
Introduction to Umple

CSI5112– February 2018

Based on presentations from Lethbridge, Garzón and umple.org.

http://umple.org/

Outline
1. Introduction:

2. Overview of Model-Driven Development

— Languages / Tools / Motivation for Umple

3. Class Modeling

— Tools / Attributes / Methods / Associations / Exercises /

Patterns

4. Modeling with State Machines

— Basics / Concurrency / Case study and exercises

5. Separation of Concerns in Models

— Mixins / Aspects / Traits

6. More Case Studies and Hands-on Exercises

— Umple in itself / Real-Time / Data Oriented

7. Conclusion

Garzon - Feb 2018 Umple - Model-Based Programming 2

Umple: Simple, Ample,

UML Programming Language
1. Open source textual modelling tool set for 3 platforms

• Command line compiler

• Web-based tool (UmpleOnline) for demos and education

• Eclipse plugin

2. Code generator for UML ++

• Infinitely nested state machines, with concurrency

• Proper referential integrity and multiplicity constraints on

associations

• Traits, mixins, aspects for modularity

• Text generation templates, patterns, traits

3.Pre-processor to add UML, patterns and other features on top of

Java, PhP, C++ and other languages

Garzon - Feb 2018 Umple - Model-Based Programming 3

Websites

Entry-point: http://umple.org

UmpleOnline: http://try.umple.org

Github: https://github.com/umple/umple

Wiki: http://code.google.com/p/umple/wiki/UmpleHome

Tutorials: http://code.google.com/p/umple/wiki/Tutorials

Publications:

https://code.google.com/p/umple/wiki/Publications

These slides are available

• http://www.site.uottawa.ca/~mgarz042/files/CSI5112-Umple.pdf

Umple - Model-Based Programming 4Garzon - Feb 2018

http://umple.org/
http://try.umple.org/
http://try.umple.org/
https://github.com/umple/umple
http://code.google.com/p/umple/wiki/UmpleHome
http://code.google.com/p/umple/wiki/Tutorials
https://code.google.com/p/umple/wiki/Publications
http://www.site.uottawa.ca/~mgarz042/files/CSI5112_Umple.pdf

Motivation for developing Umple (1)

We want the best combination of features:

• Textual editing and blending with other languages

• Ability to use in an agile process

—Write tests, continuous integration, versioning

—Combine the best of agility and modeling

• Excellent code generation

—Complete generation of real systems (including itself)

• Multi-platform (command line, Eclipse, Web)

• Practical and easy to use for developers

—Including great documentation

• Open source

Garzon - Feb 2018 Umple - Model-Based Programming 5

Motivation for developing Umple (2)

Many existing tools:

• Lacked in usability

—Awkward to edit diagrams

—Many steps to do a task

—Lengthy learning process

• Lack in ongoing support

• Could be enhanced by us perhaps, but we would be

tied to key decisions (e.g. Eclipse-only)

Garzon - Feb 2018 Umple - Model-Based Programming 6

Some key Umple innovations

Model is code

• Traditional code is embedded in model

No need to edit generated code

• No ‘round-trip engineering’

Garzon - Feb 2018 Umple - Model-Based Programming 7

Using Umple

We will mostly be using

• Umpleonline

—In a web browser: http://try.umple.org

—Or in Docker: http://docker.umple.org

• Umple on the command line: http://dl.umple.org

—Needs Java 8 JDK on the command line:

http://bit.ly/1lO1FSV

- Java 9 works well too

Optional:

• Umple in Eclipse
https://github.com/umple/umple/wiki/InstallEclipsePlugin

• cmake and gcc for compiling C++ code

Umple - Model-Based Programming 8Garzon - Feb 2018

http://try.umple.org/
http://docker.umple.org/
http://dl.umple.org/
http://bit.ly/1lO1FSV
https://github.com/umple/umple/wiki/InstallEclipsePlugin

Outline
1. Introduction:

2. Overview of Model-Driven Development

— Languages / Tools / Motivation for Umple

3. Class Modeling

— Tools / Attributes / Methods / Associations / Exercises /

Patterns

4. Modeling with State Machines

— Basics / Concurrency / Case study and exercises

5. Separation of Concerns in Models

— Mixins / Aspects / Traits

6. More Case Studies and Hands-on Exercises

— Umple in itself / Real-Time / Data Oriented

7. Conclusion

Garzon - Feb 2018 Umple - Model-Based Programming 9

Umple class models – quick overview

Key elements:

• Classes

• Attributes

• Associations

• Generalizations

• Methods

We will look at all these using examples

Umple code/models are stored in files with suffix .ump

Garzon - Feb 2018 Umple - Model-Based Programming 10

Exercise: Compiling and changing a model

Look at the example at the bottom of

http://helloworld.umple.org (also on next slide)

• Observe: attribute, association, class hierarchy, mixin

Click on Load the above code into UmpleOnline

• Observe and modify the diagram

• Add an attribute

• Make a multiplicity error, then undo

• Generate code and take a look

• Download, compile and run if you want

Umple - Model-Based Programming 11Garzon - Feb 2018

http://helloworld.umple.org/

Hello World Example 2 in the User Manual

Umple - Model-Based Programming 12Garzon - Feb 2018

Key tools:

UmpleOnline, command line, user manual

Garzon - Feb 2018 Umple - Model-Based Programming 13

Hello World example 2 in UmpleOnline

Umple - Model-Based Programming 14Garzon - Feb 2018

Exploration of UmpleOnline

Explore class diagram examples

Options

• T or Control-t (hide and show text)

• D or Control-d (hide and show diagram)

• A, M to hide and show attributes, methods

• Default diagram types

—G/Control-g (Graphviz), S/Control-s (State Diagram)

—E/Control-e (Editable class diagram)

Generate code and look at the results

• In Umple you never should modify generated code

• It is designed to be readable for educational purposes

Umple - Model-Based Programming 15Garzon - Feb 2018

Use of the UmpleOnline Docker image

Umple’s server can handle 80,000 transactions per hour

• Code generations, edits

But needs a good Internet connection

… and sometimes hundreds of students have assignments

due!

To maximize speed of UmpleOnline run it in your local

machine:

• Follow the instructions at http://docker.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 16

http://docker.umple.org/

Demo of compiling on the command line

To compile on the command line you will need Java 8

Download Umple from http://dl.umple.org

Basic compilation

•java -jar umple.jar model.ump

•java -jar umple.jar --help

To generate and compile the java to a final system

•java –jar umple.jar model.ump -c -

Umple - Model-Based Programming 17Garzon - Feb 2018

http://dl.umple.org/

Quick walkthrough of the user manual

http://manual.umple.org

Note in particular

• Key sections: attributes, associations, state machines

• Grammar

• Generated API

• Errors and warnings

• Editing pages in github

Umple - Model-Based Programming 18Garzon - Feb 2018

http://manual.umple.org/

Attributes

Garzon - Feb 2018 Umple - Model-Based Programming 19

Attributes

“Instance variables”

• Part of the state of an object

• Simple data that will always be present in each instance

Specified like a Java or C++ field or member variable

But, intended to be more abstract!

Example, with an initial value

a = "init value";

Garzon - Feb 2018 Umple - Model-Based Programming 20

Code generation from attributes

Default code generation

• Generates a getName() and setName() method for

name

—public

• Creates an arguments in the class constructor by default

• An attribute is private to the class by default

—Should only be accessed get, set methods

Garzon - Feb 2018 Umple - Model-Based Programming 21

Umple builtin datatypes
String // (default if none specified)

Integer

Float

Double

Boolean

Time

Date

The above will generate appropriate code in Java, C++ etc.

• e.g. Integer becomes int

Other (native) types can be used but without guaranteed

correctness

Umple - Model-Based Programming 22Garzon - Feb 2018

Attribute stereotypes (1)

Code generation can be controlled through stereotypes:

• lazy - don’t add a constructor argument
lazy b; // sets it to null, 0, “” depending on

type

• Defaulted – can be reset

defaulted s = "def"; // resettable to the default

Garzon - Feb 2018 Umple - Model-Based Programming 23

Attribute stereotypes (2)

• autounique – provide a unique value to each instance
autounique x; // sets attribute to 1, 2, 3 …

• internal – don’t generate any methods
internal i; // doesn’t generate any get/set

either

Garzon - Feb 2018 Umple - Model-Based Programming 24

Immutability

Useful for objects where you want to guarantee no possible

change once created

• e.g. a geometric point

Generate a constructor argument and get method but no

set method

immutable String str;

No constructor argument, but allows setting just once.

lazy immutable z;

Umple - Model-Based Programming 25Garzon - Feb 2018

Lets explore attributes by example

Go to

http://attributes.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 26

http://attributes.umple.org

Derived attributes

These generate a get method that is calculated.

class Point

{

// Cartesian coordinates

Float x;

Float y;

// Polar coordinates

Float rho =

{Math.sqrt(Math.pow(getX(), 2) + Math.pow(getY(), 2))}

Float theta =

{Math.toDegrees(Math.atan2(getY(),getX()))}

}

Umple - Model-Based Programming 27Garzon - Feb 2018

Multi-valued attributes

Limit their use. Associations are generally better.

class Office {

Integer number;

Phone[] installedTelephones;

}

class Phone {

String digits;

String callerID;

}

Umple - Model-Based Programming 28Garzon - Feb 2018

Keys

Enable Umple to generate an equals() and a hashcode()

method

class Student {

Integer id;

name;

key { id }

}

The user manual has a sports team example showing keys

on associations too

Note how this feature is not inherited from UML

Umple - Model-Based Programming 29Garzon - Feb 2018

Generalization and interfaces

Garzon - Feb 2018 Umple - Model-Based Programming 30

Generalization in Umple

Umple uses the isA keyword to indicate generalization

class Shape {

colour;

}

class Rectangle {

isA Shape;

}

Umple - Model-Based Programming 31Garzon - Feb 2018

Umple - Model-Based Programming 32

Avoiding unnecessary generalizations

Inappropriate hierarchy of

Classes

What should the model be?

Garzon - Feb 2018

Open in Umple

http://try.umple.org/?text=class Recording{ * -- 1 RecordingCategory category;}class RecordingCategory{ 0..1 -- * RecordingCategory subcategory;}//$?[End_of_model]$?class Recording{ position 157 30 109 45; position.association Recording__RecordingCategory 62,46 75,0;}class RecordingCategory{ position 149 135 133 45;}

Interfaces

Declare signatures of a group of methods that must be

implemented by various classes

Also declared using the keyword isA

Essentially the same concept as in Java

Let’s explore examples in the user manual …

Umple - Model-Based Programming 33Garzon - Feb 2018

Methods

Garzon - Feb 2018 Umple - Model-Based Programming 34

User-written methods in umple

Methods can be added to any Umple code.

Umple parses the signature only; the rest is passed to the

generated code.

You can specify different bodies in different languages

We will look at examples in the user manual …

Umple - Model-Based Programming 35Garzon - Feb 2018

Associations

Garzon - Feb 2018 Umple - Model-Based Programming 36

Associations

Describe how instances of classes are linked at runtime

• Bidirectional -- or unidirectional ->

Multiplicity: Bounds on the number of linked instances

* Or 0..* 0 or more

1..* 1 or more

1 Exactly 1

2 Exactly 2

1..3 Between 1 and 3

0..2 Up to 2

Garzon - Feb 2018 Umple - Model-Based Programming 37

Basic UML associations

Umple - Model-Based Programming 38Garzon - Feb 2018

Many-to-one associations (1)

class Employee {

id;

firstName;

lastName;

}

class Company {

name;

1 -- * Employee;

}

Umple - Model-Based Programming 39Garzon - Feb 2018

Umple - Model-Based Programming 40

Many-to-one associations (2)

• A company has many employees,

• An employee can only work for one company.

—This company will not store data about the

moonlighting activities of employees!

• A company can have zero employees

—E.g. a ‘shell’ company

• It is not possible to be an employee unless you work for

a company

• Let’s draw and write this in UmpleOnline:

*Employee Company1

Garzon - Feb 2018

Role names (optional, in most cases)

Allow you to better label either end of an association

class Person{

id;

firstName;

lastName;

}

class Company {

name;

1 employer -- * Person employee;

}

Umple - Model-Based Programming 41Garzon - Feb 2018

Umple - Model-Based Programming 42

Many-to-many associations

• An assistant can work for many managers

• A manager can have many assistants

• Assistants can work in pools working for several

managers

• Managers can have a group of assistants

• Some managers might have zero assistants.

• Is it possible for an assistant to have, perhaps

temporarily, zero managers?

*

supervisor

*****1..*Assistant Manager

Open in Umple

Garzon - Feb 2018

http://try.umple.org/?text=class Assistant {}class Manager { 1..* supervisor -- * Assistant;}//$?[End_of_model]$?class Assistant{ position 49 30 109 45;}class Manager{ position 73 127 109 45;}

Umple - Model-Based Programming 43

One-to-one associations (Use cautiously)

• For each company, there is exactly one board of

directors

• A board is the board of only one company

• A company must always have a board

• A board must always be of some company

Company BoardOfDirectors11

Open in Umple

Garzon - Feb 2018

http://try.umple.org/?text=class Company {}class BoardOfDirectors {}association { 1 Company -- 1 BoardOfDirectors;}//$?[End_of_model]$?class Company{ position 50 30 109 45;}class BoardOfDirectors{ position 50 130 109 45;}

Umple - Model-Based Programming 44

Typical erroneous use of one-to-one

Avoid this do this

Garzon - Feb 2018

Umple - Model-Based Programming 45

Unidirectional associations
Associations are by default bi-directional

It is possible to limit the direction of an association by adding an

arrow at one end

In the following unidirectional association

— A Day knows about its notes, but a Note does not know

which Day is belongs to

—Note remains ‘uncoupled’ and can be used in other contexts

class Day {

* -> 1 Note;

}

class Note {} Open in Umple

Garzon - Feb 2018

http://try.umple.org/?text=class Day { * -> 1 Note;}class Note {}//$?[End_of_model]$?class Day{ position 50 31 109 45; position.association Day__Note 30,46 30,0;}class Note{ position 50 131 109 45;}

Umple - Model-Based Programming 46

Association classes

Sometimes, an attribute that concerns two associated classes

cannot be placed in either of the classes

The following are nearly equivalent

• The only difference:

—in the association class there can be only a single

registration of a given Student in a CourseSection

Open in Umple and extended example

Garzon - Feb 2018

http://try.umple.org/?text=class Student {}class CourseSection {}class Registration { * -- 1 Student; * -- 1 CourseSection;}//$?[End_of_model]$?class Student{ position 50 30 109 45;}class CourseSection{ position 97 203 109 45;}class Registration{ position 67 123 109 45; position.association CourseSection__Registration 84,45 29,0;}
http://try.umple.org/?text=class Student {}class CourseSection {}class Registration { * -- 1 Student; * -- 1 CourseSection;}//$?[End_of_model]$?class Student{ position 50 30 109 45;}class CourseSection{ position 97 203 109 45;}class Registration{ position 67 123 109 45; position.association CourseSection__Registration 84,45 29,0;}
http://try.umple.org/?text=class Student {}class CourseSection {}class Registration { * -- 1 Student; * -- 1 CourseSection;}//$?[End_of_model]$?class Student{ position 50 30 109 45;}class CourseSection{ position 97 203 109 45;}class Registration{ position 67 123 109 45; position.association CourseSection__Registration 84,45 29,0;}
http://tinyurl.com/3j4r3mp

Umple - Model-Based Programming 47

Association classes (cont.)

Umple code

class Student {}

class CourseSection {}

associationClass Registration {

* Student;

* CourseSection;

}

Open in UmpleOnline, and then generate code

Garzon - Feb 2018

Umple - Model-Based Programming 48

Reflexive associations

An association that connects a class to itself

class Course {

* self isMutuallyExclusiveWith; // Symmetric

}

association {

* Course successor -- * Course prerequisite;

} Open in Umple

Garzon - Feb 2018

http://try.umple.org/?text=class Course { * self isMutuallyExclusiveWith;}association { * Course successor -- * Course prerequisite;}//$?[End_of_model]$?class Course{ position 122 25 109 45;}

Inline vs. standalone associations

The following are equivalent to allow flexibility:

class X {}

class Y {

1 -- * X;

}

class X {}

class Y {}

association {

1 Y -- * X;

}

Umple - Model-Based Programming 49Garzon - Feb 2018

Umple - Model-Based Programming 50

Aggregation

Aggregations are ordinary associations that represent part-whole

relationships.

• The ‘whole’ side is often called the assembly or the aggregate

• This is a shorthand for association named isPartOf

• Umple has no special syntax currently

class Vehicle {

1 whole -- * VehiclePart part;

}

class VehiclePart{

}

Garzon - Feb 2018

Umple - Model-Based Programming 51

Composition

A composition is a strong kind of aggregation

• If the aggregate is destroyed, then the parts are destroyed as well

class Building {

1 <@>- * Room;

}

class Room{

}

Garzon - Feb 2018

Sorted Associations

Order objects in the association according to a specific key

class Academy {

1 -- * Student registrants sorted {id};

}

class Student {

Integer id;

name;

}

We will look at a more complete example in the User

Manual

Umple - Model-Based Programming 52Garzon - Feb 2018

A final word on associations

More help and examples are in the user manual online at

http://associations.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 53

http://associations.umple.org

Modeling exercises

Garzon - Feb 2018 Umple - Model-Based Programming 54

Modeling Exercise

Build a class diagram for the following description. If you

think there are key requirements missing, then add them.

1. A football (soccer) team has players. Each player plays a

position. The team plays some games against other

teams during each season. The system needs to record

who scored goals, and the score of each game.

Umple - Model-Based Programming 55Garzon - Feb 2018

Simple patterns (if time)

Garzon - Feb 2018 Umple - Model-Based Programming 56

Singleton pattern

Standard pattern to enable only a single instance of a class

to be created.

• private constructor

• getInstance() method

Declaring in Umple

class University {

singleton;

name;

}

Umple - Model-Based Programming 57Garzon - Feb 2018

Delegation pattern

A class calls a method in its ‘neighbour’

class RegularFlight {

flightNumber;

}

Class SpecificFlight {

* -- 1 RegularFlight;

flightNumber = {getRegularFlight().getFullNumber()}

}

Full details of this example in the user manual

Umple - Model-Based Programming 58Garzon - Feb 2018

Basic constraints

Shown in square brackets

• Code is added to the constructor and the set method

class X {

Integer i;

[! (i == 10)]

}

We will see constraints later in state machines

Umple - Model-Based Programming 59Garzon - Feb 2018

Outline
1. Introduction:

2. Overview of Model-Driven Development

— Languages / Tools / Motivation for Umple

3. Class Modeling

— Tools / Attributes / Methods / Associations / Exercises /

Patterns

4. Modeling with State Machines

— Basics / Concurrency / Case study and exercises

5. Separation of Concerns in Models

— Mixins / Aspects / Traits

6. More Case Studies and Hands-on Exercises

— Umple in itself / Real-Time / Data Oriented

7. Conclusion

Garzon - Feb 2018 Umple - Model-Based Programming 60

Basic state machines

Garzon - Feb 2018 Umple - Model-Based Programming 61

Umple - Model-Based Programming 62

Basics of state machines

• At any given point in time, the system is in one state.

• It will remain in this state until an event occurs that

causes it to change state.

• A state is represented by a rounded rectangle containing

the name of the state.

• Special states:

—A black circle represents the start state

—A circle with a ring around it represents an end state

Garzon - Feb 2018

Garage door state machine
class GarageDoor{

status {

Open {

buttonOrObstacle -> Closing;

}

Closing {

buttonOrObstacle -> Opening;

reachBottom -> Closed;

}

Closed {

buttonOrObstacle -> Opening;

}

Opening {

buttonOrObstacle -> HalfOpen;

reachTop -> Open;

}

HalfOpen {

buttonOrObstacle -> Opening;

}

}

}

Umple - Model-Based Programming 63Garzon - Feb 2018

Events

An occurrence that may trigger a change of state

• Modeled in Umple as generated methods that can be

called

Several states may be able to respond to the same event

Umple - Model-Based Programming 64Garzon - Feb 2018

Umple - Model-Based Programming 65

Transitions

• A change of state in response to an event.

—It is considered to occur instantaneously.

• The label on each transition is the event that causes the

change of state.

Garzon - Feb 2018

Umple - Model-Based Programming 66

State diagrams – an example with

conditional transitions

Garzon - Feb 2018

Umple - Model-Based Programming 67

Actions in state diagrams

• An action is a block of code that must be executed

effectively instantaneously

—When a particular transition is taken,

—Upon entry into a particular state, or

—Upon exit from a particular state

• An action should consume no noticeable amount of time

Garzon - Feb 2018

Umple - Model-Based Programming 68

Nested substates and guard conditions

A state diagram can be nested inside a state.

• The states of the inner diagram are called substates.

Garzon - Feb 2018

Umple - Model-Based Programming 69

Nested state diagram – Another example

Garzon - Feb 2018

Auto-transitions

A transition taken immediately upon entry into a state

• Unless guarded

We will look at an example in the user manual

Umple - Model-Based Programming 70Garzon - Feb 2018

Events with parameters

Parameters can be referenced in guards and actions.

We will look at an example in the user manual.

Umple - Model-Based Programming 71Garzon - Feb 2018

Analysing models

Garzon - Feb 2018 Umple - Model-Based Programming 72

Models can be analysed in several ways

Visually

Automatically generated errors and warnings

State tables (next slide)\

Metrics

Formal methods (nuXMV)

Garzon - Feb 2018 Umple - Model-Based Programming 73

State tables and simulations

Allow analysis of state machines statically without having to

write code

We will explore these in UmpleOnline by looking at state

machine examples and generating tables and

simulations

Umple - Model-Based Programming 74Garzon - Feb 2018

Concurrency

Garzon - Feb 2018 Umple - Model-Based Programming 75

Do activities and concurrency

A do activity executes

• In a separate thread

• Until

—Its method terminates, or

—The state needs to exit (killing the tread)

Example uses:

• Outputting a stream (e.g. playing music)

• Monitoring something

• Running a motor while in the state

• Achieving concurrency, using multiple do activities

Umple - Model-Based Programming 76Garzon - Feb 2018

Active objects

These start in a separate thread as they are instantiated.

Declared with the keyword

active

Umple - Model-Based Programming 77Garzon - Feb 2018

Default threading in state machines

As discussed so far, code generated for state machines

has the following behaviour:

• A single thread:

—Calls an event

—Executes the event (running any actions)

—Returns to the caller and continues

This has two problems:

1. If another thread calls the event at the same time they

will ‘interfere’

2. There can be deadlocks if an action itself triggers an

event
Umple - Model-Based Programming 78Garzon - Feb 2018

Queued state machines

Solve the threading problem:

• Callers can add events to a queue without blocking

• A separate thread takes items off the queue ‘as fast as it

can’ and processes them

Umple syntax: queued before the state machine

declaration

We will look at examples in the manual

Umple - Model-Based Programming 79Garzon - Feb 2018

Pooled state machines

Default Umple Behavior (including with queued):

• If an event is received but the system is not in a state that

can handle it, then the event is ignored.

Alternative pooled stereotype:

• Uses a queue (see previous slide)

• Events that cannot be processed in the current state are

left at the head of the queue until a relevant state reached

• The first relevant event nearest the head of the queue is

processed

• Events may hence be processed out of order, but not

ignored

Umple - Model-Based Programming 80Garzon - Feb 2018

Unspecified pseudo-event

Matches any event that is not listed

Can be in any state, e.g.

unspecified -> error;

Umple - Model-Based Programming 81Garzon - Feb 2018

Example using unspecified
class AutomatedTellerMachine{

queued sm {

idle {

cardInserted -> active; maintain -> maintenance;

unspecified -> error1;

}

maintenance { isMaintained -> idle; }

active {

entry /{addLog("Card is read");}

exit /{addLog("Card is ejected");}

validating {

validated -> selecting;

unspecified -> error2;

}

selecting {select -> processing; }

processing {

selectAnotherTransiction -> selecting;

finish -> printing;

}

printing {receiptPrinted -> idle;}

cancel -> idle;

}

error1 {entry / {printError1();} ->idle;}

error2 {entry / {printError2();} ->validating;}

}

}

Umple - Model-Based Programming 82Garzon - Feb 2018

State machines in the user manual

http://statemachines.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 83

http://statemachines.umple.org

State machine case study

Garzon - Feb 2018 Umple - Model-Based Programming 84

State machine for a phone line

Umple - Model-Based Programming 85Garzon - Feb 2018

Umple for the phone line example
class phone {

state {

onHook {

startDialing -> dialling;

incomingCall -> ringing;

}

ringing {

pickUp -> communicating;

otherPartyHangUp -> onHook;

}

communicating {

hangUp -> onHook;

otherPartyHangUp -> waitForHook;

putOnHold -> onHold;

}

onHold {

hangUp -> onHook;

otherPartyHangUp -> waitForHook;

takeOffHold -> communicating;

}

dialing {

completeNumber ->

waitingForConnection;

hangUp -> onHook;

}

waitingForConnection {

otherPartyPickUp -> communicating;

hangUp -> onHook;

timeOut -> onHook;

}

waitForHook {

hangUp -> onHook;

}

}

}

Umple - Model-Based Programming 86Garzon - Feb 2018

In-class modeling exercise for

state machines

Microwave oven system state machine

• Events include

—pressing of buttons

—door opening

—door closing

—timer ending

—etc.

Umple - Model-Based Programming 87Garzon - Feb 2018

Outline
1. Introduction:

2. Overview of Model-Driven Development

— Languages / Tools / Motivation for Umple

3. Class Modeling

— Tools / Attributes / Methods / Associations / Exercises /

Patterns

4. Modeling with State Machines

— Basics / Concurrency / Case study and exercises

5. Separation of Concerns in Models

— Mixins / Aspects / Traits

6. More Case Studies and Hands-on Exercises

— Umple in itself / Real-Time / Data Oriented

7. Conclusion

Garzon - Feb 2018 Umple - Model-Based Programming 88

Mixins

Garzon - Feb 2018 Umple - Model-Based Programming 89

Separation of concerns by mixins in Umple

Mixins allow including attributes, associations, state

machines, groups of states, stereotypes, etc

Example:

class X { a; }

class X { b; }

• The result would be a class with both a and b.

It doesn’t matter whether the mixins are

• Both in the same file

• One in one file, that includes the other in an other file

• In two separate files, with a third file invoking them

Umple - Model-Based Programming 90
Garzon - Feb 2018

Typical ways of using mixins

Separate model files (classes, attributes associations)

… from files for the same class containing methods

• Allows a clearer view of the core model

Separate system features, each into a separate file

Umple - Model-Based Programming 91Garzon - Feb 2018

Advantages and disadvantages of mixins

Advantages:

• Smaller files that are easier to understand

• Different versions of a class for different software

versions (e.g. a professional version) can be built by

using different mixins

Disadvantage

• Delocalization:

—Bits of functionality of a class in different files

—The developer may not know that a mixin exists

unless a tool helps show this

Umple - Model-Based Programming 92Garzon - Feb 2018

Aspect orientation

Garzon - Feb 2018 Umple - Model-Based Programming 93

Aspect orientation

Create a pointcut that specifies (advises) where to inject

code at multiple points elsewhere in a system

• The pointcut uses a pattern

• Pieces of code that would otherwise be scattered are

thus gathered into the aspect

But: There is potentially acute sensitivity to change

• If the code changes the aspect may need to change

• Yet without tool support, developers wouldn’t know this

Delocalization even stronger than for mixins

Umple - Model-Based Programming 94
Garzon - Feb 2018

Aspect orientation in Umple

Pointcuts are currently limited to a single class

• Just inject code before and after execution of methods and

constructors

class Person {

name;

before setName {

if (aName != null && aName.length() > 20) { return false;

}

}

}

We have found these limited abilities nonetheless solve key

problems

Umple - Model-Based Programming 95
Garzon - Feb 2018

Traits

Garzon - Feb 2018 Umple - Model-Based Programming 96

Separation of concerns by traits
Allow modeling elements to be made available in multiple

classes

trait Identifiable {

firstName;

lastName;

address;

phoneNumber;

fullName = {firstName + " " + lastName}

Boolean isLongName() {return lastName.length() > 1;}

}

class Person {

isA Identifiable;

}

See more complete version of this in the user manual

Umple - Model-Based Programming 97Garzon - Feb 2018

Another trait example
trait T1{

abstract void method1(); /* required method */

abstract void method2();

void method4(){/*implementation – provided method*/ }

}

trait T2{

isA T1;

void method3();

void method1(){/*implementation*/ }

void method2(){/*implementation*/ }

}

class C1{

void method3(){/*implementation*/ }

}

class C2{ isA C1; isA T2;

void method2(){/*implementation*/ }

}

Umple - Model-Based Programming 98Garzon - Feb 2018

Outline
1. Introduction: Who am I and who are you?

2. Overview of Agility

3. Overview of Model-Driven Development

— Languages / Tools / Motivation for Umple

4. Agile Class Modeling

— Tools / Attributes / Methods / Associations / Exercises / Patterns

5. Agile Modeling with State Machines

— Basics / Concurrency / Case study and exercises

6. Separation of Concerns in Models

— Mixins / Aspects / Traits

7. More Case Studies and Hands-on Exercises

— Umple in itself / Real-Time / Data Oriented

8. Conclusion

Garzon - Feb 2018 Umple - Model-Based Programming 99

Unit Testing with Umple

To see how to integrate Unit Testing with Umple, see the

sample project at

• https://github.com/umple/umple/tree/master/sandbox

And the build script at

• https://github.com/umple/umple/blob/master/build/build.sandbox.xml

Command line from build directory

ant -f build.xml sandbox

Garzon - Feb 2018 Umple - Model-Based Programming 100

https://github.com/umple/umple/tree/master/sandbox
https://github.com/umple/umple/blob/master/build/build.sandbox.xml

A Look at How Umple is Written in Itself
Source:

https://github.com/umple/umple/tree/master/cruise.umple/src

Umple’s own class diagram generated by itself from itself:

• http://metamodel.umple.org

• Colours represent key subsystems

• Click on classes to see Javadoc, and then Umple Code

Umple - Model-Based Programming 101
Garzon - Feb 2018

https://github.com/umple/umple/tree/master/cruise.umple/src
http://metamodel.umple.org/

Testing:

TDD with100% pass always required

Multiple levels: https://cruise.eecs.uottawa.ca/qa/index.php

• Parsing tests: basic constructs

• Metamodel tests: ensure it is populated properly

—E.g.
—https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/com

piler/AssociationTest.java

• Implementation template tests: to ensure constructs

generate code that looks as expected

• Testbed semantic tests: Generate code and make sure it

behaves the way it should
Umple - Model-Based Programming 102

Garzon - Feb 2018

https://cruise.eecs.uottawa.ca/qa/index.php
https://github.com/umple/umple/blob/master/cruise.umple/test/cruise/umple/compiler/AssociationTest.java

Umple issues list

Tagged by

Priority

Perceived difficulty

Scale (bug, project, research project)

Milestone (slow release)

http://bugs.umple.org

Garzon - Feb 2018 Umple - Model-Based Programming 103

http://bugs.umple.org/

Using Umple with Builds and Continuous

Integration

Example build scripts

Example travis.yml

Umple’s own Travis page

Garzon - Feb 2018 Umple - Model-Based Programming 104

https://github.com/umple/umple/blob/10e9b6a8124942b4f24b89e2d85dcc4260989cad/.travis.yml
https://travis-ci.org/umple/umple

Umple’s Architecture

Garzon - Feb 2018 Umple - Model-Based Programming 105

Umplification - Example

Garzon - Feb 2018 Umple - Model-Based Programming 106

Garzon - Feb 2018 Umple - Model-Based Programming 107

Conclusion

Umple

• Is simple but powerful modeling tool

• Generates state-of-the-art code

• Enables agility + model-driven development

• We call the overall approach model-based

programming

Garzon - Feb 2018 Umple - Model-Based Programming 108

Thank-you!

Garzon - Feb 2018 Umple - Model-Based Programming 109

