
Introduction to Matlab

By:Mohammad Sadeghi

*Dr. Sajid Gul Khawaja Slides has been used partially to prepare this

presentation

Outline:

 What is Matlab?

 Matlab Screen

 Basic functions

 Variables, matrix, indexing

 Operators (Arithmetic, logical)

 Basic Plotting

What is Matlab?

 Matlab is basically a high level language

which has many specialized toolboxes for

making things easier for us

 How high?

Assembly

High Level
Languages such as

C, Pascal etc.

Matlab

4

What is Matlab?

 MatLab : Matrix Laboratory

 Numerical Computations with matrices
 Every number can be represented as matrix

 Why Matlab?
 User Friendly (GUI)

 Easy to work with

 Powerful tools for complex mathematics

 Matlab has extensive demo and tutorials to

learn by yourself

 Use help command

What are we interested in?

 Matlab is too broad for our purposes in this

course.

 The features we are going to require is

Matlab

Command
Line

m-files

functions

mat-files

Command execution
like DOS command

window

Series of
Matlab

commands

Input
Output

capability

Data
storage/
loading

Matlab Screen

 Command Window

 type commands

 Current Directory

 View folders and m-files

 Workspace

 View program variables

 Double click on a variable

to see it in the Array Editor

 Command History

 view past commands

 save a whole session

using diary

Variables

 No need for types. i.e.,

 All variables are created with double precision unless

specified and they are matrices.

 After these statements, the variables are 1x1 matrices

with double precision

int a;
double b;
float c;

Example:
>>x=5;
>>x1=2;

Variables (con’t…)

 Special variables:

 ans : default variable name for the result

 pi:  = 3.1415926…………

 eps:  = 2.2204e-016, smallest amount by
which 2 numbers can differ.

 Inf or inf : , infinity

 NaN or nan: not-a-number

9

Elementary Math Function

 Abs(), sign()

 Sign(A) = A./abs(A)

 Sin(), cos(), asin(), acos()

 Exp(), log(), log10()

 Ceil(), floor()

 Sqrt()

 Real(), imag()

 ^

Array, Matrix

 a vector x = [1 2 5 1]

x =

1 2 5 1

 a matrix x = [1 2 3; 5 1 4; 3 2 -1]

x =

1 2 3

5 1 4

3 2 -1

 transpose y = x’ y =

1

2

5

1

Long Array, Matrix

 t =1:10

t =

1 2 3 4 5 6 7 8 9 10

 k =2:-0.5:-1

k =

2 1.5 1 0.5 0 -0.5 -1

 B = [1:4; 5:8]

x =

1 2 3 4

5 6 7 8

Vectors (con’t…)

Some useful commands:

x = start:end create row vector x starting with start, counting by

one, ending at end

x = start:increment:end create row vector x starting with start, counting by

increment, ending at or before end

linspace(start,end,number) create row vector x starting with start, ending at end,

having number elements

length(x) returns the length of vector x

y = x’ transpose of vector x

dot (x, y) returns the scalar dot product of the vector x and y.

13

Vectors (con’t…)

 Vector operation:

 Max(), min(): max/min element of a vector

 Mean(), median()

 Std(), var(): standard deviation and variance

 Sum(), prod(): sum/product of elements

 Sort(): sort in ascending order

Generating Vectors from functions

 zeros(M,N) MxN matrix of zeros

 ones(M,N) MxN matrix of ones

 rand(M,N) MxN matrix of uniformly

distributed random

numbers on (0,1)

x = zeros(1,3)

x =

0 0 0

x = ones(1,3)

x =

1 1 1

x = rand(1,3)

x =

0.9501 0.2311 0.6068

Matrix Index

 The matrix indices begin from 1 (not 0 (as in C))

 The matrix indices must be positive integer

Given:

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2)

Error: ??? Index exceeds matrix dimensions.

A(:, 2)=[]

Delete second column

Concatenation of Matrices

 x = [1 2], y = [4 5], z=[0 0]

A = [x y]

1 2 4 5

B = [x ; y]

1 2

4 5

C = [x y ;z]

Error:

??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

+ addition

- subtraction

* multiplication

/ division

^ power

‘ complex conjugate transpose

Matrices Operations

Given A and B:

Addition Subtraction Product Transpose

Matrices (con’t…)

Transpose B = A’

Identity Matrix eye(n)  returns an n x n identity matrix

eye(m,n)  returns an m x n matrix with ones on the main

diagonal and zeros elsewhere.

Addition and subtraction C = A + B

C = A – B

Scalar Multiplication B = A, where  is a scalar.

Matrix Multiplication C = A*B

Matrix Inverse B = inv(A), A must be a square matrix in this case.

rank (A)  returns the rank of the matrix A.

Matrix Powers B = A.^2  squares each element in the matrix

C = A * A  computes A*A, and A must be a square matrix.

Determinant det (A), and A must be a square matrix.

more commands

A, B, C are matrices, and m, n,  are scalars.

Operators (Element by Element)

.* element-by-element multiplication

./ element-by-element division

.^ element-by-element power

The use of “.” – “Element” Operation

K= x^2

Erorr:

??? Error using ==> mpower Matrix must be square.

B=x*y

Erorr:

??? Error using ==> mtimes Inner matrix dimensions must agree.

A = [1 2 3; 5 1 4; 3 2 1]

A =

1 2 3

5 1 4

3 2 -1

y = A(3 ,:)

y=

3 4 -1

b = x .* y

b=

3 8 -3

c = x . / y

c=

0.33 0.5 -3

d = x .^2

d=

1 4 9

x = A(1,:)

x=

1 2 3

Solutions to Systems of Linear Equations

 Example: a system of 3 linear equations with 3 unknowns (x1, x2, x3):

3x1 + 2x2 – x3 = 10

-x1 + 3x2 + 2x3 = 5

x1 – x2 – x3 = -1

Then, the system can be described as:

Ax = b





















111

231

123

A



















3

2

1

x

x

x

x





















1

5

10

b

Let :

Integral and derivative

 int(-2*x/(1 + x^2)^2,x)

 int(-2*x/(1 + x^2)^2,x,2,4)

 quad(@(x)x.^5.*exp(-x).*sin(x),2,4)

 Diff(-2*x/(1 + x^2)^2,x)

 Diff(-2*x/(1 + x^2)^2,x,2,4)

Solve equations

 solve(@(x)sin(x)==1,x)

 syms u v

 [solv, solu] = solve([2*u^2 + v^2 == 0, u - v ==

1], [v, u])

Solutions to Systems of Linear Equations (con’t…)

 Solution by Matrix Inverse:
Ax = b

A-1Ax = A-1b

x = A-1b

 MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];

>> b = [10; 5; -1];

>> x = inv(A)*b

x =

-2.0000

5.0000

-6.0000

Answer:

x1 = -2, x2 = 5, x3 = -6

• Solution by Matrix Division:
The solution to the equation

Ax = b
can be computed using left division.

Answer:

x1 = -2, x2 = 5, x3 = -6

NOTE:
left division: A\b  b  A right division: x/y  x  y

 MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];

>> b = [10; 5; -1];

>> x = A\b

x =

-2.0000

5.0000

-6.0000

26

Save/Load Data

 Save fname

 Save all workspace data into fname.mat

 Save fname x y z

 Save(fname): when fname is a variable

 Load fname

 Load(fname)

Operators (relational, logical)

 == Equal to

 ~= Not equal to

 < Strictly smaller

 > Strictly greater

 <= Smaller than or equal to

 >= Greater than equal to

 & And operator

 | Or operator

Basic Task: Plot the function sin(x)

between 0≤x≤4π
 Create an x-array of 100 samples between 0

and 4π.

 Calculate sin(.) of the x-array

 Plot the y-array

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>plot(y)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Plot the function e-x/3sin(x) between

0≤x≤4π

 Create an x-array of 100 samples between 0

and 4π.

 Calculate sin(.) of the x-array

 Calculate e-x/3 of the x-array

 Multiply the arrays y and y1

>>x=linspace(0,4*pi,100);

>>y=sin(x);

>>y1=exp(-x/3);

>>y2=y*y1;

Plot the function e-x/3sin(x) between

0≤x≤4π

 Multiply the arrays y and y1 correctly

 Plot the y2-array

>>y2=y.*y1;

>>plot(y2)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Display Facilities

 plot(.)

 stem(.)

Example:
>>x=linspace(0,4*pi,100);
>>y=sin(x);
>>plot(y)
>>plot(x,y)

Example:
>>stem(y)
>>stem(x,y)

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Plotting function

 Plot(X, Y):

 Plots vector Y versus vector X

 Hold: next plot action on the same figure

 Title(‘title text here’)

 Xlabel(‘…’), ylabel(‘…’)

 Axis([XMIN XMAX YMIN YMAX])

 Legend(‘…’)

 Grid

Plotting example

x = 0:pi/10:2*pi;

y1 = sin(x);

y2 = sin(x-0.25);

y3 = sin(x-0.5);

plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

Plotting example
x = 0:pi/10:2*pi;

y1 = sin(x);

plot(x,y1,'g’)

hold on

y2 = sin(x-0.25);

Plot(x,y2,'b--o’)

y3 = sin(x-0.5);

Plot(x,y3,'c*')

subplot

subplot(3,1,1);

plot(x,y1,'g')

subplot(3,1,2);

plot(x,y2,'b--o')

subplot(3,1,3);

plot(x,y3,'c*')

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7
-1

-0.5

0

0.5

1

Display Facilities

 title(.)

 xlabel(.)

 ylabel(.)

>>title(‘This is the sinus function’)

>>xlabel(‘x (secs)’)

>>ylabel(‘sin(x)’)
0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
This is the sinus function

x (secs)

s
in

(x
)

semilogy

 x = 0:0.1:10;

 y = exp(x);

 semilogy(x,y)

loglog

 x = 0.01: 0.01:100;

 y = exp(x);

 loglog(x,y)

10
-2

10
-1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

 [X,Y] = meshgrid(-8:.5:8);

 R = sqrt(X.^2 + Y.^2) ;

 Z = sin(R)./R;

 mesh(Z)

40

30

20

10

00

10

20

30

0.8

-0.4

-0.2

0

0.2

1

0.4

0.6

40

The for Loop in MATLAB

• In MATLAB, a for loop begins with the statement
indicating how many times the statements in the
loop will be executed

• A counter is defined within this statement

• Examples:
for k = 1:100

(counter = k, the loop will be executed 100 times)
for i = 1:2:7

(counter = i, the counter will be incremented by a value of 2
each time until its value reaches 7. Therefore, the loop will be
executed 4 times (i = 1,3,5, and 7)

for Loop Example

 The first time through the loop, j = 1

 Because of the single value in parentheses, x
will be a one-dimensional array

 x(1) will be set equal to 5*1 = 5

 The second time through the loop, j = 2

 x(2) will be set equal to 5*2 = 10

 This will be repeated until j = 10 and x(10) = 50

For loop exercises

 Find n! using matlab

 Find the 1+2+3+…+100 using matlab

 Find the 3+6+9+99 using matlab

 Make matrix of form

using for loop in matlab

Flow Chart of while Loop

 The first line of this loop is:

while (condition)

 Last line is:

end

(calculations)

Condition
true?

Yes

No

Example

 Consider this loop:
k = 0;

while k < 10

k = k + 2

end

 How many times will the loop be executed?
Initially, k = 0, so the loop is entered
Pass #1: k = 2, so execution continues
Pass #2: k = 4, so execution continues
Pass #3: k = 6, so execution continues
Pass #4: k = 8, so execution continues
Pass #5, k = 10, so k is not less than 10 and execution ends

Useful Commands

 The two commands used most by Matlab

users are

>>help functionname

>>lookfor keyword

Thank You…

