Storage and Indexing

£l 1

/

EERIEIIEN]

=]l]

]

/NN

‘1 ‘2 ‘5 ‘6 ‘ 8* ‘10‘ ‘ ‘13 ‘27 ‘ “32 ‘39 ‘ ‘ “41 w ‘ “52‘58

91* |99+

Figure 10.1

73*|80*

25/03/2013

Exercise 10.1

Consider the B+ tree index of order d=2 shown
in figure 10.1

1. Show the tree that would result from inserting a data entry with key
9 into this tree.

up BNEN

- =
— P —)
[[] =]
."'-’". N | ", ““-\-_ .. "-- —"\--____ .

s N A s T - T & [(‘\\\ T
Lolelsleflelsho] Jolo[[Jelo [Joo] [Jorfo] | folw] | Jolor] |]
Figure 10.2

2. Show the B+ tree that would result from inserting a data entry with
key 3 into the original tree. How many page reads and page writes
does the insertion require?

Ans:

The data entry with key 3 goes on the first leaf page F. Since F can
accommodate at most four data entries (d=2), F splits. The lowest data
entry of the new leaf is given up to the ancestor which also splits. The
Insertion requires 5 page writes, 4 page reads and allocation of 2 new
pages.

P
//
P
P
bl
z/
=P
TS
Pl
s
:/

Figure 10,3

25/03/2013

3. Show the B+ tree that would result from deleting the data entry
with key 8 from the original tree, assuming that the left sibling is
checked for possible redistribution

Ans:

The data entry with key 8 is deleted, resulting in a leaf page N with less

than two data entries. The left sibling L is checked for redistribution.

Since L has more than two data entries, the remaining keys are
redistributed between L and N.

|| %

.

e ‘

18| 2| 5 6t (10 s T

A A
| | Jelel |

18t ‘ an

‘32’ ‘52“ EU“ ‘ 91 ‘ o

Figure 18.4

4. Show the B+ tree that would result from deleting the data entry
with key 8 from the original tree, assuming that the right sibling is
checked for possible redistribution.

Ans:

As in Q3, the data entry with 8 is deleted from the leaf page N. N’s right

sibling R is checked for redistribution, but R has minimum number of

keys. Therefore the two siblings merge. The key is the ancestor which
distinguished between the newly merged leaves deleted.

T T

g) 40 13 4

/r\\ m;wl'ﬂ\x\mx

1%

Te| G| fee |10 [18% 2T+ kN 41 | 45% 5 T | B0 S [

w ||

Figure 10,5

25/03/2013

5. Show the B+ tree that would result from starting with the original
tree, inserting a data entry with key 46 and then deleting the data
entry with key 52

Ans:

The data entry with key 46 can be inserted without any structural changes in the tree. But
the removal of the data entry with key 52 causes its leaves page L to merge with a sibling
(we chose the right sibling). This results in the removal of a key in the ancestor A of L and
thereby lowering the number of keys on A below the minimum number of keys. Since the
left sibling B of A has more than the minimum number of keys, redistribution between A

and B takes place.

LA A

41% | 45% | d6% Se | 7300 bl bhw

Figure 14,6

6. Show the B+ tree that would result from deleting the data entry
with key 91 from the original tree

Ans:

Deleting the data entry with key 91 causes a scenario similar to Q5.

41 [45% T3 |90 [s

Figure 10,7

25/03/2013

7.

Ans:
The data entry with key 59 can be inserted without any structural changes in the tree. No
sibling of the leaf page with the data entry with key 91 is affected by the insert. Therefore
deleting the data entry with key 91 changes the tree in a way similar to part 6.

Show the B+ tree that would result from starting with the original
tree, inserting a data entry with key 59, and then deleting the data
entry with key 91

e\

18

NN

1%

1%

153

I

I

W

Tl |3

41

45

G | Bhx |G

T3

0 | box

Figure 13.8

8.

Ans:

Considering checking the right sibling for possible merging first, the successive deletion of
the data entries with keys 32, 39, 41, 45 and 73 results in the tree below

Show the B+ tree that would result from successively deleting the
data entries with keys 32, 39, 41, 45 and 73 from the original tree

18 50

73

1%

2%

gx

g

10+

18% | 27+

R
| =

5gx

N

Bl

R

Figure 10,9

25/03/2013

* Consider the instance of the students relation
shown in figure 10.22. Show a B+ tree of order
2 in each of these cases, assuming the
duplicates are handled using overflow pages.
Clearly indicate what the data entries are (i.e.,

Exercise 10.10

do not use k* convention).

siel

\ | name [fogin | nge | gpe |
53831 | Madayan | madayan@music | 11 1.8
53832 | Galda gulda@muasic 12 3.8
23666 | Jones Jones@es 18 3.4
43901 | Jones JjonesGtoy 18 3.4
53902 | Jones Jones@Gphysice 18 3.4
53903 | Jones jones@english 18 3.4
53804 | Jones jones@genetics 18 | 3.4
53905 | Jones jones@asire 18 3.4
23906 | Jones Jones@chem 18 3.4
53902 | Jones Jjones@sanitation | 18 3.8
53688 | Smith smith@ec 19 3.2
53650 | Smith smith@math 19 3.8
24001 | Smith smith@ec 19 3.5
54005 | Smith smith@cs 19 3.8
54009 | Smiih smith@astro 19 2.2

Figure 14,22

An [nstance of the Students Relation

25/03/2013

1. A B+ tree index on age using Alternative (1) for
data entries

Ans:

Root ~__

.
\\\\
\\\-\
‘ 11: 63831 ... 12: 6§3832... ‘ 18: 53666...‘ f 19: 63688 ‘
/(overflovv) (overflow)
‘ 18: 53901... ‘ 18: 53902... ‘ 18: 53903... ‘ 18: 53904... ‘ “>
‘ 18: 5§3905... ‘ 18: 53906... ‘ 18: £§3902... ‘ ‘ ‘
‘ 19: 53650 19: 54000 ... ‘ 19: 54005... 19: 54009 ‘ ‘

Figure 10,23

2. A dense B+ tree index on gpa using Alternative(2) for data entries. For
this question, assume that these tuples are stored in a sorted file in
the order shown in Figure 10.22. The first tuple is in page 1, slot 1; the
second tuple in page 1, slot 2; and so on. Each page can store up to
three data records. You can use <page-id, slot> to identify a tuple.

Ans:

See fig. 10.24. Note that the data entries are not necessarily stored in the
same order as the data records, reflecting the fact that they may have been
inserted in a different order. We assume a simple insertion algorithm that
locates a leaf in the usual way, and if the leaf already contains a data entry
with the given key value, put the new data entry into the overflow chain
associated with the leaf. Thus, the data entries in a leaf have distinct key
values. An obvious problem that arise here is that when the leaf splits
(because a data entry with a new key value is inserted into the leaf when
the leaf is full), the overflow chain must be scanned to ensure that when a
data entry is moved to the new leaf node, all data entries with that key
value are moved. An alternative is to maintain a separate overflow chain for
each key value with duplicates, but considering the capacity of a page, and
the likely number of duplicates for a given key value (probably low), this
may lead to poor space utilization

25/03/2013

™~
™
.
e
—— T
1.8: <1,1> 22: <5,3> 3.2 <42> " 34k <13 3.5 <5,1> 34 <31 38 <1,2>
1 {overflow)

/

34 <2,1> 34 2 3423 38 <5,2>
)
4

34: <32 34463 184> A8 <4, 1>

Figure 18,24

Exercise 11.1

e Consider the Extensible Hashing index shown
in Figure 11.1. Answer the following questions
about this index: ER

|s4|16| Bucket A
3]////%:2
000 - 1 5 | 21| | Bucket B
001 —/
010 — / 2]
011 7!\-7,2_ 10 | | | Bucket C

100
101 2
> Bucket D
110 P 15| 7 | 51| |
111 —
|3
Bucket A2

DIRECTORY 2 12‘ Z0 | 36|

Figure 11.1 Figure for BExercize 11.1

25/03/2013

1. What can you say about the last entry that was inserted into the
index?

Ans:

It could be any one of the data entries in the index.

We can always find a sequence of insertions and

deletions with a particular key value, among the key

values shown in the index as the last insertion. For

example, consider the data entry 16 and the

following sequence:

1521101575141236648 245616 56D 24D 8D

The last insertion is the data entry 16 and it also
causes a split. But the sequence of deletions
following this insertion cause a merge leading to the
index structure shown in Fig 11.1

2. What can you say about the last entry that was inserted into the
index if you know that there have been no deletions from this index
so far

Ans:

The last insertion could not have caused a split because the total number
of data entries in the buckets A and A2 is 6. If the last entry caused a split
the total would have been 5

3. Suppose you are told that there have been deletions from this index
so far what can you say about the last entry whose insertion into the
index caused a split

Ans:

The last insertion which caused a split cannot be in bucket C. Buckets B
and C or C and D could have made a possible bucket-split image
combination because they have a total of 6 data entries between
themselves. So do A and A2. But for the B and D to be split images the
starting global depth should have been 1. If the starting global depth is 2,
then the last insertion causing a split would be in A or A2.

25/03/2013

4. Show the index after inserting an entry with
hash value 68

[«]
-
ooo1 — |

T

0010
ool s [[]
0100
0101
0110 A a1 vl
0111
1000
I
1010
1ot 7
EREREAGE
1101
1110
el T

DIRECTORY

Figuee 131,32

BEUCKEET A

BUCEKET B

BUCEKET C

BEUCKEET D

BUCKET A2

[] BUCKET &3

5. Show the index after inserting entries with hash
value 17 and 69 into the original tree

DIRECTORY

Figure 11.3

BUCKET A

BUCKET B

BUCKET C

BUCKET D

BUCKET AZ

BUCKEET B2

25/03/2013

10

6. Show the index after deleting the entry with hash value 21 from the

original tree. (Assume that the full deletion algorithm is used)

ooo

oot

o1

011

100

101

110

111

DIRECTORY

Flgure 13,4

BUCKET &

BUCKET B

BUCKET C

BUCKET D

BUCKET A2

7.

Ans:

The deletion of the data entry 10 which is the only entry in bucket C doesn’t trigger a
merge because bucket Cis a primary page and it is left as a place holder. Right now,
directory element 010 and its split image 110 already point to the same bucket C. We

Show the index after deleting the entry with hash value 10 from the original tree. Is
a merge triggered by this deletion? If not, explain why. (Assume that the full
deletion algorithm is used.)

can’t do a further merge.

H

—

DIRECTORY

= | Js]is] sucksT s

SO] sveers

Flgure 135

BUCKET C

S]] sverero

BUCKET AZ

25/03/2013

11

Exercise 11.7

e Consider a relation R(a, b, ¢, d) containing | million records,
where each page of the relation holds 10 records. R is
organized as a heap file with unclustered indexes, and the
records in R are randomly ordered. Assume that attribute a is
candidate key for R, with values lying in the range 0 to
999,999. For each of the following queries, name the
approach that would most likely require the fewest I/Os for
processing the query. The approaches to consider follow:

— Scanning through the whole heap file for R.

— Using a B+ tree index on attribute R.a
— Using a hash index on attribute R.a

The queries are:

Find all R tuples.

Eall R

Ans:

Find all R tuples such that a<50
Find all R tuples such that =50
Find all R tuples such a>50 and a.>100

Let h be the height of the B+ tree (usually 2 or 3) and M be the number of
data entries per page (M>10). Let us assume that after accessing the data
entry it takes one more disk access to get the actual record. Let c be the

occupancy factor in hash indexing.

Consider the table shown below {disk sccesses):

Problem Heap File B+ Tree Hash Index
1. Al juples 10° b+ % +10¢ % +10¢
2.0 < 50 10° b+ 37 + 50 100

3. a=30 10° h+1 2

4. a > 30 and o < 100 10° b+ 32 449 9%

25/03/2013

12

From the first row of the table, we see that heap file
organization is the best (has the fewest disk accesses).

From the second row of the table, with typical value for
h and M, the B+ Tree has the fewest disk accesses.
From the third row of the table, again we see that B+
Tree is the best.

From the fourth row or the table, again we see that B+
Tree is the best.

25/03/2013

13

