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Umple: Simple, Ample,

UML Programming Language
1. Open source textual modelling tool set for 3 platforms

• Command line compiler

• Web-based tool (UmpleOnline) for demos and education

• Eclipse plugin

2. Code generator for UML ++

• Infinitely nested state machines, with concurrency

• Proper referential integrity and multiplicity constraints on 

associations

• Traits, mixins, aspects for modularity

• Text generation templates, patterns, traits

3.Pre-processor to add UML, patterns and other features on top of 

Java, PhP, C++ and other languages
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Websites

Entry-point: http://umple.org

UmpleOnline:  http://try.umple.org

Github: https://github.com/umple/umple

Wiki: http://code.google.com/p/umple/wiki/UmpleHome

Tutorials:  http://code.google.com/p/umple/wiki/Tutorials

Publications:

https://code.google.com/p/umple/wiki/Publications

These slides are available

• http://www.site.uottawa.ca/~mgarz042/files/CSI5112-Umple.pdf 
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Motivation for developing Umple (1)

We want the best combination of features:

• Textual editing and blending with other languages

• Ability to use in an agile process

—Write tests, continuous integration, versioning

—Combine the best of agility and modeling

• Excellent code generation

—Complete generation of real systems (including itself)

• Multi-platform (command line, Eclipse, Web)

• Practical and easy to use for developers

—Including great documentation

• Open source
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Motivation for developing Umple (2)

Many existing tools:

• Lacked in usability

—Awkward to edit diagrams

—Many steps to do a task

—Lengthy learning process

• Lack in ongoing support

• Could be enhanced by us  perhaps, but we would be 

tied to key decisions (e.g. Eclipse-only)
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Some key Umple innovations

Model is code

• Traditional code is embedded in model

No need to edit generated code

• No ‘round-trip engineering’
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Using Umple

We will mostly be using

• Umpleonline

—In a web browser: http://try.umple.org

—Or in Docker: http://docker.umple.org

• Umple on the command line: http://dl.umple.org

—Needs Java 8 JDK on the command line: 

http://bit.ly/1lO1FSV

- Java 9 works well too

Optional:

• Umple in Eclipse 
https://github.com/umple/umple/wiki/InstallEclipsePlugin

• cmake and gcc for compiling C++ code
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Umple class models – quick overview

Key elements:

• Classes

• Attributes

• Associations

• Generalizations

• Methods

We will look at all these using examples

Umple code/models are stored in files with suffix .ump
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Exercise: Compiling and changing a model

Look at the example at the bottom of 

http://helloworld.umple.org (also on next slide)

• Observe: attribute, association, class hierarchy, mixin

Click on Load the above code into UmpleOnline

• Observe and modify the diagram

• Add an attribute

• Make a multiplicity error, then undo

• Generate code and take a look

• Download, compile and run if you want
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Hello World Example 2 in the User Manual
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Key tools:

UmpleOnline, command line, user manual
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Hello World example 2 in UmpleOnline
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Exploration of UmpleOnline

Explore class diagram examples

Options

• T or Control-t (hide and show text)

• D or Control-d (hide and show diagram)

• A, M to hide and show attributes, methods

• Default diagram types

—G/Control-g (Graphviz),      S/Control-s (State Diagram)

—E/Control-e (Editable class diagram)

Generate code and look at the results

• In Umple you never should modify generated code

• It is designed to be readable for educational purposes
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Use of the UmpleOnline Docker image

Umple’s server can handle 80,000 transactions per hour

• Code generations, edits

But needs a good Internet connection

… and sometimes hundreds of students have assignments 

due!

To maximize speed of UmpleOnline run it in your local 

machine:

• Follow the instructions at http://docker.umple.org
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Demo of compiling on the command line

To compile on the command line you will need Java 8

Download Umple from http://dl.umple.org

Basic compilation

•java -jar umple.jar model.ump

•java -jar umple.jar --help

To generate and compile the java to a final system

•java –jar umple.jar model.ump -c -
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Quick walkthrough of the user manual

http://manual.umple.org

Note in particular

• Key sections: attributes, associations, state machines

• Grammar

• Generated API

• Errors and warnings

• Editing pages in github
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Attributes
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Attributes

“Instance variables”

• Part of the state of an object

• Simple data that will always be present in each instance

Specified like a Java or C++ field or member variable

But, intended to be more abstract!

Example, with an initial value

a = "init value";
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Code generation from attributes

Default code generation

• Generates a getName() and setName() method for 

name

—public

• Creates an arguments in the class constructor by default

• An attribute is private to the class by default

—Should only be accessed get, set methods
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Umple builtin datatypes
String // (default if none specified)

Integer

Float

Double

Boolean

Time

Date

The above will generate appropriate code in Java, C++ etc.

• e.g. Integer becomes int

Other (native) types can be used but without guaranteed 

correctness
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Attribute stereotypes (1)

Code generation can be controlled through stereotypes:

• lazy - don’t add a constructor argument
lazy b;  // sets it to null, 0, “” depending on 

type

• Defaulted – can be reset

defaulted s = "def"; // resettable to the default
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Attribute stereotypes (2)

• autounique – provide a unique value to each instance
autounique x;  // sets attribute to 1, 2, 3 …

• internal – don’t generate any methods
internal i; // doesn’t generate any get/set 

either
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Immutability

Useful for objects where you want to guarantee no possible 

change once created

• e.g. a geometric point

Generate a constructor argument and get method but no 

set method

immutable String str;

No constructor argument, but allows setting just once.

lazy immutable z;
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Lets explore attributes by example

Go to

http://attributes.umple.org
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Derived attributes

These generate a get method that is calculated.

class Point

{

// Cartesian coordinates

Float x;

Float y;

// Polar coordinates

Float rho =

{Math.sqrt(Math.pow(getX(), 2) + Math.pow(getY(), 2))}

Float theta =

{Math.toDegrees(Math.atan2(getY(),getX()))}

}
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Multi-valued attributes

Limit their use. Associations are generally better.

class Office {

Integer number;

Phone[] installedTelephones;

}

class Phone {

String digits;

String callerID;

}
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Keys

Enable Umple to generate an equals() and a hashcode() 

method

class Student {

Integer id;

name;

key { id }

}

The user manual has a sports team example showing keys 

on associations too

Note how this feature is not inherited from UML
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Generalization and interfaces
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Generalization in Umple

Umple uses the isA keyword to indicate generalization

class Shape {

colour;

}

class Rectangle {

isA Shape;

}
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Avoiding unnecessary generalizations

Inappropriate hierarchy of

Classes

What should the model be?

Garzon - Feb 2018
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http://try.umple.org/?text=class Recording{  * -- 1 RecordingCategory category;}class RecordingCategory{  0..1 -- * RecordingCategory subcategory;}//$?[End_of_model]$?class Recording{  position 157 30 109 45;  position.association Recording__RecordingCategory 62,46 75,0;}class RecordingCategory{  position 149 135 133 45;}


Interfaces

Declare signatures of a group of methods that must be 

implemented by various classes

Also declared using the keyword isA

Essentially the same concept as in Java

Let’s explore examples in the user manual …
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Methods
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User-written methods in umple

Methods can be added to any Umple code.

Umple parses the signature only; the rest is passed to the 

generated code.

You can specify different bodies in different languages

We will look at examples in the user manual …
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Associations
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Associations

Describe how instances of classes are linked at runtime 

• Bidirectional -- or unidirectional ->

Multiplicity: Bounds on the number of linked instances

*      Or    0..*        0 or more

1..*                        1 or more

1                            Exactly 1

2                            Exactly 2

1..3                        Between 1 and 3

0..2                        Up to 2
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Basic UML associations
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Many-to-one associations (1)

class Employee {

id;

firstName;

lastName;

}

class Company {

name;

1 -- * Employee;

}
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Many-to-one associations (2)

• A company has many employees, 

• An employee can only work for one company.

—This company will not store data about the 

moonlighting activities of employees! 

• A company can have zero employees

—E.g. a ‘shell’ company

• It is not possible to be an employee unless you work for 

a company

• Let’s draw and write this in UmpleOnline:

*Employee Company1
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Role names (optional, in most cases)

Allow you to better label either end of an association

class Person{

id;

firstName;

lastName;

}

class Company {

name;

1 employer -- * Person employee;

}
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Many-to-many associations

• An assistant can work for many managers

• A manager can have many assistants

• Assistants can work in pools working for several 

managers

• Managers can have a group of assistants

• Some managers might have zero assistants. 

• Is it possible for an assistant to have, perhaps 

temporarily, zero managers?

*

supervisor

*****1..*Assistant Manager

Open in Umple
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One-to-one associations (Use cautiously)

• For each company, there is exactly one board of 

directors

• A board is the board of only one company

• A company must always have a board

• A board must always be of some company

Company BoardOfDirectors11

Open in Umple
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Typical erroneous use of one-to-one

Avoid this                                do this
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Unidirectional associations
Associations are by default bi-directional

It is possible to limit the direction of an association by adding an 

arrow at one end

In the following unidirectional association

— A Day knows about its notes, but a Note does not know 

which Day is belongs to

—Note remains ‘uncoupled’ and can be used in other contexts

class Day {

* -> 1 Note;

}

class Note {} Open in Umple
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Association classes

Sometimes, an attribute that concerns two associated classes 

cannot be placed in either of the classes

The following are nearly equivalent

• The only difference:

—in the association class there can be only a single

registration of a given Student in a CourseSection

Open in Umple and extended example
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Association classes (cont.)

Umple code 

class Student {}

class CourseSection {}

associationClass Registration {

*  Student;

*  CourseSection;

}

Open in UmpleOnline, and then generate code
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Reflexive associations

An association that connects a class to itself

class Course {

* self isMutuallyExclusiveWith; // Symmetric

}

association {

* Course successor -- * Course prerequisite;

} Open in Umple
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Inline vs. standalone associations

The following are equivalent to allow flexibility:

class X {}

class Y {

1 -- * X;

}

---

class X {}

class Y {}

association {

1 Y -- * X;

}
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Aggregation

Aggregations are ordinary associations that represent part-whole 

relationships. 

• The ‘whole’ side is often called the assembly or the aggregate

• This is a shorthand for association named isPartOf

• Umple has no special syntax currently

class Vehicle {

1 whole -- * VehiclePart part;

}

class VehiclePart{

}
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Composition

A composition is a strong kind of aggregation 

• If the aggregate is destroyed, then the parts are destroyed as well

class Building {

1 <@>- * Room;

}

class Room{

}

Garzon - Feb 2018



Sorted Associations

Order objects in the association according to a specific key

class Academy {

1 -- * Student registrants sorted {id};

}

class Student {

Integer id;

name;

}

We will look at a more complete example in the User 

Manual
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A final word on associations

More help and examples are in the user manual online at

http://associations.umple.org
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Modeling exercises
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Modeling Exercise

Build a class diagram for the following description. If you 

think there are key requirements missing, then add them.

1. A football (soccer) team has players. Each player plays a 

position. The team plays some games against other 

teams during each season. The system needs to record 

who scored goals, and the score of each game.
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Simple patterns (if time)
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Singleton pattern

Standard pattern to enable only a single instance of a class 

to be created.

• private constructor

• getInstance() method

Declaring in Umple

class University {

singleton;

name;

} 
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Delegation pattern

A class calls a method in its ‘neighbour’

class RegularFlight {

flightNumber;

}

Class SpecificFlight {

* -- 1 RegularFlight;

flightNumber = {getRegularFlight().getFullNumber()}

}

Full details of this example in the user manual
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Basic constraints

Shown in square brackets

• Code is added to the constructor and the set method

class X {

Integer i;

[! (i == 10)]

}

We will see constraints later in state machines
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Basic state machines
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Basics of state machines

• At any given point in time, the system is in one state.

• It will remain in this state until an event occurs that

causes it to change state.

• A state is represented by a rounded rectangle containing

the name of the state.

• Special states:

—A black circle represents the start state

—A circle with a ring around it represents an end state
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Garage door state machine
class GarageDoor{

status {

Open {

buttonOrObstacle -> Closing;

}

Closing {

buttonOrObstacle -> Opening;

reachBottom -> Closed;

}

Closed {

buttonOrObstacle -> Opening;

}

Opening {

buttonOrObstacle -> HalfOpen;

reachTop -> Open;

}

HalfOpen {

buttonOrObstacle -> Opening;

}

}

}
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Events

An occurrence that may trigger a change of state

• Modeled in Umple as generated methods that can be 

called

Several states may be able to respond to the same event
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Transitions

• A change of state in response to an event.

—It is considered to occur instantaneously.

• The label on each transition is the event that causes the

change of state.
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State diagrams – an example with 

conditional transitions 
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Actions in state diagrams

• An action is a block of code that must be executed 

effectively instantaneously

—When a particular transition is taken,

—Upon entry into a particular state, or

—Upon exit from a particular state

• An action should consume no noticeable amount of time
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Nested substates and guard conditions

A state diagram can be nested inside a state. 

• The states of the inner diagram are called substates.
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Nested state diagram – Another example
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Auto-transitions

A transition taken immediately upon entry into a state

• Unless guarded

We will look at an example in the user manual
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Events with parameters

Parameters can be referenced in guards and actions.

We will look at an example in the user manual.
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Analysing models

Garzon - Feb 2018 Umple - Model-Based Programming 72



Models can be analysed in several ways

Visually

Automatically generated errors and warnings

State tables (next slide)\

Metrics

Formal methods (nuXMV)
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State tables and simulations

Allow analysis of state machines statically without having to 

write code

We will explore these in UmpleOnline by looking at state 

machine examples and generating tables and 

simulations
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Concurrency
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Do activities and concurrency

A do activity executes

• In a separate thread

• Until

—Its method terminates, or

—The state needs to exit (killing the tread)

Example uses:

• Outputting a stream (e.g. playing music)

• Monitoring something

• Running a motor while in the state

• Achieving concurrency, using multiple do activities
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Active objects

These start in a separate thread as they are instantiated.

Declared with the keyword

active

Umple - Model-Based Programming 77Garzon - Feb 2018



Default threading in state machines

As discussed so far, code generated for state machines 

has the following behaviour:

• A single thread:

—Calls an event

—Executes the event (running any actions)

—Returns to the caller and continues

This has two problems:

1. If another thread calls the event at the same time they 

will ‘interfere’

2. There can be deadlocks if an action itself triggers an 

event
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Queued state machines

Solve the threading problem:

• Callers can add events to a queue without blocking

• A separate thread takes items off the queue ‘as fast as it 

can’ and processes them

Umple syntax: queued before the state machine 

declaration

We will look at examples in the manual
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Pooled state machines

Default Umple Behavior (including with queued):

• If an event is received but the system is not in a state that 

can handle it, then the event is ignored.

Alternative pooled stereotype:

• Uses a queue (see previous slide)

• Events that cannot be processed in the current state are 

left at the head of the queue until a relevant state reached

• The first relevant event nearest the head of the queue is 

processed

• Events may hence be processed out of order, but not 

ignored

Umple - Model-Based Programming 80Garzon - Feb 2018



Unspecified pseudo-event

Matches any event that is not listed

Can be in any state, e.g.

unspecified -> error;
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Example using unspecified
class AutomatedTellerMachine{

queued sm {

idle {

cardInserted -> active;      maintain -> maintenance;

unspecified -> error1;

}        

maintenance { isMaintained -> idle; }

active {

entry /{addLog("Card is read");}

exit /{addLog("Card is ejected");}

validating {

validated -> selecting;

unspecified -> error2;

}

selecting {select -> processing; }

processing {

selectAnotherTransiction -> selecting;

finish -> printing;

}

printing {receiptPrinted -> idle;}

cancel -> idle;

}

error1 {entry / {printError1();} ->idle;}

error2 {entry / {printError2();} ->validating;}

}

}
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State machines in the user manual

http://statemachines.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 83

http://statemachines.umple.org


State machine case study
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State machine for a phone line
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Umple for the phone line example
class phone {

state {

onHook {

startDialing -> dialling;

incomingCall -> ringing;

}

ringing {

pickUp -> communicating;

otherPartyHangUp -> onHook;

}

communicating {

hangUp -> onHook;

otherPartyHangUp -> waitForHook;

putOnHold -> onHold;

}

onHold {

hangUp -> onHook;

otherPartyHangUp -> waitForHook;

takeOffHold -> communicating;

}

dialing {

completeNumber -> 

waitingForConnection;

hangUp -> onHook;

}

waitingForConnection {

otherPartyPickUp -> communicating;

hangUp -> onHook;

timeOut -> onHook;

}

waitForHook {

hangUp -> onHook;

}

}

}
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In-class modeling exercise for

state machines

Microwave oven system state machine

• Events include

—pressing of buttons

—door opening

—door closing

—timer ending

—etc.
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5. Separation of Concerns in Models

— Mixins / Aspects / Traits
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Mixins
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Separation of concerns by mixins in Umple

Mixins allow including attributes, associations, state 

machines, groups of states, stereotypes, etc

Example:

class X { a; }

class X { b; }

• The result would be a class with both a and b.

It doesn’t matter whether the mixins are

• Both in the same file

• One in one file, that includes the other in an other file

• In two separate files, with a third file invoking them

Umple - Model-Based Programming 90
Garzon - Feb 2018



Typical ways of using mixins

Separate model files (classes, attributes associations)

… from files for the same class containing methods

• Allows a clearer view of the core model

Separate system features, each into a separate file
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Advantages and disadvantages of mixins

Advantages:

• Smaller files that are easier to understand

• Different versions of a class for different software 

versions (e.g. a professional version) can be built by 

using different mixins

Disadvantage

• Delocalization: 

—Bits of functionality of a class in different files

—The developer may not know that a mixin exists 

unless a tool helps show this
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Aspect orientation
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Aspect orientation

Create a pointcut that specifies (advises) where to inject 

code at multiple points elsewhere in a system

• The pointcut uses a pattern

• Pieces of code that would otherwise be scattered are 

thus gathered into the aspect

But: There is potentially acute sensitivity to change

• If the code changes the aspect may need to change

• Yet without tool support, developers wouldn’t know this

Delocalization even stronger than for mixins
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Aspect orientation in Umple

Pointcuts are currently limited to a single class

• Just inject code before and after execution of methods and 

constructors

class Person {

name;

before setName {

if (aName != null && aName.length() > 20) { return false;

}

}

}

We have found these limited abilities nonetheless solve key 

problems
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Traits
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Separation of concerns by traits
Allow modeling elements to be made available in multiple 

classes

trait Identifiable {

firstName;

lastName;

address;

phoneNumber;

fullName = {firstName + " " + lastName}

Boolean isLongName() {return lastName.length() > 1;}  

}

class Person {

isA Identifiable;

}

See more complete version of this in the user manual
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Another trait example
trait T1{

abstract void method1(); /* required method */

abstract void method2();

void method4(){/*implementation – provided method*/ } 

}

trait T2{

isA T1;

void method3();

void method1(){/*implementation*/ } 

void method2(){/*implementation*/ } 

}

class C1{

void method3(){/*implementation*/ }

} 

class C2{ isA C1; isA T2; 

void method2(){/*implementation*/ }

} 
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Unit Testing with Umple

To see how to integrate Unit Testing with Umple, see the 

sample project at

• https://github.com/umple/umple/tree/master/sandbox

And the build script at

• https://github.com/umple/umple/blob/master/build/build.sandbox.xml

Command line from build directory

ant -f build.xml sandbox
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A Look at How Umple is Written in Itself
Source:

https://github.com/umple/umple/tree/master/cruise.umple/src

Umple’s own class diagram generated by itself from itself:

• http://metamodel.umple.org

• Colours represent key subsystems

• Click on classes to see Javadoc, and then Umple Code
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Testing:

TDD with100% pass always required

Multiple levels:  https://cruise.eecs.uottawa.ca/qa/index.php

• Parsing tests: basic constructs

• Metamodel tests: ensure it is populated properly

—E.g.
—https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/com

piler/AssociationTest.java

• Implementation template tests: to ensure constructs 

generate code that looks as expected

• Testbed semantic tests: Generate code and make sure it 

behaves the way it should 
Umple - Model-Based Programming 102

Garzon - Feb 2018

https://cruise.eecs.uottawa.ca/qa/index.php
https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/compiler/AssociationTest.java


Umple issues list

Tagged by

Priority

Perceived difficulty

Scale (bug, project, research project)

Milestone (slow release)

http://bugs.umple.org
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Using Umple with Builds and Continuous

Integration

Example build scripts

Example travis.yml

Umple’s own Travis page
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Umple’s Architecture
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Umplification - Example
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Conclusion

Umple

• Is simple but powerful modeling tool

• Generates state-of-the-art code

• Enables agility + model-driven development

• We call the overall approach model-based 

programming
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Thank-you!
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