Introduction to Matlab

By:Mohammad Sadeghi

*Dr. Sajid Gul Khawaja Slides has been used partially to prepare this presentation

Outline:

- What is Matlab?
- Matlab Screen
- Basic functions
- Variables, matrix, indexing
- Operators (Arithmetic, logical)
- Basic Plotting

What is Matlab?

 Matlab is basically a high level language which has many specialized toolboxes for making things easier for us

What is Matlab?

- MatLab : Matrix Laboratory
- Numerical Computations with matrices
 - Every number can be represented as matrix
- Why Matlab?
 - User Friendly (GUI)
 - Easy to work with
 - Powerful tools for complex mathematics
- Matlab has extensive demo and tutorials to learn by yourself
 - Use help command

What are we interested in?

- Matlab is too broad for our purposes in this course.
- The features we are going to require is

Variables

No need for types. i.e.,

 All variables are created with double precision unless specified and they are matrices.

> Example: >>x=5; >>x1=2;

After these statements, the variables are 1x1 matrices with double precision

Variables (con't...)

- Special variables:
 - ans : default variable name for the result
 - **pi**: *π* = 3.1415926.....
 - □ eps: ∈ = 2.2204e-016, smallest amount by which 2 numbers can differ.
 - Inf or inf : ∞ , infinity
 - NaN or nan: not-a-number

Elementary Math Function

- Abs(), sign()
 - \Box Sign(A) = A./abs(A)
- Sin(), cos(), asin(), acos()
- Exp(), log(), log10()
- Ceil(), floor()
- Sqrt()
- Real(), imag()

Λ

Array, Matrix

a vector x = [1 2 5 1]

a matrix x = [1 2 3; 5 1 4; 3 2 -1]

- 1 2 3 5 1 4 3 2 -1
- transpose y = x'

1

2 5

1

Long Array, Matrix

Vectors (con't...)

Some useful commands:

x = start:end	create row vector x starting with start, counting by one, ending at end
x = start:increment:end	create row vector x starting with start, counting by increment, ending at or before end
linspace(start,end,number)	create row vector x starting with start, ending at end, having number elements
length(x)	returns the length of vector x
y = x'	transpose of vector x
dot (x, y)	returns the scalar dot product of the vector x and y.

Vectors (con't...)

Vector operation:

- Max(), min(): max/min element of a vector
- Mean(), median()
- Std(), var(): standard deviation and variance
- Sum(), prod(): sum/product of elements
- Sort(): sort in ascending order

	Generating Vectors from functions										
•	zeros(M,N)	MxN matrix of zeros	x = zeros(1,3)								
			23	0	(C	0				
•	ones(M,N)	MxN matrix of ones	Х	_	ones	(1,3)					
			Х	=	-	1	1				
•	rand(M,N)	MxN matrix of uniformly distributed random numbers on (0,1)	X X	=	rand	(1,3)					
			(0.0	9501	0.231	.1	0.6068			

Matrix Index

- The matrix indices begin from 1 (not 0 (as in C))
- The matrix indices must be positive integer

Given:

A =	:			>> A(6)	>> A (3, 2)	>> A (2, :))		>> A(1:2,2)
	3	5	3	ans =	ans =	ans =			ans =
	6	8	2						5
	2	7	3	7	7	6	8	2	8

A(-2), A(0)

Error: ??? Subscript indices must either be real positive integers or logicals.

A(4,2)

Error: ??? Index exceeds matrix dimensions.

A(:, 2)=[] Delete second column

Concatenation of Matrices

C = [x y ;z] Error: ??? Error using ==> vertcat CAT arguments dimensions are not consistent.

Operators (arithmetic)

- + addition
- subtraction
- * multiplication
- / division
- ^ power
- ' complex conjugate transpose

Matrices Operations

Given A and B:

>> a =	[1 2 3;4	156;78	39]
A =			
1	2	3	
4	5	6	
7	8	9	

>> b =	[352;	528;	369]
в =			
3	5	2	
5	2	8	
3	6	9	

Addition			S	Subtraction			Product				Transpose			
>> X = A + B] >>	>> Y = A - B			>> Z = A * B				>> T = A'			
x =			Y =	=				Z =				т =		
4	7	5		-2	-3	1		22	27	45		1	4	7
9	7	14		-1	3	-2		55	66	102		2	5	8
10	14	18		4	2	0		88	105	159		3	6	9

Matrices (con't...)

more commands

Transpose	B=A'
Identity Matrix	eye(n) \rightarrow returns an n x n identity matrix eye(m,n) \rightarrow returns an m x n matrix with ones on the main diagonal and zeros elsewhere.
Addition and subtraction	C = A + B $C = A - B$
Scalar Multiplication	B = α A, where α is a scalar.
Matrix Multiplication	$C = A^*B$
Matrix Inverse	B = inv(A), A must be a square matrix in this case. rank (A) \rightarrow returns the rank of the matrix A.
Matrix Powers	B = A.^2 \rightarrow squares each element in the matrix C = A * A \rightarrow computes A*A, and A must be a square matrix.
Determinant	det (A), and A must be a square matrix.

A, B, C are matrices, and m, n, α are scalars.

Operators (Element by Element)

- .* element-by-element multiplication
- ./ element-by-element division
- .^element-by-element power

The use of "." – "Element" Operation

Solutions to Systems of Linear Equations

Example: a system of 3 linear equations with 3 unknowns (x_1, x_2, x_3) :

$$3x_{1} + 2x_{2} - x_{3} = 10$$

-x_{1} + 3x_{2} + 2x_{3} = 5
x_{1} - x_{2} - x_{3} = -1

Let :

$$A = \begin{bmatrix} 3 & 2 & 1 \\ -1 & 3 & 2 \\ 1 & -1 & -1 \end{bmatrix} \qquad \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad \qquad b = \begin{bmatrix} 10 \\ 5 \\ -1 \end{bmatrix}$$

Then, the system can be described as:

$$Ax = b$$

Integral and derivative

- int(-2*x/(1 + x^2)^2,x)
 int(-2*x/(1 + x^2)^2,x,2,4)
- quad(@(x)x.^5.*exp(-x).*sin(x),2,4)

- Diff $(-2^*x/(1 + x^2)^2,x)$
- Diff $(-2^*x/(1 + x^2)^2, x, 2, 4)$

```
Solve equations
```

solve(@(x)sin(x)==1,x)

- syms u v
- [solv, solu] = solve([2*u^2 + v^2 == 0, u v == 1], [v, u])

Solutions to Systems of Linear Equations (con't...)

 Solution by Matrix Inverse: Ax = b A⁻¹Ax = A⁻¹b x = A⁻¹b

 MATLAB: >> A = [3 2 -1; -1 3 2; 1 -1 -1]; >> b = [10; 5; -1]; >> x = inv(A)*b
 X = -2.0000 5.0000 -6.0000

 $x_1 = -2, x_2 = 5, x_3 = -6$

Solution by Matrix Division: The solution to the equation Ax = bcan be computed using left division. MATLAB: >> A = [3 2 -1; -1 3 2; 1 -1 -1]; >> b = [10; 5; -1]; >> x = A bX =-2.00005.0000 -6.0000

> <u>Answer</u>: $x_1 = -2, x_2 = 5, x_3 = -6$

NOTE: left division: $A \to b \div A$

right division: $x/y \rightarrow x \div y$

Save/Load Data

- Save fname
 - Save all workspace data into fname.mat
 - Save fname x y z
 - Save(fname): when fname is a variable

Load fname

Load(fname)

Operators (relational, logical)

- == Equal to
- ~= Not equal to
- < Strictly smaller</p>
- Strictly greater
- <= Smaller than or equal to</p>
- Sector Sector
- & And operator
- Or operator

Basic Task: Plot the function sin(x)

between $0 \le x \le 4\pi$

 Create an x-array of 100 samples between 0 and 4π.

>>x=linspace(0,4*pi,100);

Calculate sin(.) of the x-array

>y=sin(x);
 Plot the y-array
 >plot(y)

Plot the function $e^{-x/3}sin(x)$ between $0 \le x \le 4\pi$

 Create an x-array of 100 samples between 0 and 4π.

>>x=linspace(0,4*pi,100);

Calculate sin(.) of the x-array

>>y=sin(x);

Calculate e^{-x/3} of the x-array

>>y1=exp(-x/3);

Multiply the arrays y and y1

>>y2=y*y1;

Plot the function $e^{-x/3}sin(x)$ between $0 \le x \le 4\pi$

Multiply the arrays y and y1 correctly

>>y2=y.*y1;

Plot the y2-array

Display Facilities

plot(.)

Example: >>x=linspace(0,4*pi,100); >>y=sin(x); >>plot(y) >>plot(x,y)

stem(.)

Example: >>stem(y) >>stem(x,y)

Plotting function

- Plot(X, Y):
 - Plots vector Y versus vector X
- Hold: next plot action on the same figure
- Title('title text here')
- Xlabel('…'), ylabel('…')
- Axis([XMIN XMAX YMIN YMAX])
- Legend('…')
- Grid

Plotting example

x = 0:pi/10:2*pi; y1 = sin(x); y2 = sin(x-0.25); y3 = sin(x-0.5);

plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')

Plotting example x = 0:pi/10:2*pi; y1 = sin(x);plot(x,y1,'g') hold on $y^{2} = sin(x-0.25);$ Plot(x,y2,'b--o')y3 = sin(x-0.5); $Plot(x,y3,'c^{*'})$

Display Facilities

title(.)

semilogy

- x = 0:0.1:10;
 y = exp(x);
- semilogy(x,y)

loglog

- x = 0.01: 0.01:100;
- y = exp(x);
- loglog(x,y)

[X,Y] = meshgrid(-8:.5:8);

- R = sqrt(X.^2 + Y.^2);
- Z = sin(R)./R;

mesh(Z)

The *for* Loop in MATLAB

- In MATLAB, a *for* loop begins with the statement indicating how many times the statements in the loop will be executed
- A counter is defined within this statement
- Examples:

for k = 1:100

(counter = k, the loop will be executed 100 times) for i = 1:2:7

(counter = *i*, the counter will be incremented by a value of 2 each time until its value reaches 7. Therefore, the loop will be executed 4 times (i = 1,3,5, and 7)

for Loop Example

- The first time through the loop, j = 1
- Because of the single value in parentheses, x will be a one-dimensional array
- x(1) will be set equal to 5*1 = 5
- The second time through the loop, j = 2
- x(2) will be set equal to 5*2 = 10
- This will be repeated until j = 10 and x(10) = 50

For loop exercises

- Find n! using matlab
- Find the 1+2+3+...+100 using matlab
- Find the 3+6+9+99 using matlab
- Make matrix of form

1	2	3	4	5	6
2	4	6	8	10	12
3	6	9	12	15	18
4	8	12	16	20	24
5	10	15	20	25	30
6	12	18	24	30	36

using for loop in matlab

Flow Chart of while Loop

 The first line of this loop is: while (condition)
 Last line is:

end

Example

Consider this loop:

• How many times will the loop be executed?

Initially, k = 0, so the loop is entered Pass #1: k = 2, so execution continues Pass #2: k = 4, so execution continues Pass #3: k = 6, so execution continues Pass #4: k = 8, so execution continues Pass #5, k = 10, so k is not less than 10 and execution ends

Useful Commands

The two commands used most by Matlab users are

>>help functionname

>>lookfor keyword

Thank You...