
Tutorial 5

Exercise 1

Consider the following relational schema and briefly answer the questions
that follow:
Emp(eid: integer, ename: string, age: integer, salary: real)

Works(eid: integer, did: integer, pct time: integer)

Dept(did: integer, budget: real, managerid: integer)

1. Define a table constraint on Emp that will ensure that every employee makes at least
$10,000.
2. Define a table constraint on Dept that will ensure that all managers have age > 30.
3. Define an assertion on Dept that will ensure that all managers have age > 30. Compare
this assertion with the equivalent table constraint. Explain which is better.
4. Write SQL statements to delete all information about employees whose salaries
exceed that of the manager of one or more departments that they work in. Be sure to
ensure that all the relevant integrity constraints are satisfied after your updates.

1. Define a table constraint on Emp that will ensure that every employee
makes at least $10,000.

CREATE TABLE Emp (eid INTEGER,

 ename CHAR(10),

 age INTEGER,

 salary REAL,

 PRIMARY KEY (eid),

 CHECK (salary >= 10000)

)

2. Define a table constraint on Dept that will ensure that all managers have age >
30.

CREATE TABLE Dept (did INTEGER,

 buget REAL,

 managerid INTEGER,

 PRIMARY KEY (did),

 FOREIGN KEY (managerid) REFERENCES Emp,

 CHECK((SELECT E.age

 FROM Emp E, Dept D)

 WHERE E.eid=D.managerid)>30)

3. Define an assertion on Dept that will ensure that all managers have age >
30

1 option.

CREATE TABLE Dept (did INTEGER,

 budget REAL,

 managerid INTEGER,

 PRIMARY KEY (did))

The condition is checked only when the Dept relation is being updated.

2 option.

CREATE ASSERTION managerAge

 CHECK ((SELECT E.age

 FROM Emp E, Dept D

 WHERE E.eid = D.managerid) > 30)

It checks for potential violation of the assertion whenever one of the relations is
updated.

4. To write such statements, it is necessary to consider the constraints defined over
the tables. We will assume the following:
CREATE TABLE Emp (eid INTEGER,

 ename CHAR(10),

 age INTEGER,

 salary REAL,

 PRIMARY KEY (eid))

CREATE TABLE Works (eid INTEGER,

 did INTEGER,

 pcttime INTEGER,

 PRIMARY KEY(eid, did),

 FOREIGN KEY(did) REFERENCES Dept,

 FOREIGN KEY(eid) REFERENCES Emp, ON DELETE CASCADE)

CREATE TABLE Dept (did INTEGER,

 buget REAL,

 managerid INTEGER,

 PRIMARY KEY(did),

 FOREIGN KEY(managerid) REFERENCES Emp, ON DELETE SET NULL)

Exercise 5.8 Consider the following relations:

Student(snum: integer, sname: string, major: string,

level: string, age: integer)

Class(name: string, meets at: time, room: string, fid:

integer)

Enrolled(snum: integer, cname: string)

Faculty(fid: integer, fname: string, deptid: integer)

The meaning of these relations is straightforward; for example, Enrolled has one record

per student-class pair such that the student is enrolled in the class.

1. Write the SQL statements required to create these relations, including appropriate versions of all
primary and foreign key integrity constraints.

2. Express each of the following integrity constraints in SQL unless it is implied by the primary and foreign
key constraint; if so, explain how it is implied. If the constraint cannot be expressed in SQL, say so. For each
constraint, state what operations (inserts, deletes, and updates on specific relations) must be monitored to
enforce the constraint.

(a) Every class has a minimum enrollment of 5 students and a maximum enrollment of 30
students.
(b) At least one class meets in each room.
(c) Every faculty member must teach at least two courses.
(d) Only faculty in the department with deptid=33 teach more than three courses.
(e) Every student must be enrolled in the course called Math101.
(f) The room in which the earliest scheduled class (i.e., the class with the smallest
meets at value) meets should not be the same as the room in which the latest
scheduled class meets.
(g) Two classes cannot meet in the same room at the same time.
(h) The department with the most faculty members must have fewer than twice
the number of faculty members in the department with the fewest faculty
members.
(i) No department can have more than 10 faculty members.
(j) A student cannot add more than two courses at a time (i.e., in a single
update).
(k) The number of CS majors must be more than the number of Math majors.

(l) The number of distinct courses in which CS majors are enrolled is greater than the number of distinct
courses in which Math majors are enrolled.

(m) The total enrollment in courses taught by faculty in the department with deptid=33 is greater than
the number of Math majors.

(n) There must be at least one CS major if there are any students whatsoever.

(o) Faculty members from different departments cannot teach in the same room.

1. The SQL statements needed to create the tables:

CREATE TABLE Students(snum INTEGER,
 sname CHAR(20),
 major CHAR(20),
 level CHAR(20),
 age INTEGER,
 PRIMARY KEY (snum))

CREATE TABLE Faculty (fid INTEGER,
 fname CHAR(20),
 deptid INTEGER,
 PRIMARY KEY (fnum))

CREATE TABLE Class (name CHAR(20),
 meets_at TIME,
 room CHAR(20),
 fid INTEGER,
 PRIMARY KEY(name),
 FOREIGN KEY (fid) REFERENCES Faculty)

CREATE TABLE Enrollment (snum INTEGER.
 cname CHAR(20),
 PRIMARY KEY (snum,cname),
 FOREIGN KEY (snum) REFERENCES Student ,
 FOREIGN KEY (cname) REFERENCES Class)

Every class has a minimum enrollment of 5 students and a maximum enrollment of 30
students.

 CREATE TABLE Enrollment (snum INTEGER.

 cname CHAR(20),

 PRIMARY KEY (snum,cname),

 FOREIGN KEY (snum) REFERENCES Student ,

 FOREIGN KEY (cname) REFERENCES Class ,

 CHECK ((SELECT COUNT(E.snum)

 FROM Enrollment E

 GROUP BY E.cname)>5),

 CHECK ((SELECT COUNT(E.snum)

 FROM Enrollment E

 GROUP BY E.cname)<=30))

b) At least one class meets in each room.

This constraint is already guaranteed because rooms are associated with
classes and thus a new room cannot be declared without an associated class
in it.

c) Every faculty member must teach at least two courses.

CREATE ASSERTION Teach Two

 CHECK((SELECT COUNT(*)

 FROM Faculty F, Class C

 WHERE F.fid = C.fid

 GROUP BY C.fid

 HAVING COUNT(*)<2) = 0)

d) Only faculty in the department with deptid=33 teach more than three
courses.

 CREATE ASSERTION NoTeachThree

 CHECK((SELECT COUNT(*)

 FROM Faculty F, Class C

 WHERE F.fid = C.fid AND F.deptit ≠ 33

 GROUP BY C.fid

 HAVING COUNT(*)>3) = 0)

e) Every student must be enrolled in the course called Math101.

CREATE ASSERTION InMath101

 CHECK((SELECT COUNT(*)

 FROM Student S

 WHERE S.snum NOT IN (SELECT E.snum

 FROM Enrollment

 WHERE E.cname = ‘Math101’))=0)

f) The room in which the earliest scheduled class (i.e., the class with the smallest meets at value)
meets should not be the same as the room in which the latest scheduled class meets.

CREATE TABLE Class (name CHAR(20),

 meets_at TIME,

 room CHAR(20),

 fid INTEGER,

 PRIMARY KEY(name),

 FOREIGN KEY (fid) REFERENCES Faculty

 CHECK((SELECT MIN(meets_at)

 FROM Class)<>

 (SELECT MAX(meets_at)

 FROM Class)))

g) Two classes cannot meet in the same room at the same time.

CREATE TABLE Class (name CHAR(20),

 meets_at TIME,

 room CHAR(20),

 fid INTEGER,

 PRIMARY KEY(name),

 FOREIGN KEY (fid) REFERENCES Faculty,

 CHECK((SELECT C.room,C.meets

 FROM Class C

 GROUP BY C.room,C.meets

 HAVING COUNT(*)>1))=0)

h) The department with the most faculty members must have fewer than
twice the number of faculty members in the department with the fewest
faculty members.

CREATE TABLE Faculty (fid INTEGER,

 fname CHAR(20),

 deptid INTEGER,

 PRIMARY KEY (fnum),

 CHECK((SELECT MAX(*)

 FROM (SELECT COUNT(*)

 FROM Faculty F

 GROUP BY F.deptid))<2*

 (SELECT MIN(*)

 FROM (SELECT COUNT(*)

 FROM Faculty F

 GOUP BY F.deptid))))

i) No department can have more than 10 faculty members.

CREATE TABLE Faculty (fid INTEGER,

 fname CHAR(20),

 deptid INTEGER,

 PRIMARY KEY (fnum),

 CHECK((SELECT COUNT(*)

 FROM Faculty F

 GROUP BY F.deptid

 Having COUNT(*)>10)=0))

j) A student cannot add more than two courses at a time (i.e., in a single
update).

This constraint cannot be done because integrity constraints and assertions
only affect the content of a table not how the content is manipulated.

k) The number of CS majors must be more than the number of Math majors.

CREATE TABLE Students(snum INTEGER,

 sname CHAR(20),

 major CHAR(20),

 level CHAR(20),

 age INTEGER,

 PRIMARY KEY (snum),

 CHECK ((SELCT COUNT(*)

 FROM Students S

 WHERE S.major=‘CS’>

 (SELECT COUNT(*)

 FROM Students S

 WHERE S.major=‘Math’)))

l) The number of distinct courses in which CS majors are enrolled is greater
than the number of distinct courses in which Math majors are enrolled.

 CREATE ASSERTION MoreCSMajor

 CHECK((SELECT COUNT(E.cname)

 FROM Enrollemtn E,Students S

 WHERE S.snum=E.snum AND S.major>’CS’)>

 (SELECT COUNT(E.cname)

 FROM Enrollemtn E,Students S

 WHERE S.snum=E.snum AND S.major>’Math’))

m) The total enrollment in courses taught by faculty in the department with
deptid=33 is greater than the number of Math majors.

CREATE ASSERTION MoreEnrolledMath

 CHECK((SELECT COUNT(E.snum)

 FROM Enrollment E, Faculty F, Class C

 WHERE E.cname=C.name AND

 C.fid=F.fid AND F.deptid=33)>

 (SEELCT COUNT(E.snum)

 FROM Student S

 WHERE S.Major=‘Math’))

n) There must be at least one CS major if there are any students whatsoever.

CREATE TABLE Students(snum INTEGER,

 sname CHAR(20),

 major CHAR(20),

 level CHAR(20),

 age INTEGER,

 PRIMARY KEY (snum),

 CHECK((SELECT COUNT(S.snum)

 FROM Students S

 WHERE S.major=‘CS’)>0))

o) Faculty members from different departments cannot teach in the same
room.

CREATE ASSERTION NotSameRoom

 CHECK((SELECT COUNT(*)

 FROM Faculty F1, Faculty F2, Class C1, Class C2

 WHERE F1.fid=C1.fid AND

 F2.fid=C2.fid AND

 C1.room=C2.room AND

 F1.deptid≠ F2.deptid)=0)

