EXERCICE 9.6

Answer 3.6 1. 1024/100 = 10. We can have at most 10 records in a block.

2. There are 100,000 records all together, and each block holds 10 records. Thus,
we need 10,000 blocks to store the file. One track has 25 blocks, one cylinder
has 250 blocks. we need 10,000 blocks to store this file. So we will use more
than one cylinders, that is, need 10 surfaces to store this file.

3. The capacity of the disk is 500,000K, which has 500,000 blocks. Each block has
10 records. Therefore, the disk can store no more than 5,000,000 records.

. There are 25K bytes, or we can say, 25 blocks in each track. It is block 26 on

block 1 of track 1 on the next disk surface.

If the disk were capable of reading/writing from all heads in parallel, we can
put the first 10 pages on the block 1 of trackl of 10 surfaces. Therefore, it is
block 2 on block 1 of track 1 on the next disk surface.

. A file containing 100,000 records of 100 bytes needs 40 cylinders or 400 tracks

in this disk. The transfer time of one track of data is 0.011 seconds. Then it
takes 400 x 0.011 = 4.4seconds to transfer 400 tracks.

This access seeks the track 40 times. The seek time is 40 x 0.01 = (0.4seconds.
Therefore, total access time is 4.4 + 0.4 = 4.8seconds.

If the disk were capable of reading/writing from all heads in parallel, the disk
can read 10 racks at a time. The transfer time is 10 times less, which is 0.44
seconds. Thus total access time is 0.44 + 0.4 = 0.84seconds

. For any block of data, averageaccesstime = seektime + rotationaldelay +

trans fertime.
seektime = 10msec

rotationaldelay = 6msec

1K
trans fertime = —————— = 0.44msec
/ 2, 250K/ sec
The average access time for a block of data would be 16.44 msec. For a file
containing 100,000 records of 100 bytes, the total access time would be 164.4

seconds.

EX. 10.2

. I1, 12, and everything in the range [L2..L8§].
. See Figure 5.11.
. See Figure 5.12.

. There are many search keys X such that inserting X would increase the height

of the tree. Any search key in the range [65..79] would suffice. A key in this
range would go in L5 if there were room for it, but since L5 is full already and
since it can’t redistribute any data entries over to L4 (L4 is full also), it must

split; this in turn causes 12 to split, which causes I1 to split, and assuming I1 is
the root node, a new root is created and the tree becomes taller.

. We can infer several things about subtrees A, B, and C. First of all, they each

must have height one, since their “sibling” trees (those rooted at 12 and I3) have
height one. Also, we know the ranges of these trees (assuming duplicates fit on
the same leaf): subtree A holds search keys less than 10, B contains keys > 10
and < 20, and C has keys > 20 and < 30. In addition, each intermediate node
has at least 2 key values and 3 pointers.

. The answers for the questions above would change as follows if we were dealing

with ISAM trees instead of B+ trees.
(a) This is only a search, so the answer is the same. (The tree structure is not
modified.)

(b) Because we can never split a node in ISAM, we must create an overflow
page to hold inserted key 109.

(¢) Search key 81 would simply be erased from L6; no redistribution would
occur (ISAM has no minimum occupation requirements).

(d)

Being a static tree structure, an ISAM tree will never change height in
normal operation, so there are no search keys which when inserted will
increase the tree’s height. (If we inserted an X in [65..79] we would have
to create an overflow page for L5.)

We can infer several things about subtrees A, B, and C. First of all, they
each must have height one, since their “sibling” trees (those rooted at 12
and I3) have height one. Here we suppose that we create a balanced ISAM
tree. Also, we know the ranges of these trees (assuming duplicates fit on
the same leaf): subtree A holds search keys less than 10, B contains keys
> 10 and < 20, and C has keys > 20 and < 30. By the way, each of A,
B, and C contain five leaf nodes (which may be of arbitrary fullness), and
these nodes are the 15 consecutive pages prior to L1.

7. If this is an ISAM tree, we would have to insert at least nine search keys in
order to develop an overflow chain of length three. These keys could be any
that would map to L4, L5, L7, or L8, all of which are full and thus would need
overflow pages on the next insertion. (Presumably four data entries would fit
on a page, so nine data entries would be the minimum needed for three pages.)

90 || 98 || 100]]

o II.I ——
— \ T
- \ —
- Y L8 . T L9 (new
z_—,/‘f/ / e - ()

L7 98" 99* 100*| 105*| 109
Figure 5.11
(1)
13
95 |\ o8
L8
LB /__h L?

82 | o4 o5'| o8 | o7

Fiocnra 5§ 12

EX11.1

Answer 6.1 1. Tt could be any one of the data entries in the index. We can always

4.

find a sequence of insertions and deletions with a particular key value, among
the key values shown in the index as the last insertion. For example, consider
the data entry 16 and the following sequence:

15211015751 4123664824 5616 56p 24p 8p

The last insertion is the data entry 16 and it also causes a split. But the sequence
of deletions following this insertion cause a merge leading to the index structure
shown in Fig 6.1.

. The last insertion could not have caused a split because the total number of

data entries in the buckets A and A, is 6. If the last entry caused a split the
total would have been 5.

. The last insertion which caused a split cannot be in bucket C. Buckets B and

C or C and D could have made a possible bucket-split image combination but
the total number of data entries in these combinations is 4 and the absence of
deletions demands a sum of atleast 5 data entries for such combinations. Buckets
B and D can form a possible bucket-split image combination because they have
a total of 6 data entries between themselves. So do A and As. But for the B
and D to be split images the starting global depth should have been 1. If the
starting global depth is 2, then the last insertion causing a split would be in A
or A,.

See Fig 6.2.

5. See Fig 6.3.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101
1110

1111

Do v "

|
I
[~

INE'SNRNNS

DIRECTORY

64

16

21

51

36

68

Figure 6.2

BUCKET

BUCKET

BUCKET

BUCEKET

BUCEKET

BUCKET

A3

000

001

010

011

100

101

110

111

P2l

]

B

[

DIEECTORY

16

51

20

36

69

Figure 6.3

BUCKET A

BUCEET B

BUCEKET C

BUCKET D

BUCKET A2

BUCKET B2

EX. 19.10

1.

b

E:.."l

Candidate key(s): BD. The decomposition into BC and AD is unsatisfactory
because it is lossy (the join of BC and AD is the cartesian product which could

be much bigger than ABCD)

Candidate key(s): AB. BC. The decomposition into ACD and BC is lossless since
ACD n BC (which is C) —-ACD. The projection of the FD’s on ACD include C
—D. C 2A (so Cis a key for ACD) and the projection of FD on BC produces
no nontrivial dependencies. In particular this is a BONF decomposition (check
that R is not!). However, it is not dependency preserving since the dependency
AB —C is not preserved. So to enforce preservation of this dependency (if we
do not want to use a join) we need to add ABC which introduces redundancy.
So implicitly there is some redundancy across relations (although none inside

ACD and BC).

Candidate key(s): A, C Since A and C are both candidate keys for R, it is
already in BONF. So from a normalization standpoint it makes no sense to
decompose R further.

Candidate key(s): A The projection of the dependencies on AB are: A =B and
those on ACD are: A —=C and C =D (rest follow from these). The scheme ACD
is not even in 3NF, since C is not a superkey, and D is not part of a key. This is
a lossless-join decomposition (since A is a key), but not dependency preserving,
since B —C is not preserved.

Candidate key(s): A (just as before) This is a lossless BCNF decomposition
(easy to check!] This is, however. not dependency preserving (B consider —C).
So it is not free of (implied) redundancy. This is not the best decomposition (
the decomposition AB, BC, CD is better.)

