \\
2 & \mathrm{x}(\mathrm{j})=5 * j ; \\
3 & \text { end }
\end{array}
\end{aligned}
$$

- The first time through the loop, $j=1$
- Because of the single value in parentheses, x will be a one-dimensional array
- $x(1)$ will be set equal to $5^{*} 1=5$
- The second time through the loop, $\mathrm{j}=2$
- $x(2)$ will be set equal to $5^{*} 2=10$
- This will be repeated until $j=10$ and $x(10)=50$

For loop exercises

- Find n ! using matlab
- Find the $1+2+3+\ldots+100$ using matlab
- Find the 3+6+9+99 using matlab
- Make matrix of form

1	2	3	4	5	6
2	4	6	8	10	12
3	6	9	12	15	18
4	8	12	16	20	24
5	10	15	20	25	30
6	12	18	24	30	36

using for loop in matlab

Flow Chart of while Loop

- The first line of this loop is:
while (condition)
- Last line is:
end

Example

- Consider this loop:

$$
\begin{aligned}
& \mathrm{k}=0 ; \\
& \text { while } \mathrm{k}<10 \\
& \qquad \mathrm{k}=\mathrm{k}+2 \\
& \text { end }
\end{aligned}
$$

- How many times will the loop be executed?

Initially, $\mathrm{k}=0$, so the loop is entered
Pass \#1: $k=2$, so execution continues
Pass \#2: $k=4$, so execution continues
Pass \#3: $k=6$, so execution continues
Pass \#4: $k=8$, so execution continues
Pass \#5, $k=10$, so k is not less than 10 and execution ends

Useful Commands

- The two commands used most by Matlab users are
\gg help functionname
>>lookfor keyword

Thank You...

