Business and Computer University College

CSI 211 Programming 1

1. write a program that finds the transpose of a square matrix, the user should enter the elements of the matrix and the program should print them in the transpose form. For example:

$\mathrm{M}=$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |\quad then $\quad M^{T}=$| 1 | 4 | 7 |
| :--- | :--- | :--- |
| 2 | 5 | 8 |
| 3 | 6 | 9 |

2. Use the program of problem 1 to determine the inverse of a square matrix.
Hint:

$$
\text { If } M=\begin{array}{ccc}
A & B & C \\
D & E & F \\
G & H & I
\end{array}
$$

Then:
$M^{-1}=(1 /$ delta $) * M^{T}$
Where: \quad Delta $=A *\left(E * I-F^{*} H\right)-B^{*}\left(D^{*} I-F^{*} G\right)+C^{*}\left(D^{*} H-E^{*} G\right)$
3. Write a program that initialize a 2-dimentional array with the following data, and finds the average of each of the students:

	Grade 0	Grade 1	Grade 2	Grade 3	Grade 4
Student\# 1	77	25	91	71	68
Student\# 2	90	60	28	82	89
Student\# 3	50	70	38	98	85

Write function that determines the average of the class in each of the grades.
Write two functions to return the maximum and the minimum grades of the above table.

